Regional Water Plan – Panhandle Water Planning Area VOLUME II APPENDICES

January, 2001

Prepared for the Panhandle Water Planning Group through a contract with the Panhandle Regional Planning Commission Amarillo, Texas

Prepared by:

Freese and Nichols, Inc. 4055 International Plaza

Suite 200 Fort Worth, TX 76109 817/735-7300

The Texas Agricultural Experiment Station

The Texas Agricultural Extension Service

USDA Natural Resource Conservation Service

Bureau of Economic Geology

Regional Water Plan Panhandle Water Planning Area

PPC99134

VOLUME II

APPENDIX A	Population and Municipal Water Demand Projections	A-1
APPENDIX B	Streams with Ecologically Unique Resources and Threatened and Endangered Species	B-1
APPENDIX C	Summary of Available Regional Data Sources	C-1
APPENDIX D	Table 1: Population by City and Rural County	D-1
APPENDIX E	Table 2: Water Demand by City and Rural County	E-1
APPENDIX F	Projected Livestock Water Demands by Livestock Category	F-1
APPENDIX G	Table 3: Water Demands of Major Water Providers	G-1
APPENDIX H	Table 4: Current Water Supply Sources	H-1
APPENDIX I	Table 5: Current Water Supplies Available by City andCategory	I-1
APPENDIX J	Table 6: Current Water Supplies Available by MajorWater Provider	J -1
APPENDIX K	Predicted Saturated Thickness in the Ogallala Aquifer in the Panhandle Water Planning Area	K-1
APPENDIX L	Methodology for Determining Groundwater Availability From the Seymour, Dockum, Blaine, Rita Blanca, and Whitehorse Aquifers	L-1
APPENDIX M	Tables 7 and 8	M-1
APPENDIX N	Cost Estimates	N-1
APPENDIX O	Water Management Strategies for Reducing Irrigation Demands in the PWPA	0-1
APPENDIX P	TWDB Exhibit B Tables 11, 12, 13 and Summary Tables	P-1
APPENDIX Q	Public Participation Activities Chart Detailed Listing	Q-1
APPENDIX R	PWPG Functions Chart Detailed Listing	R-1

APPENDIX S	Panhandle Water Planning Group Summary of Hours and Travel	S-1
APPENDIX T	PWPG Committee Listing	T-1
APPENDIX U	Comments Received on Initially Prepared Plan and Responses	U-1
APPENDIX V	Contributing Entities and Organizations	V-1
APPENDIX W	Sample Public Hearing Presentation	W-1
APPENDIX X	Sample Website Page	X-1

APPENDIX A

Population and Municipal Water Demand Projections

Population	1990	2000	2010	2020	2030	2040	2050
CLAUDE	1,199	1,253	1,335	1,410	1,476	1,478	1,480
County-Other, Red River Area	822	775	701	612	502	416	355
TOTAL	2,021	2,028	2,036	2,022	1,978	1,894	1,835
Municipal Water Use (ac-ft)	1990	2000	2010	2020	2030	2040	2050
CLAUDE	250	265	266	267	274	268	267
County-Other, Red River Area	103	92	78	61	50	40	33
TOTAL	353	357	344	328	324	308	300
Water Lize Der Conite (gred)	1990	2000	2010	2020	2020	20.40	2050
Water Use Per Capita (gpcd) CLAUDE	1990	2000 189	2010 178	2020	2030 166	2040 162	2050
County-Other, Red River Area	112	106	99	89	89	86	83
TOTAL	112	100	151	145	146	145	146
IOTAL	150	157	151	145	140	145	140
Population	1990	2000	2010	2020	2030	2040	2050
PANHANDLE	2,353	2,469	3,750	4,104	4,281	4,401	4,523
WHITE DEER	1,125	1,231	1,341	1,391	1,445	1,477	1,510
GROOM	613	655	658	648	600	545	501
SKELLYTOWN	664	666	667	650	572	564	556
County-Other, Canadian River Area	619	619	617	582	648	632	588
County-Other, Red River Area	1,202	1,164	1,159	1,094	1,125	1,148	1,117
TOTAL	6,576	6,804	8,192	8,469	8,671	8,767	8,795
Municipal Water Use (ac-ft)	1990	2000	2010	2020	2030	2040	2050
PANHANDLE	539	589	844	879	902	913	933
WHITE DEER	149	266	275	271	275	276	281
GROOM	147	180	173	163	149	132	121
SKELLYTOWN	84	88	83	76	64	61	59
County-Other, Canadian River Area	78	114	107	95	100	93	90
County-Other, Red River Area	364	350	341	324	328	331	334
TOTAL	1,361	1,587	1,823	1,808	1,818	1,806	1,818
Water Use Per Capita (gpcd)	1990	2000	2010	2020	2030	2040	2050
PANHANDLE	204	213	201	191	188	185	184
WHITE DEER	118	193	183	174	170	167	166
GROOM	214	245	235	225	222	216	216
SKELLYTOWN	113	118	111	104	100	97	95
County-Other, Canadian River Area	112	164	155	146	138	131	137
County-Other, Red River Area	270	268	263	264	260	257	267
TOTAL	185	208	198	190	187	184	185

ac-ft = Acre- Feet

gpcd = Gallons Per Capita per Day

CHILDRESS COUNTY

Population	1990	2000	2010	2020	2030	2040	2050
CHILDRESS	5,055	6,000	6,500	6,750	7,000	7,250	7,500
County-Other, Red River Area	898	1,818	1,720	1,724	1,716	1,737	1,774
TOTAL	5,953	7,818	8,220	8,474	8,716	8,987	9,274
<u>Municipal Water Use (ac-ft)</u>	1990	2000	2010	2020	2030	2040	2050
CHILDRESS	1,015	1,170	1,194	1,179	1,192	1,210	1,243
County-Other, Red River Area	176	382	341	326	317	313	318
TOTAL	1,191	1,551	1,536	1,506	1,509	1,523	1,562
Water Use Per Capita (gpcd)	1990	2000	2010	2020	2030	2040	2050
CHILDRESS	179	174	164	156	152	149	148
County-Other, Red River Area	175	187	177	169	165	161	160
TOTAL	179	176	166	158	154	151	150

COLLINGSWORTH COUNTY

County-Other, Canadian River Area
TOTAL

COLLINGSWORTH COU	JINII						
Population	1990	2000	2010	2020	2030	2040	2050
WELLINGTON	2,456	2,482	2,508	2,577	2,588	2,583	2,569
County-Other, Red River Area	1,117	1,062	1,119	1,149	1,155	1,152	1,146
TOTAL	3,573	3,544	3,627	3,726	3,743	3,735	3,715
<u>Municipal Water Use (ac-ft)</u>	1990	2000	2010	2020	2030	2040	2050
WELLINGTON	512	614	593	580	571	561	553
County-Other, Red River Area	227	227	227	223	219	213	211
TOTAL	739	841	820	803	790	774	764
Water Use Per Capita (gpcd)	1990	2000	2010	2020	2030	2040	2050
WELLINGTON	186	221	211	201	197	194	192
County-Other, Red River Area	181	191	181	173	169	165	164
TOTAL	185	212	202	192	188	185	184
DALLAM COUNTY Population	1990	2000	2010	2020	2030	2040	2050
DALHART (DALLAM COUNTY)	4,001	4,543	4,766	4,891	4,828	4,695	4,566
County-Other, Canadian River Area	1,460	1,477	1,634	1,727	1,764	1,816	1,824
TOTAL	5,461	6,020	6,400	6,618	6,592	6,511	6,390
Municipal Water Use (ac-ft)	1990	2000	2010	2020	2030	2040	2050
DALHART (DALLAM COUNTY)	978	1,145	1,142	1,118	1,087	1,037	1,002
County-Other, Canadian River Area	156	179	183	178	176	175	174
TOTAL	1,134	1,324	1,325	1,296	1,263	1,212	1,176
Water Use Per Capita (gpcd)	1990	2000	2010	2020	2030	2040	2050
DALHART (DALLAM COUNTY)	218	225	214	204	201	197	196

DONLEY COUNTY

Population	1990	2000	2010	2020	2030	2040	2050
CLARENDON	2,067	2,032	1,959	1.904	1,785	1,662	1,520
County-Other, Red River Area	1,629	1,592	1,536	1,492	1,400	1,302	1,192
TOTAL	3,696	3,624	3,495	3,396	3,185	2,964	2,712
Municipal Water Use (ac-ft)	1990	2000	2010	2020	2030	2040	2050
CLARENDON	522	503	465	433	396	365	332
County-Other, Red River Area	179	187	170	152	135	125	114
TOTAL	701	690	635	585	531	490	446
<u>Water Use Per Capita (gpcd)</u>	1990	2000	2010	2020	2030	2040	2050
CLARENDON	225	221	212	203	198	196	195
County-Other, Red River Area	98	105	99	91	86	86	85
TOTAL	169	170	162	154	149	148	147
ac-ft = Acre- Feet				-	•	-	-
gpcd = Gallons Per Capita per Day							
GRAY COUNTY							
Population	1990	2000	2010	2020	2030	2040	2050
MCLEAN	849	891	931	970	868	850	832
PAMPA	19,959	20,778	21,723	22,698	20,395	19,992	19,597
LEFORS	656	638	603	559	517	500	488
County-Other, Canadian River Area	1,286	1,333	1,391	1,416	1,239	1,197	1,165
County-Other, Red River Area	1,217	1,304	1,423	1,503	1,288	1,244	1,209
	02.077	24,944	26,071	27,146	24,307	23,783	23,291
TOTAL	23,967	24,944	20,071	,			
TOTAL Municipal Water Use (ac-ft)	23,967 1990	24,944	20,071	2020	2030	2040	2050
		,		2020 265	2030 232	2040 226	2050 220
Municipal Water Use (ac-ft) MCLEAN	1990	2000	2010				
Municipal Water Use (ac-ft) MCLEAN	1990 240	2000 266	2010 266	265	232	226	220
Municipal Water Use (ac-ft) MCLEAN PAMPA	1990 240 3,933	2000 266 4,003	2010 266 3,966	265 3,941	232 3,404	226 3,314	220 3,227
Municipal Water Use (ac-ft) MCLEAN PAMPA LEFORS	1990 240 3,933 92	2000 266 4,003 120	2010 266 3,966 107	265 3,941 95	232 3,404 85	226 3,314 80	220 3,227 78
Municipal Water Use (ac-ft) MCLEAN PAMPA LEFORS County-Other, Canadian River Area	1990 240 3,933 92 209	2000 266 4,003 120 264	2010 266 3,966 107 261	265 3,941 95 253	232 3,404 85 213	226 3,314 80 203	220 3,227 78 197
Municipal Water Use (ac-ft) MCLEAN PAMPA LEFORS County-Other, Canadian River Area County-Other, Red River Area TOTAL	1990 240 3,933 92 209 342 4,816	2000 266 4,003 120 264 264 4,917	2010 266 3,966 107 261 273 4,873	265 3,941 95 253 273 4,827	232 3,404 85 213 225 4,159	226 3,314 80 203 216 4,039	220 3,227 78 197 208 3,930
Municipal Water Use (ac-ft) MCLEAN PAMPA LEFORS County-Other, Canadian River Area County-Other, Red River Area TOTAL Water Use Per Capita (gpcd)	1990 240 3,933 92 209 342 4,816 1990	2000 266 4,003 120 264 264 4,917 2000	2010 266 3,966 107 261 273 4,873 2010	265 3,941 95 253 273 4,827 2020	232 3,404 85 213 225 4,159 2030	226 3,314 80 203 216 4,039 2040	220 3,227 78 197 208 3,930 2050
Municipal Water Use (ac-ft) MCLEAN PAMPA LEFORS County-Other, Canadian River Area County-Other, Red River Area TOTAL Water Use Per Capita (gpcd) MCLEAN	1990 240 3,933 92 209 342 4,816 1990 252	2000 266 4,003 120 264 264 4,917 2000 267	2010 266 3,966 107 261 273 4,873 2010 255	265 3,941 95 253 273 4,827 2020 244	232 3,404 85 213 225 4,159 2030 239	226 3,314 80 203 216 4,039 2040 237	220 3,227 78 197 208 3,930 2050 236
Municipal Water Use (ac-ft) MCLEAN PAMPA LEFORS County-Other, Canadian River Area County-Other, Red River Area TOTAL Water Use Per Capita (gpcd) MCLEAN PAMPA	1990 240 3,933 92 209 342 4,816 1990 252 176	2000 266 4,003 120 264 264 4,917 2000 267 172	2010 266 3,966 107 261 273 4,873 2010 255 163	265 3,941 95 253 273 4,827 2020 244 155	232 3,404 85 213 225 4,159 2030 239 149	226 3,314 80 203 216 4,039 2040 237 148	220 3,227 78 197 208 3,930 2050 236 147
Municipal Water Use (ac-ft) MCLEAN PAMPA LEFORS County-Other, Canadian River Area County-Other, Red River Area TOTAL Water Use Per Capita (gpcd) MCLEAN PAMPA LEFORS	1990 240 3,933 92 209 342 4,816 1990 252 176 125	2000 266 4,003 120 264 264 4,917 2000 267 172 168	2010 266 3,966 107 261 273 4,873 2010 255 163 158	265 3,941 95 253 273 4,827 2020 244 155 152	232 3,404 85 213 225 4,159 2030 239 149 147	226 3,314 80 203 216 4,039 2040 237 148 143	220 3,227 78 197 208 3,930 2050 236 147 143
Municipal Water Use (ac-ft) MCLEAN PAMPA LEFORS County-Other, Canadian River Area County-Other, Red River Area TOTAL Water Use Per Capita (gpcd) MCLEAN PAMPA	1990 240 3,933 92 209 342 4,816 1990 252 176	2000 266 4,003 120 264 264 4,917 2000 267 172	2010 266 3,966 107 261 273 4,873 2010 255 163	265 3,941 95 253 273 4,827 2020 244 155	232 3,404 85 213 225 4,159 2030 239 149	226 3,314 80 203 216 4,039 2040 237 148	220 3,227 78 197 208 3,930 2050 236 147

