Water Availability Models - where we are today -

Bob Brandes
Austin, Texas
January 23-25, 2017
20 TCEQ WAMs for 23 Basins
Origin of State’s Current WAMs

• Senate Bill 1 in 1997 authorized development of Water Availability Models for 22 of 23 river and coastal basins in Texas
 • 6 basins completed by end of 1999
 • 16 basins completed by end of 2001

• House Bill 76 in 1999 authorized development of Rio Grande WAM
 • Texas and Mexico
 • Completed in 2004
What is a Water Availability Model?

A computer-based processor that simulates the available supply of surface water for each water right in a river or coastal basin considering:

• Existing legal and regulatory constraints, e.g. water rights priorities
• Authorizations and conditions specified in individual water rights
• Naturalized hydrologic variations reflective of historical trends and extremes
How are Water Availability Models Used?

• Water rights permitting by TCEQ
 • Determine available supply for new appropriations and amendments
 • Assess impacts on other water rights
 • Satisfy SB3 environmental flow standards
• SB1 regional water supply planning
 • Regional Water Planning Groups
 • TWDB
Key Roles of WAMs in Regional Water Planning

• Determine existing surface water supplies for water user groups and specific projects (under drought of record conditions)
 • Reservoir yields
 • Run-of-river diversions
• Determine potential surface water supplies for recommended projects and strategies (under drought of record conditions)
• Incorporate SB3 environmental flow standards into future project evaluations
What comprises a Water Availability Model?

WAM = Computer Program (WRAP) + Basin-Specific Data Files

- WRAP (Water Rights Analysis Package)
- Basin-Specific Data Files include:
 - Computational node connectivity
 - Water rights priorities and descriptions
 - Naturalized historical hydrology
 - Historical reservoir net evaporation rates
 - Program operation commands
Key Features of Water Availability Models

• Existing WAM data sets typically reflect 1940 to late 1990s historical hydrologic conditions

• Monthly time steps currently used in all WAMs by TCEQ and TWDB – daily time step in progress

• Prior appropriation doctrine – first in time, first in right – applied for allocating flows among all water rights in a basin, except for Rio Grande

• Special conditions can be represented, such as SB3 environmental flow standards, reservoir system operations, water rights subordination, and wastewater reuse
Typical Output from WAMs

- Monthly Diversions for All Water Rights
- Reliabilities of Water Rights Diversions
 - % of Time Full Diversion Satisfied
 - % of Full Diversion Satisfied on Average
- End-of-Month Reservoir Storage Values
- Monthly Evaporation Losses from Reservoirs
- Monthly Return Flows from Diversions
- Monthly Regulated Streamflows
- Monthly Unappropriated Streamflows
- Monthly Flows to Bays and Estuaries
Simulated Annual Diversions
Why Existing WAMs Need to be Updated

• Hydrologic data bases for all but one existing WAM end in late 1990s – Rio Grande in 2000
• Drought of record for many basins has changed from 1950s to recent years not included in data
• Basing available water supplies on droughts less severe than the drought of record results in over-estimation of firm supplies
• Communities and other water users are at risk of water shortages when available supplies are over estimated
Factors Affecting Priorities for Updating Individual WAMs

- Occurrence of new drought of record since end of WAM data base
- Need to revise firm water supplies for existing water rights and projects
- Proposed major projects in a basin that may be limited by available unappropriated water
- Regulatory requirements for updating some existing WAMs – Colorado and Brazos
- Funding needs for updating individual WAMS
Possible Priorities for WAM Extensions