HALL COUNTY

HALL COUNTY							
<u>Population</u>	1990	2000	2010	2020	2030	2040	2050
MEMPHIS	2,465	2,338	2,306	2,264	2,190	2,117	2,057
TURKEY	507	569	578	588	597	615	632
County-Other, Red River Area	933	809	782	747	695	634	581
TOTAL	3,905	3,716	3,666	3,599	3,482	3,366	3,270
<u>Municipal Water Use (ac-ft)</u>	1990	2000	2010	2020	2030	2040	2050
MEMPHIS	510	469	439	408	383	365	353
TURKEY	121	118	114	111	110	110	113
County-Other, Red River Area	212	203	187	170	154	143	131
TOTAL	843	790	740	689	647	618	597
<u>Water Use Per Capita (gpcd)</u>	1990	2000	2010	2020	2030	2040	2050
MEMPHIS	185	179	170	161	156	154	153
TURKEY	213	185	176	169	164	160	160
County-Other, Red River Area	203	224	213	203	198	201	201
TOTAL	193	190	180	171	166	164	163
ac-ft = Acre- Feet gpcd = Gallons Per Capita per Day							
gpcd = Gallons Per Capita per Day HANSFORD COUNTY	1000	2000	2010	2020	2020	2040	2050
gpcd = Gallons Per Capita per Day HANSFORD COUNTY Population	<u>1990</u>	2000	2010	2020	2030	2040	2050
gpcd = Gallons Per Capita per Day HANSFORD COUNTY Population GRUVER	1,172	1,216	1,280	1,297	1,278	1,247	1,202
gpcd = Gallons Per Capita per Day HANSFORD COUNTY Population GRUVER SPEARMAN	1,172 3,197	1,216 3,318	1,280 3,506	1,297 3,555	1,278 3,498	1,247 3,422	1,202 3,348
gpcd = Gallons Per Capita per Day HANSFORD COUNTY Population GRUVER	1,172	1,216	1,280	1,297	1,278	1,247	1,202
gpcd = Gallons Per Capita per Day HANSFORD COUNTY Population GRUVER SPEARMAN County-Other, Canadian River Area	1,172 3,197 1,479	1,216 3,318 1,535	1,280 3,506 1,604	1,297 3,555 1,624	1,278 3,498 1,605	1,247 3,422 1,556	1,202 3,348 1,448
gpcd = Gallons Per Capita per Day HANSFORD COUNTY Population GRUVER SPEARMAN County-Other, Canadian River Area TOTAL	1,172 3,197 1,479 5,848	1,216 3,318 1,535 6,069	1,280 3,506 1,604 6,390	1,297 3,555 1,624 6,476	1,278 3,498 1,605 6,381	1,247 3,422 1,556 6,225	1,202 3,348 1,448 5,998
gpcd = Gallons Per Capita per Day HANSFORD COUNTY Population GRUVER SPEARMAN County-Other, Canadian River Area TOTAL Municipal Water Use (ac-ft)	1,172 3,197 1,479 5,848 1990	1,216 3,318 1,535 6,069 2000	1,280 3,506 1,604 6,390 2010	1,297 3,555 1,624 6,476 2020	1,278 3,498 1,605 6,381 2030	1,247 3,422 1,556 6,225 2040	1,202 3,348 1,448 5,998 2050
gpcd = Gallons Per Capita per Day HANSFORD COUNTY Population GRUVER SPEARMAN County-Other, Canadian River Area TOTAL Municipal Water Use (ac-ft) GRUVER	1,172 3,197 1,479 5,848 1990 343	1,216 3,318 1,535 6,069 2000 377	1,280 3,506 1,604 6,390 2010 381	1,297 3,555 1,624 6,476 2020 372	1,278 3,498 1,605 6,381 2030 361	1,247 3,422 1,556 6,225 2040 346	1,202 3,348 1,448 5,998 2050 334
gpcd = Gallons Per Capita per Day HANSFORD COUNTY Population GRUVER SPEARMAN County-Other, Canadian River Area TOTAL Municipal Water Use (ac-ft) GRUVER SPEARMAN	1,172 3,197 1,479 5,848 1990 343 844	1,216 3,318 1,535 6,069 2000 377 844	1,280 3,506 1,604 6,390 2010 381 852	1,297 3,555 1,624 6,476 2020 372 832	1,278 3,498 1,605 6,381 2030 361 803	1,247 3,422 1,556 6,225 2040 346 770	1,202 3,348 1,448 5,998 2050 334 754
gpcd = Gallons Per Capita per Day HANSFORD COUNTY Population GRUVER SPEARMAN County-Other, Canadian River Area TOTAL Municipal Water Use (ac-ft) GRUVER SPEARMAN County-Other, Canadian River Area	1,172 3,197 1,479 5,848 1990 343 844 226	1,216 3,318 1,535 6,069 2000 377 844 222	1,280 3,506 1,604 6,390 2010 381 852 219	1,297 3,555 1,624 6,476 2020 372 832 207	1,278 3,498 1,605 6,381 2030 361 803 200	1,247 3,422 1,556 6,225 2040 346 770 185	1,202 3,348 1,448 5,998 2050 334 754 172
gpcd = Gallons Per Capita per Day HANSFORD COUNTY Population GRUVER SPEARMAN County-Other, Canadian River Area TOTAL Municipal Water Use (ac-ft) GRUVER SPEARMAN County-Other, Canadian River Area TOTAL	1,172 3,197 1,479 5,848 1990 343 844 226 1,413	1,216 3,318 1,535 6,069 2000 377 844 222 1,443	1,280 3,506 1,604 6,390 2010 381 852 219 1,452	1,297 3,555 1,624 6,476 2020 372 832 207 1,411	1,278 3,498 1,605 6,381 2030 361 803 200 1,364	1,247 3,422 1,556 6,225 2040 346 770 185 1,301	1,202 3,348 1,448 5,998 2050 334 754 172 1,260
gpcd = Gallons Per Capita per Day HANSFORD COUNTY Population GRUVER SPEARMAN County-Other, Canadian River Area TOTAL Municipal Water Use (ac-ft) GRUVER SPEARMAN County-Other, Canadian River Area TOTAL Water Use Per Capita (gpcd)	1,172 3,197 1,479 5,848 1990 343 844 226 1,413 1990	1,216 3,318 1,535 6,069 2000 377 844 222 1,443 2000	1,280 3,506 1,604 6,390 2010 381 852 219 1,452 2010	1,297 3,555 1,624 6,476 2020 372 832 207 1,411 2020	1,278 3,498 1,605 6,381 2030 361 803 200 1,364 2030	1,247 3,422 1,556 6,225 2040 346 770 185 1,301 2040	1,202 3,348 1,448 5,998 2050 334 754 172 1,260 2050
gpcd = Gallons Per Capita per Day HANSFORD COUNTY Population GRUVER SPEARMAN County-Other, Canadian River Area TOTAL Municipal Water Use (ac-ft) GRUVER SPEARMAN County-Other, Canadian River Area TOTAL Water Use Per Capita (gpcd) GRUVER	1,172 3,197 1,479 5,848 1990 343 844 226 1,413 1990 261	1,216 3,318 1,535 6,069 2000 377 844 222 1,443 2000 277	1,280 3,506 1,604 6,390 2010 381 852 219 1,452 2010 266	1,297 3,555 1,624 6,476 2020 372 832 207 1,411 2020 256	1,278 3,498 1,605 6,381 2030 361 803 200 1,364 2030 252	1,247 3,422 1,556 6,225 2040 346 770 185 1,301 2040 248	1,202 3,348 1,448 5,998 2050 334 754 172 1,260 2050 248

HARTLEY COUNTY

Population	1990	2000	2010	2020	2030	2040	2050
CHANNING	277	368	419	426	432	439	446
DALHART (HARTLEY COUNTY)	2,245	2,998	3,412	3,468	3,514	3,584	3,655
County-Other, Canadian River Area	1,112	1,867	2,123	2,146	2,168	2,198	2,221
TOTAL	3,634	5,233	5,954	6,040	6,114	6,221	6,322
<u>Municipal Water Use (ac-ft)</u>	1990	2000	2010	2020	2030	2040	2050
CHANNING	48	83	90	87	87	87	87
DALHART (HARTLEY COUNTY)	549	755	818	793	791	791	803
County-Other, Canadian River Area	159	343	368	351	349	345	346
TOTAL	756	1,181	1,276	1,231	1,227	1,223	1,236

Water Use Per Capita (gpcd)	1990	2000	2010	2020	2030	2040	2050
CHANNING	155	201	192	182	180	177	174
DALHART (HARTLEY COUNTY)	218	225	214	204	201	197	196
County-Other, Canadian River Area	128	164	155	146	144	140	139
TOTAL	186	202	192	182	180	176	175

ac-ft = Acre-Feet

gpcd = Gallons Per Capita per Day

HEMPHILL COUNTY

Population	1990	2000	2010	2020	2030	2040	2050
CANADIAN	2,417	2,604	2,757	2,789	2,725	2,665	2,606
County-Other, Canadian River Area	733	720	766	780	766	753	723
County-Other, Red River Area	570	560	596	606	595	585	562
TOTAL	3,720	3,884	4,119	4,175	4,086	4,003	3,891
<u>Municipal Water Use (ac-ft)</u>	1990	2000	2010	2020	2030	2040	2050
CANADIAN	572	683	692	669	641	615	601
County-Other, Canadian River Area	87	91	90	86	81	76	73
County-Other, Red River Area	70	71	70	67	63	59	57
TOTAL	729	845	852	822	785	750	731
Water Use Per Capita (gpcd)	1990	2000	2010	2020	2030	2040	2050
CANADIAN	211	234	224	214	210	206	206
County-Other, Canadian River Area	106	113	105	98	94	90	90
County-Other, Red River Area	110	113	105	99	95	90	91
TOTAL	175	194	185	176	172	167	168

HUTCHINSON COUNTY

Population	1990	2000	2010	2020	2030	2040	2050
BORGER	15,675	15,903	16,367	16,519	16,169	15,697	15,161
FRITCH	2,325	2,523	2,588	2,595	2,529	2,444	2,362
STINNETT	2,166	2,303	2,371	2,396	2,347	2,281	2,217
County-Other, Canadian River Area	5,523	5,372	5,536	5,602	5,493	5,341	5,143
TOTAL	25,689	26,101	26,862	27,112	26,538	25,763	24,883
Municipal Water Use (ac-ft)	1990	2000	2010	2020	2030	2040	2050
BORGER	1,717	2,387	2,310	2,202	2,083	1,934	1,868
FRITCH	498	514	499	477	453	424	410
STINNETT	427	433	425	411	392	368	358
County-Other, Canadian River Area	856	1,108	1,085	1,041	997	946	913
TOTAL	3,498	4,442	4,319	4,131	3,925	3,672	3,549

Water Use Per Capita (gpcd)	1990	2000	2010	2020	2030	2040	2050
BORGER	98	134	126	119	115	110	110
FRITCH	191	182	172	164	160	155	155
STINNETT	176	168	160	153	149	144	144
County-Other, Canadian River Area	138	184	175	166	162	158	158
TOTAL	122	152	144	136	132	127	127

ac-ft = Acre- Feet

gpcd = Gallons Per Capita per Day

LIPSCOMB COUNTY

Population	1990	2000	2010	2020	2030	2040	2050
BOOKER	1,231	1,255	1,310	1,323	1,319	1,298	1,255
LIPSCOMB	190	208	217	219	218	215	208
County-Other, Canadian River Area	1,722	1,794	1,871	1,890	1,885	1,854	1,794
TOTAL	3,143	3,257	3,398	3,432	3,422	3,367	3,257
Municipal Water Use (ac-ft)	1990	2000	2010	2020	2030	2040	2050
BOOKER	342	392	392	379	372	361	347
LIPSCOMB	42	46	46	44	43	42	40
County-Other, Canadian River Area	385	400	396	381	372	357	346
TOTAL	769	838	834	804	787	760	733
<u>Water Use Per Capita (gpcd)</u>	1990	2000	2010	2020	2030	2040	2050
BOOKER	248	279	267	256	252	248	247
LIPSCOMB	197	198	189	179	175	173	170
County-Other, Canadian River Area	200	199	189	180	176	172	172
TOTAL	218	230	219	209	205	202	201

MOORE COUNTY

Population	1990	2000	2010	2020	2030	2040	2050
DUMAS	12,871	14,620	16,451	18,312	19,942	21,443	23,057
SUNRAY	1,729	1,902	2,271	2,678	3,022	3,267	3,532
CACTUS	1,529	2,500	2,871	3,279	3,921	4,717	5,673
County-Other, Canadian River Area	1,736	1,879	1,969	2,017	1,996	1,991	2,053
TOTAL	17,865	20,901	23,562	26,286	28,881	31,418	34,315

<u>Municipal Water Use (ac-ft)</u>	1990	2000	2010	2020	2030	2040	2050
DUMAS	2,615	2,833	3,022	3,200	3,418	3,603	3,848
SUNRAY	465	492	560	630	701	750	807
CACTUS	292	445	476	511	592	703	838
County-Other, Canadian River Area	438	453	452	441	427	419	430
TOTAL	3,810	4,223	4,510	4,782	5,139	5,475	5,923

<u>Water Use Per Capita (gpcd)</u>	1990	2000	2010	2020	2030	2040	2050
DUMAS	181	173	164	156	153	150	149
SUNRAY	240	231	220	210	207	205	204
CACTUS	170	159	148	139	135	133	132
County-Other, Canadian River Area	225	215	205	195	191	188	187
TOTAL	190	181	172	163	160	156	155

ac-ft = Acre- Feet

gpcd = Gallons Per Capita per Day

OCHILTREE COUNTY

Population	1990	2000	2010	2020	2030	2040	2050
BOOKER (Ochiltree County)	5	24	25	25	24	24	24
PERRYTON	7,607	8,071	8,566	8,863	8,824	8,708	8,594
County-Other, Canadian River Area	1,516	1,552	1,644	1,696	1,686	1,659	1,544
TOTAL	9,128	9,647	10,235	10,584	10,534	10,391	10,162
	1000	• • • • •				• • • •	•••
<u>Municipal Water Use (ac-ft)</u>	1990	2000	2010	2020	2030	2040	2050
BOOKER (Ochiltree County)	1	8	7	7	7	7	7
PERRYTON	2,418	2,468	2,504	2,482	2,432	2,370	2,320
County-Other, Canadian River Area	192	228	227	221	212	201	187
TOTAL	2,611	2,704	2,738	2,710	2,651	2,578	2,514
<u>Water Use Per Capita (gpcd)</u>	1990	2000	2010	2020	2030	2040	2050
BOOKER (Ochiltree County)	179	298	250	250	260	260	260
PERRYTON	284	273	261	250	246	243	241
County-Other, Canadian River Area	113	131	123	116	112	108	108
TOTAL	255	250	239	229	225	221	221

OLDHAM COUNTY

OLDHAM COUNTY							
<u>Population</u>	1990	2000	2010	2020	2030	2040	2050
VEGA	840	931	1,000	1,034	1,055	1,016	978
County-Other, Canadian River Area	1,226	1,247	1,311	1,304	1,258	1,195	1,110
County-Other, Red River Area	212	215	227	225	218	207	192
TOTAL	2,278	2,393	2,538	2,563	2,531	2,418	2,280
Municipal Water Use (ac-ft)	1990	2000	2010	2020	2030	2040	2050
VEGA	257	265	273	269	270	255	245
County-Other, Canadian River Area	2,440	2,466	2,463	2,452	2,441	2,427	2,417
County-Other, Red River Area	56	30	29	27	26	23	22
TOTAL	2,753	2,761	2,765	2,748	2,737	2,705	2,684
Water Use Per Capita (gpcd)	1990	2000	2010	2020	2030	2040	2050
VEGA	273	254	244	232	228	224	224
County-Other, Canadian River Area	1,777	1,765	1,677	1,679	1,732	1,813	1,944
County-Other, Red River Area	236	125	114	107	106	99	102
TOTAL	1,079	1,030	973	957	965	999	1,051
ac-ft = Acre- Feet gpcd = Gallons Per Capita per Day							
gpcd = Gallons Per Capita per Day POTTER COUNTY	1000						
gpcd = Gallons Per Capita per Day POTTER COUNTY Population	1990	2000	2010	2020	2030	2040	2050
gpcd = Gallons Per Capita per Day POTTER COUNTY Population AMARILLO (Potter County)	91,502	98,526	105,245	114,253	121,228	128,644	136,514
gpcd = Gallons Per Capita per Day POTTER COUNTY Population AMARILLO (Potter County) County-Other, Canadian River Area	91,502 5,359	98,526 13,050	105,245 13,703	114,253 14,615	121,228 15,798	128,644 17,058	136,514 17,074
gpcd = Gallons Per Capita per Day POTTER COUNTY Population AMARILLO (Potter County) County-Other, Canadian River Area County-Other, Red River Area	91,502 5,359 1,013	98,526 13,050 2,467	105,245 13,703 2,590	114,253 14,615 2,763	121,228 15,798 2,985	128,644 17,058 3,225	136,514 17,074 3,229
gpcd = Gallons Per Capita per Day POTTER COUNTY Population AMARILLO (Potter County) County-Other, Canadian River Area	91,502 5,359	98,526 13,050	105,245 13,703	114,253 14,615	121,228 15,798	128,644 17,058	136,514 17,074
gpcd = Gallons Per Capita per Day POTTER COUNTY Population AMARILLO (Potter County) County-Other, Canadian River Area County-Other, Red River Area TOTAL Municipal Water Use (ac-ft)	91,502 5,359 1,013	98,526 13,050 2,467	105,245 13,703 2,590	114,253 14,615 2,763	121,228 15,798 2,985	128,644 17,058 3,225 148,927 2040	136,514 17,074 3,229 156,817 2050
gpcd = Gallons Per Capita per Day POTTER COUNTY Population AMARILLO (Potter County) County-Other, Canadian River Area County-Other, Red River Area TOTAL Municipal Water Use (ac-ft) AMARILLO (Potter County)	91,502 5,359 1,013 97,874	98,526 13,050 2,467 114,042	105,245 13,703 2,590 121,538	114,253 14,615 2,763 131,631	121,228 15,798 2,985 140,012	128,644 17,058 3,225 148,927	136,514 17,074 3,229 156,817
gpcd = Gallons Per Capita per Day POTTER COUNTY Population AMARILLO (Potter County) County-Other, Canadian River Area County-Other, Red River Area TOTAL Municipal Water Use (ac-ft)	91,502 5,359 1,013 97,874 1990	98,526 13,050 2,467 114,042 2000	105,245 13,703 2,590 121,538 2010	114,253 14,615 2,763 131,631 2020	121,228 15,798 2,985 140,012 2030	128,644 17,058 3,225 148,927 2040	136,514 17,074 3,229 156,817 2050
gpcd = Gallons Per Capita per Day POTTER COUNTY Population AMARILLO (Potter County) County-Other, Canadian River Area County-Other, Red River Area TOTAL Municipal Water Use (ac-ft) AMARILLO (Potter County)	91,502 5,359 1,013 97,874 1990 23,982	98,526 13,050 2,467 114,042 2000 24,611	105,245 13,703 2,590 121,538 2010 24,993	114,253 14,615 2,763 131,631 2020 25,852	121,228 15,798 2,985 140,012 2030 27,023	128,644 17,058 3,225 148,927 2040 28,243	136,514 17,074 3,229 156,817 2050 29,818
gpcd = Gallons Per Capita per Day POTTER COUNTY Population AMARILLO (Potter County) County-Other, Canadian River Area County-Other, Red River Area TOTAL Municipal Water Use (ac-ft) AMARILLO (Potter County) County-Other, Canadian River Area County-Other, Red River Area	91,502 5,359 1,013 97,874 1990 23,982 740	98,526 13,050 2,467 114,042 2000 24,611 1,678	105,245 13,703 2,590 121,538 2010 24,993 1,655	114,253 14,615 2,763 131,631 2020 25,852 1,648	121,228 15,798 2,985 140,012 2030 27,023 1,706	128,644 17,058 3,225 148,927 2040 28,243 1,780	136,514 17,074 3,229 156,817 2050 29,818 1,766
gpcd = Gallons Per Capita per Day POTTER COUNTY Population AMARILLO (Potter County) County-Other, Canadian River Area County-Other, Red River Area TOTAL Municipal Water Use (ac-ft) AMARILLO (Potter County) County-Other, Canadian River Area County-Other, Red River Area	91,502 5,359 1,013 97,874 1990 23,982 740 123	98,526 13,050 2,467 114,042 2000 24,611 1,678 319	105,245 13,703 2,590 121,538 2010 24,993 1,655 316	114,253 14,615 2,763 131,631 2020 25,852 1,648 316	121,228 15,798 2,985 140,012 2030 27,023 1,706 325	128,644 17,058 3,225 148,927 2040 28,243 1,780 339	136,514 17,074 3,229 156,817 2050 29,818 1,766 337
gpcd = Gallons Per Capita per Day POTTER COUNTY Population AMARILLO (Potter County) County-Other, Canadian River Area County-Other, Red River Area TOTAL Municipal Water Use (ac-ft) AMARILLO (Potter County) County-Other, Red River Area County-Other, Red River Area TOTAL Water Use Per Capita (gpcd) AMARILLO (Potter County)	91,502 5,359 1,013 97,874 1990 23,982 740 123 24,845	98,526 13,050 2,467 114,042 2000 24,611 1,678 319 26,608	105,245 13,703 2,590 121,538 2010 24,993 1,655 316 26,964	114,253 14,615 2,763 131,631 2020 25,852 1,648 316 27,815	121,228 15,798 2,985 140,012 2030 27,023 1,706 325 29,054	128,644 17,058 3,225 148,927 2040 28,243 1,780 339 30,362	136,514 17,074 3,229 156,817 2050 29,818 1,766 337 31,921
gpcd = Gallons Per Capita per Day POTTER COUNTY Population AMARILLO (Potter County) County-Other, Canadian River Area County-Other, Red River Area TOTAL Municipal Water Use (ac-ft) AMARILLO (Potter County) County-Other, Red River Area County-Other, Red River Area TOTAL Water Use Per Capita (gpcd) AMARILLO (Potter County) County-Other, Canadian River Area	91,502 5,359 1,013 97,874 1990 23,982 740 123 24,845 1990	98,526 13,050 2,467 114,042 2000 24,611 1,678 319 26,608 2000	105,245 13,703 2,590 121,538 2010 24,993 1,655 316 26,964 2010	114,253 14,615 2,763 131,631 2020 25,852 1,648 316 27,815 2020	121,228 15,798 2,985 140,012 2030 27,023 1,706 325 29,054 2030 199 96	128,644 17,058 3,225 148,927 2040 28,243 1,780 339 30,362 2040	136,514 17,074 3,229 156,817 2050 29,818 1,766 337 31,921 2050
gpcd = Gallons Per Capita per Day POTTER COUNTY Population AMARILLO (Potter County) County-Other, Canadian River Area County-Other, Red River Area TOTAL Municipal Water Use (ac-ft) AMARILLO (Potter County) County-Other, Red River Area County-Other, Red River Area TOTAL Water Use Per Capita (gpcd) AMARILLO (Potter County)	91,502 5,359 1,013 97,874 1990 23,982 740 123 24,845 1990 234	98,526 13,050 2,467 114,042 2000 24,611 1,678 319 26,608 2000 223	105,245 13,703 2,590 121,538 2010 24,993 1,655 316 26,964 2010 212	114,253 14,615 2,763 131,631 2020 25,852 1,648 316 27,815 2020 2021	121,228 15,798 2,985 140,012 2030 27,023 1,706 325 29,054 2030 199	128,644 17,058 3,225 148,927 2040 28,243 1,780 339 30,362 2040 196	136,514 17,074 3,229 156,817 2050 29,818 1,766 337 31,921 2050 195

RANDALL COUNTY

Population	1990	2000	2010	2020	2030	2040	2050
AMARILLO (Randall County)	66,113	79,118	92,341	105,281	117,927	133,079	150,178
CANYON	11,365	13,577	14,891	16,119	17,222	18,883	20,704
HAPPY	588	567	552	527	503	500	503
LAKE TANGLEWOOD	637	1,085	1,177	1,254	1,311	1,344	1,351
County-Other, Canadian River Area	1,295	2,821	3,539	4,279	5,032	5,836	6,849
County-Other, Red River Area	9,675	21,650	27,704	33,928	40,272	47,028	55,573
TOTAL	89,673	118,818	140,205	161,389	182,267	206,671	235,159

<u>Municipal Water Use (ac-ft)</u>	1990	2000	2010	2020	2030	2040	2050
AMARILLO (Randall County)	17,328	19,763	21,928	23,822	26,287	29,217	32,803
CANYON	2,397	2,723	2,835	2,907	3,048	3,279	3,572
НАРРҮ	120	97	88	80	74	71	71
LAKE TANGLEWOOD	79	292	301	305	303	294	282
County-Other, Canadian River Area	162	326	372	417	480	543	629
County-Other, Red River Area	1,235	2,551	2,963	3,354	3,884	4,427	5,158
TOTAL	21,321	25,752	28,488	30,884	34,076	37,831	42,514

<u>Water Use Per Capita (gpcd)</u>	1990	2000	2010	2020	2030	2040	2050
AMARILLO (Randall County)	234	223	212	202	199	196	195
CANYON	188	179	170	161	158	155	154
HAPPY	182	153	142	136	131	127	126
LAKE TANGLEWOOD	111	240	228	217	206	195	186
County-Other, Canadian River Area	112	103	94	87	85	83	82
County-Other, Red River Area	114	105	95	88	86	84	83
TOTAL	212	199	187	176	173	169	167

ac-ft = Acre- Feet

gpcd = Gallons Per Capita per Day

ROBERTS COUNTY

Population	1990	2000	2010	2020	2030	2040	2050
MIAMI	675	710	748	737	703	663	625
County-Other, Canadian River Area	334	330	346	335	315	284	212
County-Other, Red River Area	16	16	17	16	15	14	10
TOTAL	1,025	1,056	1,111	1,088	1,033	961	847

<u>Municipal Water Use (ac-ft)</u>	1990	2000	2010	2020	2030	2040	2050
MIAMI	191	208	209	197	184	172	162
County-Other, Canadian River Area	42	38	38	34	30	26	19
County-Other, Red River Area	2	2	2	2	1	1	1
TOTAL	235	248	249	233	215	199	182

<u>Water Use Per Capita (gpcd)</u>	1990	2000	2010	2020	2030	2040	2050
MIAMI	253	262	249	239	234	232	231
County-Other, Canadian River Area	112	103	98	91	85	82	80
County-Other, Red River Area	112	112	105	112	60	64	89
TOTAL	205	210	200	191	186	185	192

SHERMAN COUNTY

Population	1990	2000	2010	2020	2030	2040	2050
STRATFORD	1,781	1,904	2,027	2,104	2,036	1,962	1,891
County-Other, Canadian River Area	1,077	1,296	1,265	1,192	1,107	1,027	926
TOTAL	2,858	3,200	3,292	3,296	3,143	2,989	2,817
<u>Municipal Water Use (ac-ft)</u>	1990	2000	2010	2020	2030	2040	2050
STRATFORD	460	565	574	570	543	514	496
County-Other, Canadian River Area	154	180	165	145	127	117	105
TOTAL	614	745	739	715	670	631	601
Water Use Per Capita (gpcd)	1990	2000	2010	2020	2030	2040	2050
STRATFORD	231	265	253	242	238	234	234
County-Other, Canadian River Area	128	124	116	108	102	102	101
TOTAL	192	215	207	200	197	195	197
ac-ft = Acre-Feet							

gpcd = Gallons Per Capita per Day

WHEELER COUNTY

Population	1990	2000	2010	2020	2030	2040	2050
SHAMROCK	2,286	2,312	2,338	2,356	2,389	2,399	2,409
WHEELER	1,393	1,447	1,462	1,472	1,492	1,497	1,502
County-Other, Red River Area	2,200	2,160	2,159	2,146	2,140	2,136	2,132
TOTAL	5,879	5,919	5,959	5,974	6,021	6,032	6,043

<u>Municipal Water Use (ac-ft)</u>	1990	2000	2010	2020	2030	2040	2050
SHAMROCK	329	370	354	338	332	322	321
WHEELER	292	300	288	275	272	268	268
County-Other, Canadian River Area	280	296	279	261	251	241	238
TOTAL	901	966	921	874	855	831	827

<u>Water Use Per Capita (gpcd)</u>	1990	2000	2010	2020	2030	2040	2050
SHAMROCK	128	143	135	128	124	120	119
WHEELER	187	185	176	167	163	160	159
County-Other, Canadian River Area	114	122	115	109	105	101	100
TOTAL	137	146	138	131	127	123	122

ac-ft = Acre- Feet

gpcd = Gallons Per Capita per Day

APPENDIX B

Streams With Ecologically Unique Resources and Threatened and Endangered Species

STREAMS WITH ECOLOGICALLY UNIQUE RESOURCES

Senate Bill 1 requires that the State Water Plan identify river and stream segments of unique ecological value. The identification of such resources may be done regionally by the RWPG. If not, the state plan must do so. Among criteria for identifying a stream segment as one with unique ecological value are its biological and hydrologic functions. In addition, segments with riparian conservation areas, or that have high water quality, exceptional aquatic life, or high aesthetic quality may be identified as having unique ecological value. Finally, stream or river segments where water development projects would have significant detrimental effects on state or federally listed threatened or endangered species may be considered ecologically unique (TPWD, 1999c).

Using these criteria, the TPWD has developed a draft list of Texas streams and river satisfying at least one of the criteria defined in the Senate Bill 1 for ecologically unique river and stream segments. Those in PWPA are identified in Table B-1

THREATENED AND ENDANGERED SPECIES

The presence or potential occurrence of threatened or endangered species is an important consideration in planning and implementing any water resource project or water management strategy. Both the state and federal governments have identified species that need protection. Species listed by the U. S. Fish and Wildlife Service (USFWS) are afforded the most legal protection, but the Texas Parks and Wildlife Department (TPWD) also has regulations governing state-listed species. Table B-2 contains the state or federally protected species which have the potential to occur within the PWPA. This does not include species without official protection such as those proposed for listing or species that are considered rare or otherwise of special concern.

Stream Segment	Location	Regional Conservation Area	Endangered/Threatened Resource	Aquatic Life
Canadian River, Segment 0101	Oklahoma State line to Sanford Dam	Gene Howe Wildlife Management Area	Interior Least Tern, Arkansas River Shiner	
Canadian River, Segment 0103	immediately upstream of the confluence of Camp Creek to the New Mexico State line	Sanford Recreation Area	Unique, exemplary, and extensive natural community; Arkansas River Shiner	
Coldwater Creek, unclassified	Dallam County	Rita Blanca National Grassland		
Graham Creek, unclassified	confluence with Sweetwater Creek east of Mobeetie to SH 152		Unique habitat-wetlands	
Lelia Lake Creek, Unclassified	confluence with the Salt Fork of the Red River to SH 152			Ecoregion Stream, Dissolved Oxygen, Benthic macroinvertebrates
McClellan Creek, unclassified	confluence with the North Fork of the Red River to its headwaters in Gray County			Ecoregion Stream, Dissolved Oxygen, Benthic macroinvertebrates, fish
rairie Dog Town Fork Red kiver, Segment 0229	Armstrong/Briscoe County line to Lake Tanglewood	Palo Duro Canyon State Park (National Natural Landmark)	Interior Least Tern	Exceptional aesthetic value
Prairie Dog Town Fork Red River, Segment 0207	Childress/Hardeman County line to the Hall/Briscoe County line		Interior Least Tern	
Rita Blanca Creek, unclassified	From the headwaters of Lake Rita Blanca to US 87	Rita Blanca Conservation Area		
Saddlers Creek, unclassified	confluence with the Salt Fork of the Red River to its headwaters two miles southeast of Evans		Unique, exemplary, and extensive natural community	Ecoregion Stream, Dissolved oxygen
Sweetwater Creek, unclassified	Oklahoma State line to its headwaters in northwest Wheeler County		Unique habitat-wetlands	Ecoregion Stream, Dissolved oxygen
Tierra Blanca Creek, unclassified	Randall County	Buffalo Lake National Wildlife Refuge		
West Fork of Rita Blanca Creek, unclassified	confluence with Rita Blanca Creek to the New Mexico state line	Rita Blanca National Grassland		
Wolf Creek, Segment 0104	Oklahoma State line to a point 1.2 miles upstream of FM 3045			Ecoregion Stream, Dissolved Oxygen, Benthic macroinvertebrates, fish