<table>
<thead>
<tr>
<th>PRIORITY FOR EXTENSION</th>
<th>BASIN</th>
<th>NO. OF WATER RIGHTS</th>
<th>PRIMARY CONTROL POINTS</th>
<th>HYDROLOGIC PERIOD OF RECORD</th>
<th>YEARS TO EXTEND THRU 2016</th>
<th>ESTIMATED COST $</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sulphur River</td>
<td>56</td>
<td>6</td>
<td>1940-1996</td>
<td>20</td>
<td>259,000</td>
</tr>
<tr>
<td>2</td>
<td>Rio Grande</td>
<td>876</td>
<td>43</td>
<td>1940-2000</td>
<td>16</td>
<td>805,000</td>
</tr>
<tr>
<td>3</td>
<td>Nueces River</td>
<td>255</td>
<td>41</td>
<td>1934-1996</td>
<td>20</td>
<td>633,000</td>
</tr>
<tr>
<td>4</td>
<td>Guadalupe-San Antonio Rivers</td>
<td>1,120</td>
<td>46</td>
<td>1934-1989</td>
<td>27</td>
<td>1,265,000</td>
</tr>
<tr>
<td>5</td>
<td>Red River</td>
<td>400</td>
<td>31</td>
<td>1948-1998</td>
<td>18</td>
<td>662,000</td>
</tr>
<tr>
<td>6</td>
<td>Neches River</td>
<td>330</td>
<td>20</td>
<td>1940-1996</td>
<td>20</td>
<td>506,000</td>
</tr>
<tr>
<td>7</td>
<td>Colorado River/Brazos-Colorado</td>
<td>1,288</td>
<td>45</td>
<td>1940-2013/1998</td>
<td>3/18</td>
<td>230,000</td>
</tr>
<tr>
<td>8</td>
<td>Trinity River</td>
<td>1,020</td>
<td>41</td>
<td>1940-1996</td>
<td>20</td>
<td>1,122,000</td>
</tr>
<tr>
<td>9</td>
<td>San Jacinto River</td>
<td>200</td>
<td>17</td>
<td>1940-1996</td>
<td>20</td>
<td>403,000</td>
</tr>
<tr>
<td>10</td>
<td>Brazos River/San Jacinto-Brazos</td>
<td>1,200</td>
<td>77</td>
<td>1940-1997</td>
<td>19</td>
<td>288,000</td>
</tr>
<tr>
<td>11</td>
<td>Lavaca River</td>
<td>55</td>
<td>7</td>
<td>1940-1996</td>
<td>20</td>
<td>259,000</td>
</tr>
<tr>
<td>12</td>
<td>Colorado-Lavaca Coastal</td>
<td>30</td>
<td>1</td>
<td>1940-1996</td>
<td>20</td>
<td>69,000</td>
</tr>
<tr>
<td>13</td>
<td>Canadian River</td>
<td>38</td>
<td>6</td>
<td>1948-1998</td>
<td>18</td>
<td>127,000</td>
</tr>
<tr>
<td>14</td>
<td>Sabine River</td>
<td>192</td>
<td>18</td>
<td>1940-1998</td>
<td>18</td>
<td>506,000</td>
</tr>
<tr>
<td>15</td>
<td>Cypress River</td>
<td>84</td>
<td>6</td>
<td>1948-1998</td>
<td>18</td>
<td>259,000</td>
</tr>
<tr>
<td>16</td>
<td>Neches-Trinity Coastal</td>
<td>108</td>
<td>4</td>
<td>1940-1996</td>
<td>20</td>
<td>138,000</td>
</tr>
<tr>
<td>17</td>
<td>Trinity-San Jacinto Coastal</td>
<td>17</td>
<td>2</td>
<td>1940-1996</td>
<td>20</td>
<td>69,000</td>
</tr>
<tr>
<td>18</td>
<td>Lavaca-Guadalupe Coastal</td>
<td>6</td>
<td>2</td>
<td>1940-1996</td>
<td>20</td>
<td>46,000</td>
</tr>
<tr>
<td>19</td>
<td>San Antonio-Nueces Coastal</td>
<td>21</td>
<td>6</td>
<td>1948-1998</td>
<td>18</td>
<td>69,000</td>
</tr>
<tr>
<td>20</td>
<td>Nueces-Rio Grande Coastal</td>
<td>78</td>
<td>29</td>
<td>1948-1998</td>
<td>18</td>
<td>173,000</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>7,888,000</td>
<td></td>
</tr>
</tbody>
</table>
Questions