Table B-1 Stream Segments in PWPA with Ecologically Unique Resources

Source: TPWD, 1999c

County of Potential Occurrence																							
Species Birds	Federal Status*	State Status*	Armstrong	Carson	Childress	Collingsworth	Dallam	Donley	Gray	Hall	Hansford	Hartley	Hemphill	Hutchinson	Lipscomb	Moore	Ochiltree	Oldham	Potter	Randall	Roberts	Sherman	Wheeler
American Peregrine Falcon (Falco peregrinus anatum)		Е	•	•	•	•	•	•	٠	•	٠	٠	•	٠	٠	٠	٠	٠	•	•	•	•	•
Arctic Peregrine Falcon (Falco peregrinus tundrius)		Т	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•
Bald Eagle (Haliaeetus leucocephalus)	LT-PDL	Т	\odot	\odot	•	•	٠	\odot	\odot	•	\odot	\odot	\odot	\odot	•	\odot	٠	•	\odot	\odot	•	•	•
Interior Least Tern (Sterna antillarum athalassos)	LE	Е	•	\odot	\odot	\odot	•	\odot	\odot	\odot	٠	٠	\odot	\odot	•	•	٠	\odot	\odot	\odot	\odot	•	\odot
Whooping Crane (Grus americana)	LE	Е	\odot	\odot	\odot	\odot	•	\odot	\odot	\odot	٠	٠	•	•	•	•	٠	٠	\odot	\odot	•	•	$oldsymbol{igodol}$
Fishes																							
Arkansas River Shiner (Notropis girardi)	LT												0	0				0	0		0		
Mammals																							
Black-footed Ferret (Mustela nigripes)	LE	Е	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•
Palo Duro Mouse (Peromyscus truei comanche)		Т	•																	•			
Texas Kangaroo Rat (Dipodomys elator)		Т			•																		
Reptiles												_											
Texas Horned Lizard (Phrynosoma cornutum)		Т	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	٠	•	•	•

Table B-2. Threatened and Endangered Species Potentially Occurring in the PWPA

Sources: Texas Parks and Wildlife Annotated Lists of Rare Species;

U.S. Fish and Wildlife List of species by county for Texas (http://ifw2es.fws.gov/endangeredspecies/lists/ListSpecies.cfm)

* Key

B-3

LE,LT Federally Listed Endangered/Threatened

E/SA,T/SA Federally Endangered/Threatened by Similarity of Appearance

DL,PDL Federally Delisted/Proposed Delisted

E,T State Endangered/Threatened

Occurs on State List for County

Occurs on Federal List for County

٠ 0 \odot

Occurs on both State and Federal Lists for County

APPENDIX C

Summary of Available Regional Data Sources

Groundwater Districts

- water level measurements
- groundwater quality data

Texas Agricultural Experiment Station-Blackland Research Center (TAES-BRC)

- "Almanac Tool" database developed by Muchugu and Corbett (1999):
 - Panhandle Counties, Monthly Rainfall (Graph);
 - Panhandle Counties, Total Cropland, 1997 (Graph);
 - Panhandle Counties, Total Irrigated Land, 1997 (Graph);
 - Region A: Total Yearly Planted Crop Acres by Crop Residue Management and County, 1989-1997;
 - Number of Acres Irrigated by Size, (1 acre to > 2,000 acres), Region A;
 USDOC, 1982, 1987, 1992, and 1997;
 - Total Cropland, Region A, 1978-1997, USDOC;
 - Harvested Cropland, Region A, 1978-1997, USDOC;
 - Irrigated Cropland, Region A, 1978-1997, USDOC;
 - Cattle and Calves Inventory Region A, USDOC, 1978-97;
 - Sheep Inventory Region A, USDOC, 1978-97;
 - Historical Hog Data, NASS-USDA, 1974-86; USDOC 1978-97;
 - Region A: Census of Agriculture 1997, 1992, 1987, 1982, 1978 (Farm Value Date);
 - Region A: Census of Agriculture 97, 92, 87, 82, 78 (Corn Data) USDOC;
 - Region A: Census of Agriculture 97, 92, 87, 82, 78 (Peanut Date) USDOC;
 - Region A: Census of Agriculture 97, 92, 87, 82, 78 (Soybean Data) USDOC;
 - Region A: Census of Agriculture 97, 92, 87, 82, 78 (Wheat Data) USDOC;
 - Region A: Census of Agriculture 97, 92, 87, 82, 78 (Cotton Data) USDOC;
 - Region A: Census of Agriculture 97, 92, 87, 82, 78 (Sorghum Data) USDOC;
 - Region A: Winter Wheat Yearly Data Under Irrigation Practice, 1978-98, Including Harvested Acres, Yield per Acre and Production (Bushels), NASS-USDA;
 - Region A: Sorghum Yearly Data Under Irrigation Practice, 1972-88, Including Harvested Acres, Yield Per Acre and Production (Bushels) NASS-USDA;
 - Region A: Cotton Yearly Data Under Irrigation Practice, 1972-97, Including Harvested Acres, Yield Per Acre and Production (Bushels) NASS-USDA; and
 - Region A: Peanuts Yearly Data Under Irrigation Practice, 1972-98, Including Harvested Acres, Yield Per Acre and Production (Bushels) NASS-USDA.

Other agriculture related data which is available includes: (A) county acreages of tillage practice by crop and year for 1989-1997. Types of tillage systems catalogued included: no-till, ridge till, mulch till, reduced till (0-15% residue and 15-30% residue), fallow, single or double cropping, etc. This data was from the Conservation Technology Information Center, National Crop Residue Management Survey; and (B) USDOC values

from Census of Agriculture for county crop acreage, inches of water applied, and acrefeet of water for all the following crops: cotton, grain sorghum, corn, rice, wheat, other grain, forage crops, peanuts, soybeans, other oil crops, citrus, pecans, vineyard, other orchard, alfalfa, hay-pasture, sugarbeets, irish potatoes, vegetables (shallow), vegetables (deep), sugarcane, and all other crops.

Texas Natural Resource Conservation Commission (TNRCC)

- Water Quality:
- Clean Rivers Program water quality database,
- Texas State Water Quality Inventory, and
- Clean Water Action Section 303(d) List.
 - Water Quantity/Water Rights:
- stream flow data,
- water use reports, and
- water rights permits.

Texas Water Development Board

- Water Resource Planning Division data for Region A, Panhandle Water Planning Area:
- Total Water Use Estimate -- 1990-2050.
- Total Withdrawals (Surface and Groundwater), Livestock and Irrigation Water Use, 1980-1997, County Basis.
- Total Water Use, 1980-97: Municipal, Manufacturing, Steam Electric, Mining, Irrigation, and Livestock.
- History of Groundwater Pumpage, 1980-97, by User Category, Aquifer and County.

United States Geological Survey

- USGS National Water Use Survey, 1995 :
 - Total Water Withdrawals by County, 1995 (Graph),
 - TWDB and USGS Water Use Surveys 1985, 1990 and 1995,
 - PWPA Water Use for Irrigation and Livestock, 1995 and Total Acres Irrigated,
 - Total Acres Irrigated, 1995 (Graph),
 - Total Irrigation Water Use, 1995 (Graph),
 - Total Livestock Water Use, 1995 (Graph);
- stream gage data, including measurements of water quality and quantity;
- water supply papers and reports; and
- groundwater data and reports.

Table 1: Population by City and Rural County

WUGNAME	COUNTYNAME	BASINNAME	WUGNUM	RWPG	SEQ#	CITY#	COUNTY#	BASIN#	pop1996	pop2000	pop2010	pop2020	pop2030	pop2040	pop2050
CLAUDE	ARMSTRONG	RED	10173000	А	173	114	006	02	1,276	1,253	1,335	1,410	1,476	1,478	1,480
COUNTY-OTHER	ARMSTRONG	RED	10996006	А	996	757	006	02	916	775	701	612	502	416	355
GROOM	CARSON	RED	10365000	А	365	875	033	02	630	655	658	648	600	545	501
PANHANDLE	CARSON	RED	10675000	А	675	453	033	02	2,274	2,469	3,750	4,104	4,281	4,401	4,523
SKELLYTOWN	CARSON	CANADIAN	10834000	А	834	960	033	01	680	666	667	650	572	564	556
WHITE DEER	CARSON	CANADIAN	10962000	A	962	647	033	01	1,141	1,169	1,273	1,321	1,372	1,403	1,434
WHITE DEER	CARSON	RED	10962000	A	962	647	033	02	61	62	68	70	73	74	76
COUNTY-OTHER	CARSON	CANADIAN	10996033	A	996	757	033	01	614	619	617	582	648	632	588
COUNTY-OTHER	CARSON	RED	10996033	A	996	757	033	02	1,192	1,164	1,159	1,094	1,125	1,148	1,117
CHILDRESS	CHILDRESS	RED	10164000	A	164	109	038	02	5,204	6,000	6,500	6,750	7,000	7,250	7,500
COUNTY-OTHER	CHILDRESS	RED	10996038	A	996	757	038	02	2,258	1,818	1,720	1,724	1,716	1,737	1,774
WELLINGTON	COLLINGSWORTH	RED	10947000	A	947	637	044	02	2,525	2,482	2,508	2,577	2,588	2,583	2,569
COUNTY-OTHER	COLLINGSWORTH	RED	10996044	A	996	757	044	02	1,132	1,062	1,119	1,149	1,155	1,152	1,146
DALHART	DALLAM	CANADIAN	10226000	A	226	150	056	01	4,290	4,543	4,766	4,891	4,828	4,695	4,566
COUNTY-OTHER	DALLAM	CANADIAN	10996056	A	996	757	056	01	1,475	1,477	1,634	1,727	1,764	1,816	1,824
CLARENDON	DONLEY	RED	10170000	A	170	112	065	02	2,171	2,032	1,959	1,904	1,785	1,662	1,520
COUNTY-OTHER	DONLEY	RED	10996065	A	996	757	065	02	1,734	1,592	1,536	1,492	1,400	1,302	1,192
LEFORS	GRAY	RED	10515000	A	515	898	090	02	707	638	603	559	517	500	488
MCLEAN	GRAY	RED	10578000	A	578	380	090	02	839	891	931	970	868	850	832
PAMPA	GRAY	CANADIAN	10674000	A	674	452	090	01	19,776	20,778	21,723	22,698	20,395	19,992	19,597
COUNTY-OTHER	GRAY	RED	10996090	A	996	757	090	02	1,700	1,304	1,423	1,503	1,288	1,244	1,209
COUNTY-OTHER	GRAY	CANADIAN	10996090	A	996	757	090	01	1,797	1,333	1,391	1,416	1,239	1,197	1,165
MEMPHIS	HALL	RED	10585000	A	585	394	096	02	2,454	2,338	2,306	2,264	2,190	2,117	2,057
TURKEY	HALL	RED	10915000	A	915	979	096	02	548	569	578	588	597	615	632
COUNTY-OTHER	HALL	RED	10996096	A	996	757	096	02	970	809	782	747	695	634	581
GRUVER	HANSFORD	CANADIAN	10368000	A	368	256	098	01	1,089	1,216	1,280	1,297	1,278	1,247	1,202
SPEARMAN	HANSFORD	CANADIAN	10849000	A	849	573	098	01	2,990	3,318	3,506	3,555	3,498	3,422	3,348
COUNTY-OTHER	HANSFORD	CANADIAN	10996098	A	996	757	098	01	1,399	1,535	1,604	1,624	1,605	1,556	1,448
CHANNING	HARTLEY	CANADIAN	10159000	A	159	106	103	01	274	368	419	426	432	439	446
	HARTLEY	CANADIAN	10226000	A	226	150	103	01	2,267	2,998	3,412	3,468	3,514	3,584	3,655
COUNTY-OTHER	HARTLEY	CANADIAN	10996103	A	996	757	103	01	2,354	1,867	2,123	2,146	2,168	2,198	2,221
	HEMPHILL	CANADIAN	10142000	A	142	93	106	01	2,376	2,604	2,757	2,789	2,725	2,665	2,606
COUNTY-OTHER	HEMPHILL	RED	10996106	A	996	757	106	02	625	560	596	606	595	585	562
COUNTY-OTHER	HEMPHILL	CANADIAN	10996106	A	996	757	106	01	804	720	766	780	766	753	723
BORGER	HUTCHINSON	CANADIAN	10100000	<u>A</u>	100	67	117	01	15,640	15,903	16,367	16,519	16,169	15,697	15,161
FRITCH	HUTCHINSON	CANADIAN	10320000		320	222	117	.	2,447	2,523	2,588	2,595	2,529	2,444	2,362
STINNETT	HUTCHINSON	CANADIAN	10861000	A A	861 996	582 757	117 117	01	2,292	2,303	2,371	2,396	2,347	2,281	2,217
COUNTY-OTHER BOOKER	HUTCHINSON LIPSCOMB	CANADIAN CANADIAN	10996117 10099000	A	996	66	117	01	5,528	5,372 1,255	5,536	5,602	5,493 1,319	5,341 1,298	5,143 1,255
LIPSCOMB	LIPSCOMB	CANADIAN	10099000		99 526	359	148	01	1,224 200	208	1,310 217	1,323 219	218	215	208
COUNTY-OTHER	LIPSCOMB	CANADIAN	10526000	A A	526 996	359 757	148	01	1,786	1,794	1,871	1,890	1.885	1.854	1,794
CACTUS	MOORE	CANADIAN	10996148	AA	134	762	148	01	1,786	2,500	2,871	3,279	3,921	4,717	5,673
DUMAS	MOORE	CANADIAN	10134000	AA	255	170	171	01	13.961	14,620	16.451	18,312	19.942	21,443	23,057
SUNRAY	MOORE	CANADIAN	10255000	AA	255	588	171	01	1,873	14,620	2,271	2,678	3.022	21,443	23,057
COUNTY-OTHER	MOORE	CANADIAN	10996171	A	996	757	171	01	1,873	1,902	1,969	2,078	1,996	1,991	2,053
BOOKER	OCHILTREE	CANADIAN	10099000	AA	990	66	171	01	1,901	24	25	2,017	24	24	2,033
PERRYTON	OCHILTREE	CANADIAN	10689000	AA	689	461	179	01	7,784	8,071	8,566	8,863	8,824	8,708	8,594
COUNTY-OTHER	OCHILTREE	CANADIAN	10996179	AA	996	757	179	01	1,509	1,552	1,644	1,696	1,686	1.659	1.544
VEGA	OLDHAM	CANADIAN	10998179	A	996	622	179	01	229	231	248	257	262	252	243
VEGA	OLDHAM	RED	10928000	A	928	622	180	01	691	700	752	237	793	764	735
COUNTY-OTHER	OLDHAM	RED	10928000	A A	928	757	180	02	214	215	227	225	218	207	192
COUNTY-OTHER COUNTY-OTHER	OLDHAM	CANADIAN	10996180	A	996 996	757	180	02	1,238	215 1,247	1,311	1,304	1,258	1,195	192
AMARILLO	POTTER	CANADIAN	10996180	A	996 20	14	180	01	56,253	1,247 56,416	60,263	65,421	69,415	73,662	78,168
AMARILLO	POTTER	RED	10020000	A	20	14	188	01	56,253 41.988	42,110	60,263 44,982	48.832	69,415 51,813	73,662	78,168 58.346
COUNTY-OTHER	POTTER	RED	10020000		20 996	757	188	02	41,988	42,110	44,982 2.590	48,832	2.985	54,982 3.225	/
COUNT -OTHER	PUTER	NEU	10990198	A	390	101	100	02	1,073	2,407	2,590	2,703	2,900	3,225	3,229

Table 1: Population by City and Rural County

WUGNAME	COUNTYNAME	BASINNAME	WUGNUM	RWPG	SEQ#	CITY#	COUNTY#	BASIN#	pop1996	pop2000	pop2010	pop2020	pop2030	pop2040	pop2050
COUNTY-OTHER	POTTER	CANADIAN	10996188	А	996	757	188	01	8,851	13,050	13,703	14,615	15,798	17,058	17,074
AMARILLO	RANDALL	RED	10020000	A	20	14	191	02	73,650	79,118	92,341	105,281	117,927	133,079	150,178
CANYON	RANDALL	RED	10145000	A	145	96	191	02	12,571	13,577	14,891	16,119	17,222	18,883	20,704
HAPPY	RANDALL	RED	10378000	A	378	877	191	02	641	567	552	527	503	500	503
LAKE TANGLEWOOD	RANDALL	RED	10500000	А	500	895	191	02	766	1,085	1,177	1,254	1,311	1,344	1,351
COUNTY-OTHER	RANDALL	CANADIAN	10996191	А	`	757	191	01	1,508	2,821	3,539	4,279	5,032	5,836	6,849
COUNTY-OTHER	RANDALL	RED	10996191	А	996	757	191	02	11,264	21,650	27,704	33,928	40,272	47,028	55,573
MIAMI	ROBERTS	CANADIAN	10594000	А	594	403	197	01	531	710	748	737	703	663	625
COUNTY-OTHER	ROBERTS	RED	10996197	А	996	757	197	02	16	16	17	16	15	14	10
COUNTY-OTHER	ROBERTS	CANADIAN	10996197	А	996	757	197	01	328	330	346	335	315	284	212
STRATFORD	SHERMAN	CANADIAN	10864000	А	864	584	211	01	1,910	1,904	2,027	2,104	2,036	1,962	1,891
COUNTY-OTHER	SHERMAN	CANADIAN	10996211	А	996	757	211	01	1,158	1,296	1,265	1,192	1,107	1,027	926
SHAMROCK	WHEELER	RED	10822000	А	822	554	242	02	2,104	2,312	2,338	2,356	2,389	2,399	2,409
WHEELER	WHEELER	RED	10961000	А	961	646	242	02	1,380	1,447	1,462	1,472	1,492	1,497	1,502
COUNTY-OTHER	WHEELER	RED	10996242	А	996	757	242	02	2,100	2,160	2,159	2,146	2,140	2,136	2,132

WUGNAME	COUNTYNAME	BASINNAME	DATACAT	WUGNUM	RWPG	SEQ#	CITY#	COUNTY#	BASIN#	h1996	d2000
CLAUDE	ARMSTRONG	RED	MUN	10173000	Α	173	114	6		357	265
COUNTY-OTHER	ARMSTRONG	RED	MUN	10996006	Α	996	757	6	2	113	92
MANUFACTURING	ARMSTRONG	RED	MFG	11001006	Α	1001	1001	6	2	0	0
STEAM ELECTRIC POWER	ARMSTRONG	RED	PWR	11002006	Α	1002	1002	6	2	0	0
MINING	ARMSTRONG	RED	MIN	11003006	Α	1003	1003	6	2	19	25
IRRIGATION	ARMSTRONG	RED	IRR	11004006	Α	1004	1004	6	2	9,654	6,753
LIVESTOCK	ARMSTRONG	RED	STK	11005006	Α	1005	1005	6		616	590
GROOM	CARSON	RED	MUN	10365000	Α	365	875			155	180
PANHANDLE	CARSON	RED	MUN	10675000	Α	675	453	33	2	574	589
SKELLYTOWN	CARSON	CANADIAN	MUN	10834000	Α	834	960			48	88
WHITE DEER	CARSON	CANADIAN	MUN	10962000	Α	962	647	33		246	253
WHITE DEER	CARSON	RED	MUN	10962000	Α	962	647	33		13	13
COUNTY-OTHER	CARSON	CANADIAN	MUN	10996033	Α	996	757	33		135	114
COUNTY-OTHER	CARSON	RED	MUN	10996033	Α	996	757	33		263	350
MANUFACTURING	CARSON	CANADIAN	MFG	11001033	Α	1001	1001	33		0	0
MANUFACTURING	CARSON	RED	MFG	11001033	Α	1001	1001	33	2	536	825
STEAM ELECTRIC POWER	CARSON	CANADIAN	PWR	11002033	Α	1002	1002	33		0	0
STEAM ELECTRIC POWER	CARSON	RED	PWR	11002033	Α	1002	1002	33		0	0
MINING	CARSON	CANADIAN	MIN	11003033	Α	1003	1003	33		1,146	1,456
MINING	CARSON	RED	MIN	11003033	Α	1003	1003	33		639	727
IRRIGATION	CARSON	CANADIAN	IRR	11004033	Α	1004	1004	33	1	16,000	29,766
IRRIGATION	CARSON	RED	IRR	11004033	Α	1004	1004	33		60,190	63,254
LIVESTOCK	CARSON	CANADIAN	STK	11005033	Α	1005	1005	33		941	479
LIVESTOCK	CARSON	RED	STK	11005033	Α	1005	1005	33	2	1,213	605
CHILDRESS	CHILDRESS	RED	MUN	10164000	Α	164	109	38		1,070	1,170
COUNTY-OTHER	CHILDRESS	RED	MUN	10996038	Α	996	757	38		665	382
MANUFACTURING	CHILDRESS	RED	MFG	11001038	Α	1001	1001	38		0	0
STEAM ELECTRIC POWER	CHILDRESS	RED	PWR	11002038	Α	1002	1002	38		0	0
MINING	CHILDRESS	RED	MIN	11003038	Α	1003	1003	38	2	20	25
IRRIGATION	CHILDRESS	RED	IRR	11004038	Α	1004	1004	38		4,703	3,819
LIVESTOCK	CHILDRESS	RED	STK	11005038	Α	1005	1005	38	2	420	295
WELLINGTON	COLLINGSWORTH	RED	MUN	10947000	Α	947	637	44		463	614
COUNTY-OTHER	COLLINGSWORTH	RED	MUN	10996044	Α	996	757	44	2	241	227
MANUFACTURING	COLLINGSWORTH	RED	MFG	11001044	Α	1001	1001	44	2	0	0
STEAM ELECTRIC POWER	COLLINGSWORTH	RED	PWR	11002044	А	1002	1002	44	2	0	0

d2010	d2020	d2030	d2040	d2050
266	267	274	268	267
78	61	50	40	33
0	0	0	0	0
0	0	0	0	0
24	25	26	26	26
6,753	6,753	6,753	6,753	6,753
647	701	755	814	880
173	163	149	132	121
844	879	902	913	933
83	76	64	61	59
261	257	261	262	267
14	14	14	14	14
107	95	100	93	90
341	324	328	331	334
0	0	0	0	0
987	1,168	1,368	1,586	1,820
0	0	0	0	0
0	0	0	0	0
982	765	665	608	580
716	726	739	757	778
29,766	29,766	29,766	29,766	29,766
63,254	63,254	63,254	63,254	63,254
504	536	565	597	632
650	690	728	769	814
1,194	1,179	1,192	1,210	1,243
341	326	317	313	318
0	0	0	0	0
0	0	0	0	0
24	25	26	27	28
3,819	3,819	3,819	3,819	3,819
313	373	385	397	411
593	580	571	561	553
227	223	219	213	211
0	0	0	0	0
0	0	0	0	0

WUGNAME	COUNTYNAME	BASINNAME	DATACAT	WUGNUM	RWPG	SEQ#	CITY#	COUNTY#	BASIN#	h1996	d2000
MINING	COLLINGSWORTH	RED	MIN	11003044	Α	1003	1003	44	2	0	0
IRRIGATION	COLLINGSWORTH	RED	IRR	11004044	Α	1004	1004	44	2	32,707	17,811
LIVESTOCK	COLLINGSWORTH	RED	STK	11005044	Α	1005	1005	44	2	886	608
DALHART	DALLAM	CANADIAN	MUN	10226000	Α	226	150		1	1,291	1,145
COUNTY-OTHER	DALLAM	CANADIAN	MUN	10996056	Α	996	757	56	1	703	179
MANUFACTURING	DALLAM	CANADIAN	MFG	11001056	Α	1001	1001	56		0	235
STEAM ELECTRIC POWER	DALLAM	CANADIAN	PWR	11002056	Α	1002	1002	56		0	0
MINING	DALLAM	CANADIAN	MIN	11003056	Α	1003	1003	56		0	0
IRRIGATION	DALLAM	CANADIAN	IRR	11004056	Α	1004	1004	56		393,795	386,403
LIVESTOCK	DALLAM	CANADIAN	STK	11005056	Α	1005	1005	56		3,786	6,973
CLARENDON	DONLEY	RED	MUN	10170000	Α	170	112	65		392	503
COUNTY-OTHER	DONLEY	RED	MUN	10996065	Α	996	757	65		217	187
MANUFACTURING	DONLEY	RED	MFG	11001065	Α	1001	1001	65		0	0
STEAM ELECTRIC POWER	DONLEY	RED	PWR	11002065	Α	1002	1002	65		0	0
MINING	DONLEY	RED	MIN	11003065	Α	1003	1003	65		22	24
IRRIGATION	DONLEY	RED	IRR	11004065	Α	1004	1004	65	2	9,338	17,031
LIVESTOCK	DONLEY	RED	STK	11005065	Α	1005	1005	65	2	1,711	1,171
LEFORS	GRAY	RED	MUN	10515000	Α	515	898	90		132	120
MCLEAN	GRAY	RED	MUN	10578000	Α	578	380	90		205	266
PAMPA	GRAY	CANADIAN	MUN	10674000	Α	674	452	90		4,076	4,003
COUNTY-OTHER	GRAY	CANADIAN	MUN	10996090	Α	996	757	90		390	264
COUNTY-OTHER	GRAY	RED	MUN	10996090	Α	996	757	90		369	264
MANUFACTURING	GRAY	CANADIAN	MFG	11001090	Α	1001	1001	90		3,874	3,947
MANUFACTURING	GRAY	RED	MFG	11001090	Α	1001	1001	90		0	0
STEAM ELECTRIC POWER	GRAY	CANADIAN	PWR	11002090	Α	1002	1002	90		0	0
STEAM ELECTRIC POWER	GRAY	RED	PWR	11002090	Α	1002	1002	90		0	0
MINING	GRAY	CANADIAN	MIN	11003090	Α	1003	1003	90		105	67
MINING	GRAY	RED	MIN	11003090	Α	1003	1003	90		1,261	1,457
IRRIGATION	GRAY	CANADIAN	IRR	11004090	Α	1004	1004	90	1	4,287	4,899
IRRIGATION	GRAY	RED	IRR	11004090	Α	1004	1004	90		13,576	17,371
LIVESTOCK	GRAY	CANADIAN	STK	11005090	Α	1005	1005	90	1	421	268
LIVESTOCK	GRAY	RED	STK	11005090	Α	1005	1005	90		2,673	1,705
MEMPHIS	HALL	RED	MUN	10585000	Α	585	394	96		469	469
TURKEY	HALL	RED	MUN	10915000	А	915	979	96		68	118
COUNTY-OTHER	HALL	RED	MUN	10996096	Α	996	757	96	2	223	203

d2010	d2020	d2030	d2040	d2050
0	0	0	0	0
17,811	17,811	17,811	17,811	17,811
637	710	735	764	795
1,142	1,118	1,087	1,037	1,002
183	178	176	175	174
235	235	235	235	235
0	0	0	0	0
0	0	0	0	0
386,403	386,403	386,403	386,403	386,403
10,737	12,234	13,799	15,590	17,644
465	433	396	365	332
170	152	135	125	114
0	0	0	0	0
0	0	0	0	0
25	26	27	30	33
17,031	17,031	17,031	17,031	17,031
1,251	1,331	1,392	1,459	1,531
107	95	85	80	78
266	265	232	226	220
3,966	3,941	3,404	3,314	3,227
261	253	213	203	197
273	273	225	216	208
4,225	4,332	4,407	4,692	4,967
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
62	60	60	59	59
1,050	936	860	889	970
4,899	4,899	4,899	4,899	4,899
17,371	17,371	17,371	17,371	17,371
351	398	434	474	518
2,234	2,535	2,760	3,010	3,290
439	408	383	365	353
114	111	110	110	113
187	170	154	143	131

WUGNAME	COUNTYNAME	BASINNAME	DATACAT	WUGNUM	RWPG	SEQ#	CITY#	COUNTY#	BASIN#	h1996	d2000
MANUFACTURING	HALL	RED	MFG	11001096	Α	1001	1001	96	2	0	0
STEAM ELECTRIC POWER	HALL	RED	PWR	11002096	Α	1002	1002	96	2	0	0
MINING	HALL	RED	MIN	11003096	Α	1003	1003	96	2	22	29
IRRIGATION	HALL	RED	IRR	11004096	Α	1004	1004	96	2	11,764	8,077
LIVESTOCK	HALL	RED	STK	11005096	Α	1005	1005	96	2	348	289
GRUVER	HANSFORD	CANADIAN	MUN	10368000	Α	368	256	98	1	308	377
SPEARMAN	HANSFORD	CANADIAN	MUN	10849000	Α	849	573	98	1	648	844
COUNTY-OTHER	HANSFORD	CANADIAN	MUN	10996098	Α	996	757	98	1	208	222
MANUFACTURING	HANSFORD	CANADIAN	MFG	11001098	Α	1001	1001	98	1	44	46
STEAM ELECTRIC POWER	HANSFORD	CANADIAN	PWR	11002098	Α	1002	1002	98	1	0	0
MINING	HANSFORD	CANADIAN	MIN	11003098	Α	1003	1003	98	1	982	1,331
IRRIGATION	HANSFORD	CANADIAN	IRR	11004098	Α	1004	1004	98	1	211,978	121,492
LIVESTOCK	HANSFORD	CANADIAN	STK	11005098	Α	1005	1005	98	1	5,443	5,192
CHANNING	HARTLEY	CANADIAN	MUN	10159000	Α	159	106	103	1	58	83
DALHART	HARTLEY	CANADIAN	MUN	10226000	Α	226	150	103	1	682	755
COUNTY-OTHER	HARTLEY	CANADIAN	MUN	10996103	Α	996	757	103	1	362	343
MANUFACTURING	HARTLEY	CANADIAN	MFG	11001103	Α	1001	1001	103	1	0	0
STEAM ELECTRIC POWER	HARTLEY	CANADIAN	PWR	11002103	Α	1002	1002	103	1	0	0
MINING	HARTLEY	CANADIAN	MIN	11003103	Α	1003	1003	103	1	0	0
IRRIGATION	HARTLEY	CANADIAN	IRR	11004103	Α	1004	1004	103	1	224,642	202,232
LIVESTOCK	HARTLEY	CANADIAN	STK	11005103	Α	1005	1005	103	1	6,020	4,066
CANADIAN	HEMPHILL	CANADIAN	MUN	10142000	Α	142	93	106	1	481	683
COUNTY-OTHER	HEMPHILL	CANADIAN	MUN	10996106	Α	996	757	106	1	98	91
COUNTY-OTHER	HEMPHILL	RED	MUN	10996106	Α	996	757	106	2	76	71
MANUFACTURING	HEMPHILL	CANADIAN	MFG	11001106	Α	1001	1001	106	1	0	0
MANUFACTURING	HEMPHILL	RED	MFG	11001106	Α	1001	1001	106	2	0	4
STEAM ELECTRIC POWER	HEMPHILL	CANADIAN	PWR	11002106	Α	1002	1002	106	1	0	0
STEAM ELECTRIC POWER	HEMPHILL	RED	PWR	11002106	Α	1002	1002	106	2	0	0
MINING	HEMPHILL	CANADIAN	MIN	11003106	Α	1003	1003	106	1	0	0
MINING	HEMPHILL	RED	MIN	11003106	Α	1003	1003	106	2	0	0
IRRIGATION	HEMPHILL	CANADIAN	IRR	11004106	Α	1004	1004	106	1	853	953
IRRIGATION	HEMPHILL	RED	IRR	11004106	Α	1004	1004	106	2	962	3,424
LIVESTOCK	HEMPHILL	CANADIAN	STK	11005106	Α	1005	1005	106	1	1,430	858
LIVESTOCK	HEMPHILL	RED	STK	11005106	Α	1005	1005	106	2	990	594
BORGER	HUTCHINSON	CANADIAN	MUN	10100000	Α	100	67	117	1	3,114	2,387

d2010	d2020	d2030	d2040	d2050
0	0	0	0	0
0	0	0	0	0
30	31	32	33	34
8,077	8,077	8,077	8,077	8,077
301	310	320	330	343
381	372	361	346	334
852	832	803	770	754
219	207	200	185	172
50	51	51	55	58
0	0	0	0	0
1,215	1,190	1,084	1,083	1,087
121,492	121,492	121,492	121,492	121,492
8,993	10,165	11,320	12,629	14,115
90	87	87	87	87
818	793	791	791	803
368	351	349	345	346
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
202,232	202,232	202,232	202,232	202,232
4,471	4,912	5,223	5,555	5,912
692	669	641	615	601
90	86	81	76	73
70	67	63	59	57
0	0	0	0	0
5	6	7	8	9
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
953	953	953	953	953
3,424	3,424	3,424	3,424	3,424
933	1,017	1,113	1,184	1,288
646	704	770	820	847
2,310	2,202	2,083	1,934	1,868

WUGNAME	COUNTYNAME	BASINNAME	DATACAT	WUGNUM	RWPG	SEQ#	CITY#	COUNTY#	BASIN#	h1996	d2000
FRITCH	HUTCHINSON	CANADIAN	MUN	10320000	Α	320	222	117	1	479	514
STINNETT	HUTCHINSON	CANADIAN	MUN	10861000	Α	861	582	117	1	439	433
COUNTY-OTHER	HUTCHINSON	CANADIAN	MUN	10996117	Α	996	757	117	1	899	1,108
MANUFACTURING	HUTCHINSON	CANADIAN	MFG	11001117	Α	1001	1001	117	1	14,371	19,871
STEAM ELECTRIC POWER	HUTCHINSON	CANADIAN	PWR	11002117	Α	1002	1002	117	1	0	0
MINING	HUTCHINSON	CANADIAN	MIN	11003117	Α	1003	1003	117	1	407	551
IRRIGATION	HUTCHINSON	CANADIAN	IRR	11004117	Α	1004	1004	117	1	50,023	41,758
LIVESTOCK	HUTCHINSON	CANADIAN	STK	11005117	Α	1005	1005	117	1	541	590
BOOKER	LIPSCOMB	CANADIAN	MUN	10099000	Α	99	66	148	1	366	392
LIPSCOMB	LIPSCOMB	CANADIAN	MUN	10526000	Α	526	359	148	1	38	46
COUNTY-OTHER	LIPSCOMB	CANADIAN	MUN	10996148	Α	996	757	148	1	339	400
MANUFACTURING	LIPSCOMB	CANADIAN	MFG	11001148	Α	1001	1001	148	1	91	156
STEAM ELECTRIC POWER	LIPSCOMB	CANADIAN	PWR	11002148	Α	1002	1002	148	1	0	0
MINING	LIPSCOMB	CANADIAN	MIN	11003148	Α	1003	1003	148	1	6	8
IRRIGATION	LIPSCOMB	CANADIAN	IRR	11004148	Α	1004	1004	148	1	14,767	35,122
LIVESTOCK	LIPSCOMB	CANADIAN	STK	11005148	А	1005	1005	148	1	1,719	1,127
CACTUS	MOORE	CANADIAN	MUN	10134000	Α	134	762	171	1	230	445
DUMAS	MOORE	CANADIAN	MUN	10255000	Α	255	170	171	1	2,750	2,833
SUNRAY	MOORE	CANADIAN	MUN	10872000	Α	872	588	171	1	460	492
COUNTY-OTHER	MOORE	CANADIAN	MUN	10996171	Α	996	757	171	1	875	453
MANUFACTURING	MOORE	CANADIAN	MFG	11001171	Α	1001	1001	171	1	6,702	7,238
STEAM ELECTRIC POWER	MOORE	CANADIAN	PWR	11002171	Α	1002	1002	171	1	441	200
MINING	MOORE	CANADIAN	MIN	11003171	Α	1003	1003	171	1	2,208	810
IRRIGATION	MOORE	CANADIAN	IRR	11004171	Α	1004	1004	171	1	358,509	200,579
LIVESTOCK	MOORE	CANADIAN	STK	11005171	Α	1005	1005	171	1	5,748	3,510
BOOKER	OCHILTREE	CANADIAN	MUN	10099000	Α	99	66	179	1	2	8
PERRYTON	OCHILTREE	CANADIAN	MUN	10689000	Α	689	461	179	1	1,820	2,468
COUNTY-OTHER	OCHILTREE	CANADIAN	MUN	10996179	Α	996	757	179	1	190	228
MANUFACTURING	OCHILTREE	CANADIAN	MFG	11001179	Α	1001	1001	179	1	1	0
STEAM ELECTRIC POWER	OCHILTREE	CANADIAN	PWR	11002179	Α	1002	1002	179	1	0	0
MINING	OCHILTREE	CANADIAN	MIN	11003179	Α	1003	1003	179	1	201	228
IRRIGATION	OCHILTREE	CANADIAN	IRR	11004179	А	1004	1004	179	1	85,237	47,300
LIVESTOCK	OCHILTREE	CANADIAN	STK	11005179	Α	1005	1005	179	1	2,426	6,747
VEGA	OLDHAM	CANADIAN	MUN	10928000	Α	928	622	180	1	52	66
VEGA	OLDHAM	RED	MUN	10928000	Α	928	622	180	2	158	199

d2010	d2020	d2030	d2040	d2050
499	477	453	424	410
425	411	392	368	358
1,085	1,041	997	946	913
21,975	23,374	24,545	26,895	29,203
0	0	0	0	0
510	373	210	132	95
41,758	41,758	41,758	41,758	41,758
657	722	781	845	915
392	379	372	361	347
46	44	43	42	40
396	381	372	357	346
166	172	176	188	200
0	0	0	0	0
8	8	8	9	18
35,122	35,122	35,122	35,122	35,122
2,281	2,645	3,007	3,424	3,906
476	511	592	703	838
3,022	3,200	3,418	3,603	3,848
560	630	701	750	807
452	441	427	419	430
7,712	8,035	8,269	8,863	9,429
200	200	200	200	200
579	333	213	156	159
200,579	200,579	200,579	200,579	200,579
7,158	8,105	9,059	10,146	11,386
7	7	7	7	7
2,504	2,482	2,432	2,370	2,320
227	221	212	201	187
0	0	0	0	0
0	0	0	0	0
202	186	170	151	155
47,300	47,300	47,300	47,300	47,300
7,253	8,255	9,308	10,514	11,897
68	67	67	63	61
205	202	203	192	184

WUGNAME	COUNTYNAME	BASINNAME	DATACAT	WUGNUM	RWPG	SEQ#	CITY#	COUNTY#	BASIN#	h1996	d2000
COUNTY-OTHER	OLDHAM	CANADIAN	MUN	10996180	Α	996	757	180	1	497	2,466
COUNTY-OTHER	OLDHAM	RED	MUN	10996180	Α	996	757	180	2	86	30
MANUFACTURING	OLDHAM	CANADIAN	MFG	11001180	Α	1001	1001	180	1	0	0
MANUFACTURING	OLDHAM	RED	MFG	11001180	Α	1001	1001	180	2	0	0
STEAM ELECTRIC POWER	OLDHAM	CANADIAN	PWR	11002180	Α	1002	1002	180	1	0	0
STEAM ELECTRIC POWER	OLDHAM	RED	PWR	11002180	Α	1002	1002	180	2	0	0
MINING	OLDHAM	CANADIAN	MIN	11003180	Α	1003	1003	180	1	218	231
MINING	OLDHAM	RED	MIN	11003180	Α	1003	1003	180	2	263	271
IRRIGATION	OLDHAM	CANADIAN	IRR	11004180	Α	1004	1004	180	1	1,524	8,216
IRRIGATION	OLDHAM	RED	IRR	11004180	Α	1004	1004	180	2	6,094	18,281
LIVESTOCK	OLDHAM	CANADIAN	STK	11005180	Α	1005	1005	180	1	2,061	1,623
LIVESTOCK	OLDHAM	RED	STK	11005180	Α	1005	1005	180	2	120	94
AMARILLO	POTTER	CANADIAN	MUN	10020000	Α	20	14	188	1	14,509	14,092
AMARILLO	POTTER	RED	MUN	10020000	Α	20	14	188	2	10,830	10,519
COUNTY-OTHER	POTTER	CANADIAN	MUN	10996188	Α	996	757	188	1	1,137	1,678
COUNTY-OTHER	POTTER	RED	MUN	10996188	Α	996	757	188	2	215	319
MANUFACTURING	POTTER	CANADIAN	MFG	11001188	Α	1001	1001	188	1	1,055	1,124
MANUFACTURING	POTTER	RED	MFG	11001188	Α	1001	1001	188	2	3,979	3,490
STEAM ELECTRIC POWER	POTTER	CANADIAN	PWR	11002188	Α	1002	1002	188	1	4,582	18,300
STEAM ELECTRIC POWER	POTTER	RED	PWR	11002188	Α	1002	1002	188	2	0	0
MINING	POTTER	CANADIAN	MIN	11003188	Α	1003	1003	188	1	284	276
MINING	POTTER	RED	MIN	11003188	Α	1003	1003	188	2	673	154
IRRIGATION	POTTER	CANADIAN	IRR	11004188	Α	1004	1004	188	1	13,864	12,214
IRRIGATION	POTTER	RED	IRR	11004188	Α	1004	1004	188	2	9,751	12,089
LIVESTOCK	POTTER	CANADIAN	STK	11005188	Α	1005	1005	188	1	630	441
LIVESTOCK	POTTER	RED	STK	11005188	Α	1005	1005	188	2	48	34
AMARILLO	RANDALL	RED	MUN	10020000	Α	20	14	191	2	18,996	19,763
CANYON	RANDALL	RED	MUN	10145000	Α	145	96	191	2	2,405	2,723
HAPPY	RANDALL	RED	MUN	10378000	Α	378	877	191	2	84	97
LAKE TANGLEWOOD	RANDALL	RED	MUN	10500000	Α	500	895	191	2	163	292
COUNTY-OTHER	RANDALL	CANADIAN	MUN	10996191	Α	996	757	191	1	198	326
COUNTY-OTHER	RANDALL	RED	MUN	10996191	Α	996	757	191	2	1,478	2,551
MANUFACTURING	RANDALL	CANADIAN	MFG	11001191	Α	1001	1001	191	1	0	0
MANUFACTURING	RANDALL	RED	MFG	11001191	Α	1001	1001	191	2	509	557
STEAM ELECTRIC POWER	RANDALL	CANADIAN	PWR	11002191	Α	1002	1002	191	1	0	0

d2010	d2020	d2030	d2040	d2050
2,463	2,452	2,441	2,427	2,417
29	27	26	23	22
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
238	245	252	260	268
279	287	296	305	314
8,216	8,216	8,216	8,216	8,216
18,281	18,281	18,281	18,281	18,281
1,785	1,955	2,100	2,259	2,433
103	113	122	131	141
14,311	14,803	15,473	16,172	17,074
10,682	11,049	11,550	12,071	12,744
1,655	1,648	1,706	1,780	1,766
316	316	325	339	337
1,226	1,300	1,377	1,468	1,566
3,812	4,065	4,266	4,663	5,040
22,432	25,387	26,804	28,408	30,011
0	0	0	0	0
222	223	224	225	231
159	164	169	174	179
12,214	12,214	12,214	12,214	12,214
12,089	12,089	12,089	12,089	12,089
482	524	569	618	673
37	40	43	47	51
21,928	23,822	26,287	29,217	32,803
2,835	2,907	3,048	3,279	3,572
88	80	74	71	71
301	305	303	294	282
372	417	480	543	629
2,963	3,354	3,884	4,427	5,158
0	0	0	0	0
517	472	475	478	482
0	0	0	0	0

WUGNAME	COUNTYNAME	BASINNAME	DATACAT	WUGNUM	RWPG	SEQ#	CITY#	COUNTY#	BASIN#	h1996	d2000
STEAM ELECTRIC POWER	RANDALL	RED	PWR	11002191	Α	1002	1002	191	2	0	0
MINING	RANDALL	CANADIAN	MIN	11003191	Α	1003	1003	191	1	1	1
MINING	RANDALL	RED	MIN	11003191	Α	1003	1003	191	2	20	7
IRRIGATION	RANDALL	CANADIAN	IRR	11004191	Α	1004	1004	191	1	842	569
IRRIGATION	RANDALL	RED	IRR	11004191	Α	1004	1004	191	2	45,909	56,922
LIVESTOCK	RANDALL	CANADIAN	STK	11005191	Α	1005	1005	191	1	39	31
LIVESTOCK	RANDALL	RED	STK	11005191	Α	1005	1005	191	2	3,789	3,036
MIAMI	ROBERTS	CANADIAN	MUN	10594000	Α	594	403	197	1	126	208
COUNTY-OTHER	ROBERTS	CANADIAN	MUN	10996197	Α	996	757	197	1	41	38
COUNTY-OTHER	ROBERTS	RED	MUN	10996197	Α	996	757	197	2	2	2
MANUFACTURING	ROBERTS	CANADIAN	MFG	11001197	Α	1001	1001	197	1	0	0
MANUFACTURING	ROBERTS	RED	MFG	11001197	Α	1001	1001	197	2	0	0
STEAM ELECTRIC POWER	ROBERTS	CANADIAN	PWR	11002197	Α	1002	1002	197	1	0	0
STEAM ELECTRIC POWER	ROBERTS	RED	PWR	11002197	Α	1002	1002	197	2	0	0
MINING	ROBERTS	CANADIAN	MIN	11003197	Α	1003	1003	197	1	2	2
MINING	ROBERTS	RED	MIN	11003197	Α	1003	1003	197	2	9	9
IRRIGATION	ROBERTS	CANADIAN	IRR	11004197	Α	1004	1004	197	1	6,210	0
IRRIGATION	ROBERTS	RED	IRR	11004197	Α	1004	1004	197	2	847	5,755
LIVESTOCK	ROBERTS	CANADIAN	STK	11005197	Α	1005	1005	197	1	343	509
LIVESTOCK	ROBERTS	RED	STK	11005197	Α	1005	1005	197	2	11	16
STRATFORD	SHERMAN	CANADIAN	MUN	10864000	Α	864	584	211	1	504	565
COUNTY-OTHER	SHERMAN	CANADIAN	MUN	10996211	Α	996	757	211	1	163	180
MANUFACTURING	SHERMAN	CANADIAN	MFG	11001211	Α	1001	1001	211	1	0	0
STEAM ELECTRIC POWER	SHERMAN	CANADIAN	PWR	11002211	Α	1002	1002	211	1	0	0
MINING	SHERMAN	CANADIAN	MIN	11003211	Α	1003	1003	211	1	23	26
IRRIGATION	SHERMAN	CANADIAN	IRR	11004211	Α	1004	1004	211	1	259,210	195,197
LIVESTOCK	SHERMAN	CANADIAN	STK	11005211	Α	1005	1005	211	1	3,399	3,813
SHAMROCK	WHEELER	RED	MUN	10822000	Α	822	554	242	2	315	370
WHEELER	WHEELER	RED	MUN	10961000	Α	961	646	242	2	287	300
COUNTY-OTHER	WHEELER	RED	MUN	10996242	Α	996	757	242	2	263	296
MANUFACTURING	WHEELER	RED	MFG	11001242	Α	1001	1001	242	2	0	0
STEAM ELECTRIC POWER	WHEELER	RED	PWR	11002242	Α	1002	1002	242	2	0	0
MINING	WHEELER	RED	MIN	11003242	Α	1003	1003	242	2	113	102
IRRIGATION	WHEELER	RED	IRR	11004242	Α	1004	1004	242	2	2,956	5,698
LIVESTOCK	WHEELER	RED	STK	11005242	Α	1005	1005	242	2	2,596	1,529

d2010	d2020	d2030	d2040	d2050
0	0	0	0	0
1	1	2	2	2
5	4	3	3	5
569	569	569	569	569
56,922	56,922	56,922	56,922	56,922
34	38	40	43	46
3,353	3,714	3,979	4,265	4,575
209	197	184	172	162
38	34	30	26	19
2	2	1	1	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
1	1	1	1	1
10	8	7	7	7
0	0	0	0	0
5,755	5,755	5,755	5,755	5,755
556	599	648	700	758
18	19	20	22	24
574	570	543	514	496
165	145	127	117	105
0	0	0	0	0
0	0	0	0	0
26	27	28	29	31
195,197	195,197	195,197	195,197	195,197
5,576	6,279	6,945	7,695	8,543
354	338	332	322	321
288	275	272	268	268
279	261	251	241	238
0	0	0	0	0
0	0	0	0	0
43	23	11	5	2
5,698	5,698	5,698	5,698	5,698
1,632	1,788	1,868	1,954	2,046

ArmstrongIrrigArmstrongBeetArmstrongCattArmstrongCattArmstrongCattArmstrongCattArmstrongCattArmstrongHorsArmstrongPoutArmstrongSwinCarsonIrrigCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonPoutCarsonSwinCarsonCattCarsonPoutCarsonSwinCarsonSwinCarsonSwinChildressIrrig	Iltry ine gation of Cows tle - Dairy tle - Dairy tle - Summer Beef Stockers tle - Winter Beef Stockers tle on Feedlots rses Iltry ine	2000 ac-ft/yr 6,753 134 0 247 89 112 4 0 3 93,020 470 0 93,020 470 0 93,020 470 0 93,020 470 0 93,020 470 7	2010 ac-ft/yr 6,753 134 0 273 98 124 5 0 0 122 93,020 470 0 0 100 296 272 3 0 0	2020 ac-ft/yr 6,753 134 0 301 109 137 5 0 137 5 0 0 14 93,020 470 0 110 327 300 3	2030 ac-ft/yr 6,753 134 0 333 120 145 6 0 145 6 0 145 93,020 470 0 122 361 319	2040 ac-ft/yr 6,753 134 0 368 132 154 6 93,020 470 0 135 399 338	2050 ac-ft/yr 6,753 134 0 406 146 164 164 7 0 0 22 93,020 470 0 0 149 441 250
ArmstrongBeefArmstrongCattArmstrongCattArmstrongCattArmstrongCattArmstrongHorsArmstrongPoulArmstrongSwinCarsonIrrigCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonPoulCarsonSwinCarsonSwinCarsonSwinChildressIrrig	gation ef Cows tle - Dairy tle - Summer Beef Stockers tle - Winter Beef Stockers tle on Feedlots rses iltry ine gation ef Cows tle - Dairy tle - Summer Beef Stockers tle on Feedlots rses iltry ine file - Winter Beef Stockers tle on Feedlots rses iltry ine	$ \begin{array}{r} 6,753\\ 134\\ 0\\ 247\\ 89\\ 112\\ 4\\ 0\\ 3\\ 93,020\\ 470\\ 0\\ 93,020\\ 470\\ 0\\ 93,020\\ 470\\ 0\\ 93,020\\ 470\\ 0\\ 93,020\\ 470\\ 0\\ 0\\ 91\\ 268\\ 246\\ 3\\ 0\\ 0 \end{array} $	$ \begin{array}{r} 6,753\\ \hline 0,134\\ 0\\ 273\\ 98\\ 124\\ 5\\ 0\\ 124\\ 93,020\\ 470\\ 0\\ 100\\ 296\\ 272\\ 3 \end{array} $	$ \begin{array}{r} 6,753\\ \hline 0,134\\ \hline 0\\ 301\\ \hline 109\\ \hline 137\\ \hline 5\\ 0\\ \hline 14\\ 93,020\\ \hline 470\\ \hline 0\\ \hline 110\\ \hline 327\\ \hline 300\\ \hline \end{array} $	6,753 134 0 333 120 145 6 0 145 6 0 145 93,020 470 0 122 361 319	6,753 134 0 368 132 154 6 19 93,020 470 0 135 399	$ \begin{array}{r} 6,753\\ \hline 0 \\ 406\\ \hline 146\\ \hline 146\\ \hline 164\\ \hline 7\\ 0\\ \hline 22\\ 93,020\\ \hline 470\\ \hline 0\\ \hline 149\\ \hline 441\\ \hline \end{array} $
ArmstrongBeefArmstrongCattArmstrongCattArmstrongCattArmstrongCattArmstrongCattArmstrongPoulArmstrongPoulArmstrongSwinCarsonIrrigCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonPoulCarsonSwinCarsonSwinCarsonSwinChildressIrrig	ef Cows tle - Dairy tle - Summer Beef Stockers tle on Feedlots rses nltry ine gation ef Cows tle - Dairy tle - Dairy tle - Summer Beef Stockers tle on Feedlots rses nltry ine	$ \begin{array}{r} 134 \\ 0 \\ 247 \\ 89 \\ 112 \\ 4 \\ 0 \\ 3 \\ 93,020 \\ 470 \\ 0 \\ 93,020 \\ 470 \\ 0 \\ 91 \\ 268 \\ 246 \\ 3 \\ 0 \\ $	$ \begin{array}{r} 134 \\ 0 \\ 273 \\ 98 \\ 124 \\ 5 \\ 0 \\ 122 \\ 93,020 \\ 470 \\ 0 \\ 100 \\ 296 \\ 272 \\ 3 \\ \end{array} $	$ \begin{array}{r} 134 \\ 0 \\ 301 \\ 109 \\ 137 \\ 5 \\ 0 \\ 14 \\ 93,020 \\ 470 \\ 0 \\ 110 \\ 327 \\ 300 \\ \end{array} $	134 0 333 120 145 6 0 145 6 0 145 93,020 470 0 122 361 319	134 0 368 132 154 6 19 93,020 470 0 135 399	$ \begin{array}{r} 134 \\ 0 \\ 406 \\ 146 \\ 164 \\ 7 \\ 0 \\ 22 \\ 93,020 \\ 470 \\ 0 \\ 149 \\ 441 \\ \end{array} $
ArmstrongBeefArmstrongCattArmstrongCattArmstrongCattArmstrongCattArmstrongCattArmstrongPoulArmstrongPoulArmstrongSwinCarsonIrrigCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonPoulCarsonSwinCarsonSwinCarsonSwinChildressIrrig	ef Cows tle - Dairy tle - Summer Beef Stockers tle on Feedlots rses nltry ine gation ef Cows tle - Dairy tle - Dairy tle - Summer Beef Stockers tle on Feedlots rses nltry ine	$ \begin{array}{r} 0\\ 247\\ 89\\ 112\\ 4\\ 0\\ 3\\ 93,020\\ 470\\ 0\\ 91\\ 268\\ 246\\ 3\\ 0\\ 0 \end{array} $	$ \begin{array}{r} 0 \\ 273 \\ 98 \\ 124 \\ 5 \\ 0 \\ 12 \\ 93,020 \\ 470 \\ 0 \\ 100 \\ 296 \\ 272 \\ 3 \\ \end{array} $	$ \begin{array}{r} 134 \\ 0 \\ 301 \\ 109 \\ 137 \\ 5 \\ 0 \\ 14 \\ 93,020 \\ 470 \\ 0 \\ 110 \\ 327 \\ 300 \\ \end{array} $	$\begin{array}{r} 0\\ 333\\ 120\\ 145\\ 6\\ 0\\ 17\\ 93,020\\ 470\\ 0\\ 122\\ 361\\ 319 \end{array}$	0 368 132 154 6 19 93,020 470 0 135 399	$ \begin{array}{r} 0 \\ 406 \\ 146 \\ 164 \\ 7 \\ 0 \\ 22 \\ 93,020 \\ 470 \\ 0 \\ 149 \\ 441 \\ \end{array} $
ArmstrongCattArmstrongCattArmstrongCattArmstrongCattArmstrongHorsArmstrongPoutArmstrongSwinCarsonIrrigCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonPoutCarsonSwinCarsonSwinChildressIrrig	tle - Dairy tle - Summer Beef Stockers tle - Winter Beef Stockers tle on Feedlots rses altry ine gation ef Cows tle - Dairy tle - Dairy tle - Summer Beef Stockers tle on Feedlots rses altry ine	247 89 112 4 0 3 93,020 470 0 91 268 246 3 0	$ \begin{array}{r} 273 \\ 98 \\ 124 \\ 5 \\ 0 \\ 12 \\ 93,020 \\ 470 \\ 0 \\ 100 \\ 296 \\ 272 \\ 3 \\ \end{array} $	$ \begin{array}{r} 0\\301\\109\\137\\5\\0\\0\\14\\93,020\\470\\0\\110\\327\\300\end{array} $	333 120 145 6 00 177 93,020 470 0 122 361 319	368 132 154 6 19 93,020 470 0 135 399	$ \begin{array}{r} 146 \\ 164 \\ 7 \\ 0 \\ 22 \\ 93,020 \\ 470 \\ 0 \\ 149 \\ 441 \\ \end{array} $
ArmstrongCattArmstrongCattArmstrongCattArmstrongHorsArmstrongPoutArmstrongSwinCarsonIrrigCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonPoutCarsonSwinCarsonSwinCarsonSwinChildressIrrig	tle - Summer Beef Stockers tle - Winter Beef Stockers tle on Feedlots rses iltry ine gation ef Cows tle - Dairy tle - Summer Beef Stockers tle on Feedlots rses iltry ine	89 112 4 0 3 93,020 470 0 93,020 470 0 91 268 246 3 0	98 124 5 0 12 93,020 470 0 100 296 272 3	$ \begin{array}{r} 109 \\ 137 \\ 5 \\ 0 \\ 14 \\ 93,020 \\ 470 \\ 0 \\ 110 \\ 327 \\ 300 \\ \end{array} $	120 145 6 0 17 93,020 470 0 122 361 319	$ \begin{array}{r} 132 \\ 154 \\ 6 \\ 19 \\ 93,020 \\ 470 \\ 0 \\ 135 \\ 399 \\ \end{array} $	$ \begin{array}{r} 146 \\ 164 \\ 7 \\ 0 \\ 22 \\ 93,020 \\ 470 \\ 0 \\ 149 \\ 441 \\ \end{array} $
ArmstrongCattArmstrongCattArmstrongHorsArmstrongPoulArmstrongSwinCarsonIrrigCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonPoulCarsonSwinCarsonSwinCarsonSwinChildressIrrig	tle - Winter Beef Stockers tle on Feedlots rses iltry ine gation ef Cows tle - Dairy tle - Summer Beef Stockers tle - Winter Beef Stockers tle on Feedlots rses iltry ine	$ \begin{array}{r} 112\\ 4\\ 0\\ 3\\ 93,020\\ 470\\ 0\\ 91\\ 268\\ 246\\ 3\\ 0\\ \end{array} $	124 5 0 12 93,020 470 0 100 296 272 3	$ \begin{array}{r} 137 \\ 5 \\ 0 \\ 14 \\ 93,020 \\ 470 \\ 0 \\ 110 \\ 327 \\ 300 \\ \end{array} $	120 145 6 0 17 93,020 470 0 122 361 319	$ \begin{array}{r} 132 \\ 154 \\ 6 \\ 19 \\ 93,020 \\ 470 \\ 0 \\ 135 \\ 399 \\ \end{array} $	$ \begin{array}{r} 164 \\ 7 \\ 0 \\ 22 \\ 93,020 \\ 470 \\ 0 \\ 149 \\ 441 \\ \end{array} $
ArmstrongCattArmstrongHorsArmstrongPoulArmstrongSwinCarsonIrrigCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonPoulCarsonPoulCarsonSwinChildressIrrig	tle on Feedlots rses iltry ine gation of Cows tle - Dairy tle - Dairy tle - Summer Beef Stockers tle - Winter Beef Stockers tle on Feedlots rses iltry ine	$ \begin{array}{r} 112\\ 4\\ 0\\ 3\\ 93,020\\ 470\\ 0\\ 91\\ 268\\ 246\\ 3\\ 0\\ \end{array} $	124 5 0 12 93,020 470 0 100 296 272 3	$ \begin{array}{r} 137 \\ 5 \\ 0 \\ 14 \\ 93,020 \\ 470 \\ 0 \\ 110 \\ 327 \\ 300 \\ \end{array} $	145 6 0 17 93,020 470 0 122 361 319	154 6 19 93,020 470 0 135 399	$ \begin{array}{r} 164 \\ 7 \\ 0 \\ 22 \\ 93,020 \\ 470 \\ 0 \\ 149 \\ 441 \\ \end{array} $
ArmstrongHorsArmstrongPoulArmstrongSwinCarsonIrrigCarsonBeetCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonPoulCarsonSwinChildressIrrig	Iltry ine gation of Cows tle - Dairy tle - Dairy tle - Summer Beef Stockers tle - Winter Beef Stockers tle on Feedlots rses Iltry ine	$ \begin{array}{r} 0\\ 3\\ 93,020\\ 470\\ 0\\ 91\\ 268\\ 246\\ 3\\ 0\\ \end{array} $	0 12 93,020 470 0 100 296 272 3	5 0 14 93,020 470 0 110 327 300	6 0 17 93,020 470 0 122 361 319	19 93,020 470 0 135 399	$ \begin{array}{r} 7 \\ 0 \\ 22 \\ 93,020 \\ 470 \\ 470 \\ 0 \\ 149 \\ 441 \\ \end{array} $
ArmstrongPoulArmstrongSwinCarsonIrrigCarsonBeetCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonPoulCarsonPoulCarsonSwinCarsonSwinChildressIrrig	ine gation of Cows tle - Dairy tle - Summer Beef Stockers tle - Winter Beef Stockers tle on Feedlots rses altry ine	$ \begin{array}{r} 3 \\ 93,020 \\ 470 \\ 0 \\ 91 \\ 268 \\ 246 \\ 3 \\ 0 \end{array} $	$ \begin{array}{r} 12 \\ 93,020 \\ 470 \\ 0 \\ 100 \\ 296 \\ 272 \\ 3 \end{array} $	14 93,020 470 0 110 327 300	17 93,020 470 0 122 361 319	93,020 470 0 135 399	22 93,020 470 0 149 441
ArmstrongSwinCarsonIrrigCarsonBeetCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonCattCarsonPoutCarsonPoutCarsonSwinChildressIrrig	ine gation of Cows tle - Dairy tle - Summer Beef Stockers tle - Winter Beef Stockers tle on Feedlots rses altry ine	93,020 470 0 91 268 246 3 0	93,020 470 0 100 296 272 3	93,020 470 0 110 327 300	93,020 470 0 122 361 319	93,020 470 0 135 399	93,020 470 0 149 441
CarsonIrrigCarsonBeetCarsonCattCarsonCattCarsonCattCarsonCattCarsonHorsCarsonPoutCarsonSwinChildressIrrig	ef Cows tle - Dairy tle - Summer Beef Stockers tle - Winter Beef Stockers tle on Feedlots rses nltry ine	470 0 91 268 246 3 0	470 0 100 296 272 3	470 0 110 327 300	470 0 122 361 319	470 0 135 399	470 0 149 441
CarsonBeefCarsonCattCarsonCattCarsonCattCarsonCattCarsonHorsCarsonPoutCarsonSwinChildressIrrig	ef Cows tle - Dairy tle - Summer Beef Stockers tle - Winter Beef Stockers tle on Feedlots rses nltry ine	470 0 91 268 246 3 0	470 0 100 296 272 3	470 0 110 327 300	470 0 122 361 319	470 0 135 399	470 0 149 441
CarsonCattCarsonCattCarsonCattCarsonCattCarsonHorsCarsonPoutCarsonSwinChildressIrrig	tle - Summer Beef Stockers tle - Winter Beef Stockers tle on Feedlots rses iltry ine	91 268 246 3 0	100 296 272 3	110 327 300	122 361 319	135 399	149 441
CarsonCattCarsonCattCarsonCattCarsonHorsCarsonPoutCarsonSwinChildressIrrig	tle - Summer Beef Stockers tle - Winter Beef Stockers tle on Feedlots rses iltry ine	268 246 3 0	296 272 3	327 300	361 319	399	441
Carson Catt Carson Catt Carson Hors Carson Pou Carson Swin Childress Irrig	tle - Winter Beef Stockers tle on Feedlots rses iltry ine	268 246 3 0	296 272 3	327 300	361 319	399	441
CarsonCattCarsonHorsCarsonPoutCarsonSwinChildressIrrig	tle on Feedlots rses iltry ine	246 3 0	272 3	300	319		
CarsonHorsCarsonPoutCarsonSwinChildressIrrig	rses	3 0	3				359
Carson Pou Carson Swin Childress Irrig	iltry	0			4	4	4
Carson Swin Childress Irrig	ine		0	0	0		0
Childress Irrig		/	12	14	17	19	22
	Pation	3,819	3,819	3,819	3,819	3,819	3,819
Childress Beet	ef Cows	224	224	224	224	224	224
	tle - Dairy	0	0	0	0	0	0
	tle - Summer Beef Stockers	0	0	0	0	0	0
	tle - Winter Beef Stockers	66	72	80	88	98	108
	tle on Feedlots	0	0	0	0	0	0
Childress Hors		4	4	5	5	6	6
Childress Pou		0	0	50	50	50	50
Childress Swin	Į.	1	12	14	17	19	22
	gation	17,811	17,811	17,811	17,811	17,811	17,811
	ef Cows	426	426	426	426	426	426
0	tle - Dairy	0	0	0	0	0	0
	tle - Summer Beef Stockers	63	70	77	85	94	104
0	tle - Winter Beef Stockers	107	118	131	144	160	176
Collingsworth Catt		0	0		0	0	0
Collingsworth Hors		10	11	12	13	14	16
Collingsworth Pou		0	0	50	50	50	50
Collingsworth Swin		2	12	14	17	19	22
•	gation	386,403	386,403	386,403	386,403	386,403	386,403
0	ef Cows	269	269	269	269	269	269
	tle - Dairy	95	164	205	235	271	311
	tle - Summer Beef Stockers	142	157	173	192	212	234
	tle - Winter Beef Stockers	448	495	547	604	667	737
	tle on Feedlots	2,596	2,868		3,363	3,570	3,790
Dallam Hors		6	7	8	8	9	10
Dallam Pou		0	0		0	-	0
Dallam Swin		3,416	6,777	7,865	9,127	10,592	12,292
	gation	17,031	17,031	17,031	17,031	17,031	17,031
	ef Cows	493	493	493	493	493	493
	tle - Dairy	0	0		0	0	0

			Proje	cted Water	Demand	(ac-ft)	
County Name	Agricultural/Livestock	2000	2010	2020	2030	2040	2050
· ·	Category	ac-ft/yr	ac-ft/yr	ac-ft/yr	ac-ft/yr	ac-ft/yr	ac-ft/yr
Donley	Cattle - Summer Beef Stockers	136	150	166	183	202	223
Donley	Cattle - Winter Beef Stockers	20	22	24	27	29	32
Donley	Cattle on Feedlots	509	562	621	659	700	743
Donley	Horses	10	11	13	14	15	17
Donley	Poultry	0	0		0		0
Donley	Swine	3	12	14	17	19	22
Gray	Irrigation	22,270	22,270		22,270	22,270	22,270
Gray	Beef Cows	224	224	224	224	224	224
Gray	Cattle - Dairy	236	688	860	989	1,137	1,308
Gray	Cattle - Summer Beef Stockers	136	150	166	183	202	223
Gray	Cattle - Winter Beef Stockers	171	189	208	230	254	281
Gray	Cattle on Feedlots	1,188	1,312	1,449	1,539	1,634	1,734
Gray	Horses	9	1,012	,	1,009	1,001	1,781
Gray	Poultry	0	0	0	0		0
Gray	Swine	10	12	14	17	19	22
Hall	Irrigation	8,077	8,077	8,077	8,077	8,077	8,077
Hall	Beef Cows	224	224	224	224	224	224
Hall	Cattle - Dairy	0	0	0	0	0	0
Hall	Cattle - Summer Beef Stockers	38	42	46	51	57	63
Hall	Cattle - Winter Beef Stockers	19	21	23	25	28	31
Hall	Cattle on Feedlots	0	0		0	0	0
Hall	Horses	2	2	2	2	3	3
Hall	Poultry	0	0	0	0	5	0
Hall	Swine	7	12	14	17	19	22
Hansford	Irrigation	121,492	121,492	121,492	121,492	121,492	121,492
Hansford	Beef Cows	67	67	67	67	67	67
Hansford	Cattle - Dairy	0	0		0	0	0
Hansford	Cattle - Summer Beef Stockers	181	200	-	245	270	298
Hansford	Cattle - Winter Beef Stockers	609	673	743	821	907	1,002
Hansford	Cattle on Feedlots	3,411	3,768	4,162	4,418	4,690	4,979
Hansford	Horses	8	9	9	1,110	1,090	13
Hansford	Poultry	0	0		0		0
Hansford	Swine	915	4,276		5,758	6,682	7,755
Hartley	Irrigation	202,232	202,232	202,232	202,232	202,232	202,232
Hartley	Beef Cows	262,252	262,252	,	262,252	262,232	262,252
Hartley	Cattle - Dairy	0	0		0	0	0
Hartley	Cattle - Summer Beef Stockers	287	317	-	387	427	472
Hartley	Cattle - Winter Beef Stockers	157	174		212	234	259
Hartley	Cattle on Feedlots	3,343	3,693		4,330	4,597	4,880
Hartley	Horses	6	6			9	10
Hartley	Poultry	0	0		0	,	0
Hartley	Swine	3	12	14	17	19	22
Hemphill	Irrigation	4,377	4,377	4,377	4,377	4,377	4,377
Hemphill	Beef Cows	224	224		224	224	224
Hemphill	Cattle - Dairy	0	0		0	0	0
Hemphill	Cattle - Summer Beef Stockers	303	335	÷	409	451	499
Hemphill	Cattle - Winter Beef Stockers	303	41	46	50	56	61
Hemphill	Cattle on Feedlots	865	956		1,121	1,190	1,263
nempiini		803	930	1,030	1,121	1,190	1,203

			Proje	cted Water	Demand	(ac-ft)	
County Name	Agricultural/Livestock	2000	2010	2020	2030	2040	2050
2	Category	ac-ft/yr	ac-ft/yr	ac-ft/yr	ac-ft/yr	ac-ft/yr	ac-ft/yr
Hemphill	Horses	9	10	11	12	14	15
Hemphill	Poultry	0	0	0	50	50	50
Hemphill	Swine	12	12	14	17	19	22
Hutchinson	Irrigation	41,758	41,758	41,758	41,758	41,758	41,758
Hutchinson	Beef Cows	45	45	45	45	45	45
Hutchinson	Cattle - Dairy	0	0	0	0	0	0
Hutchinson	Cattle - Summer Beef Stockers	192	212	234	259	286	316
Hutchinson	Cattle - Winter Beef Stockers	99	109	120	133	147	162
Hutchinson	Cattle on Feedlots	246	272	300	319	338	359
Hutchinson	Horses	6	7	8	9	10	11
Hutchinson	Poultry	0	0	0	0		0
Hutchinson	Swine	2	12	14	17	19	22
Lipscomb	Irrigation	35,122	35,122	35,122	35,122	35,122	35,122
Lipscomb	Beef Cows	202	202	202	202	202	202
Lipscomb	Cattle - Dairy	0	0	0	0	0	0
Lipscomb	Cattle - Summer Beef Stockers	154	170	188	208	230	254
Lipscomb	Cattle - Winter Beef Stockers	149	164	188	200	222	245
Lipscomb	Cattle on Feedlots	14	101	102	18	19	213
Lipscomb	Horses	4	5	5	6	6	7
Lipscomb	Poultry		0	50	50	50	50
Lipscomb	Swine	605	1,725	2,002	2,323	2,696	3,129
Moore	Irrigation	200,579	200,579	2,002	200,579	2,090	200,579
Moore	Beef Cows	200,379	200,379	200,379	200,379	200,379	200,379
Moore	Cattle - Dairy	0	0	0	0	0	202
Moore	Cattle - Summer Beef Stockers	82	90	100	110	122	135
Moore	Cattle - Winter Beef Stockers	253	280	309	341	377	417
Moore	Cattle on Feedlots	2,411	2,664	2,942	3,124	3,316	3,520
Moore	Horses	4	2,004	2,942	5,124	5,510	5,520
Moore	Poultry		4	0	0	0	0
Moore	Swine	558	3,918	-	5,277	6,124	7,107
Ochiltree	Irrigation	47,300	47,300	47,300	47,300	47,300	47,300
Ochiltree	Beef Cows	47,300	47,300	47,300	47,300	47,300	47,300
			1/9		0	0	
Ochiltree Ochiltree	Cattle - Dairy Cattle - Summer Beef Stockers	0 47	52	0 57	63	70	0 77
Ochiltree	Cattle - Winter Beef Stockers	297	32		400	442	488
Ochiltree	Cattle on Feedlots	1,816	2,006		2,352	2,497	2,651
Ochiltree	Horses	1,810	-	2,210	2,332	2,497	2,031
Ochiltree	Poultry	<u> </u>	6	0	0	0	9
Ochiltree	Ţ.	÷	Ŷ	-	÷	7 210	0 8 400
	Swine	4,402	4,682	5,434	6,306	7,318	8,492
Oldham	Irrigation Beef Cows	26,497 179	26,497	26,497	26,497	26,497	26,497
Oldham Oldham		1/9	179	179	179 0	179 0	179
	Cattle - Dairy	•	•	0	ů	Ű	702
Oldham	Cattle - Summer Beef Stockers	482	533	589	650	718	793
Oldham Oldham	Cattle - Winter Beef Stockers	215	238	263	290	321	354
Oldham	Cattle on Feedlots	832	919	1,015	1,077	1,143	1,214
Oldham	Horses	7	7	8	9	10	11
Oldham	Poultry	0	0	0	0	10	0
Oldham	Swine	2	12	14	17	19	22

			Proje	cted Wate	r Demand	(ac-ft)	
County Name	Agricultural/Livestock	2000	2010	2020	2030	2040	2050
·	Category	ac-ft/yr	ac-ft/yr	ac-ft/yr	ac-ft/yr	ac-ft/yr	ac-ft/yr
Potter	Irrigation	24,303	24,303	24,303	24,303	24,303	24,303
Potter	Beef Cows	90	90	90	90	90	90
Potter	Cattle - Dairy	0	0	0	0	0	0
Potter	Cattle - Summer Beef Stockers	270	298	329	364	402	444
Potter	Cattle - Winter Beef Stockers	57	63	70	77	85	94
Potter	Cattle on Feedlots	44	49	54	57	61	64
Potter	Horses	6	7	7	8	9	10
Potter	Poultry	0	0	0	0		0
Potter	Swine	8	12	14	17	19	22
Randall	Irrigation	57,491	57,491	57,491	57,491	57,491	57,491
Randall	Beef Cows	157	157	157	157	157	157
Randall	Cattle - Dairy	47	181	226	260	299	343
Randall	Cattle - Summer Beef Stockers	181	200	223	244	269	298
Randall	Cattle - Winter Beef Stockers	259	287	317	350	386	427
Randall	Cattle on Feedlots	2,291	2,531	2,795	2,968	3,150	3,344
Randall	Horses	18	20	22	25	27	30
Randall	Poultry	0	0	0	0		0
Randall	Swine	113	12	14	17	19	22
Roberts	Irrigation	5,755	5,755	5,755	5,755	5,755	5,755
Roberts	Beef Cows	157	157	157	157	157	157
Roberts	Cattle - Dairy	0	0	0	0	0	0
Roberts	Cattle - Summer Beef Stockers	321	354	391	432	478	528
Roberts	Cattle - Winter Beef Stockers	42	46	51	56	62	69
Roberts	Cattle on Feedlots	0	0	0	0	0	0
Roberts	Horses	4	4	5	5	6	6
Roberts	Poultry	0	0	0	0		0
Roberts	Swine	1	12	14	17	19	22
Sherman	Irrigation	195,197	195,197	195,197	195,197	195,197	195,197
Sherman	Beef Cows	67	67	67	67	67	67
Sherman	Cattle - Dairy	0	0	0	0	0	0
Sherman	Cattle - Summer Beef Stockers	98	108	120	132	146	161
Sherman	Cattle - Winter Beef Stockers	330	365	403	445	492	543
Sherman	Cattle on Feedlots	2,503				3,442	3,654
Sherman	Horses	3	4	4	4	5	5
Sherman	Poultry	0	0	0	0		0
Sherman	Swine	811	2,267	2,631	3,053	3,543	4,112
Wheeler	Irrigation	5,698		5,698	5,698	5,698	5,698
Wheeler	Beef Cows	627	627	627	627	627	627
Wheeler	Cattle - Dairy	0	0	0	0	0	0
Wheeler	Cattle - Summer Beef Stockers	136	150	166	183	202	223
Wheeler	Cattle - Winter Beef Stockers	40	45	49	54	60	66
Wheeler	Cattle on Feedlots	713	787	870	923	980	1,040
Wheeler	Horses	10	11	12	13	14	1,010
Wheeler	Poultry	0	0	50	50	50	50
Wheeler	Swine	3	12	14	17	19	22
	Total	-	1,586,578				

Major Water Provider Name	Name of Recipient of Water	Recipient's City Name	Recipient's County Name	Recipient's Basin Name	Recipient's Data Category	Major Water Provider Number (TWDB Alpha Number)	Recipient of Water from the Major Provider. User Number (TWDB Alpha Number)	Recipient's Water User Group Identifier	Recipient's Regional Water Planning Group Letter	Recipient's Sequence Number	Recipient's City Number	Recipient's County Number	Recipient's Basin Number	1996 Demand Value	Projected 2000 Demand Value	Projected 2010 Demand Value	Projected 2020 Demand Value	Projected 2030 Demand Value	Projected 2040 Demand Value	Projected 2050 Demand Value	COMMENT
Amarillo	Amarillo	Amarillo	Potter	CANADIAN	MUN	17600	17600	010020000	A	20	14	188	1	9521	14092	14311	14803	15473	16172	17074	Projected Demands on MWP were calculated using the recipient's projected demand multiplied by the historic % contribution by the MWP to the recipient's total water use. Historic data from "munhist.xds." This represents INTERNAL DEMAND for the City of Amarillo
Amarillo	Amarillo	Amarillo	Potter	RED	MUN	17600	17600	010020000	A	20	14	188	2	7107	10519	10682	11049	11550	12071		Projected Demands on MWP were calculated using the recipient's projected demand multiplied by the historic % contribution by the MWP to the recipient's total water use. Historic data from "munhist_xis." This represents INTERNAL DEMAND for the City of Amarillo
Amarillo	ASARCO, INC.	Manufacturing	Potter	CANADIAN	MFG	17600	36100	011001188	A	1001	1001	188	1	799	706	737	737	767	767		Projected Demands on MWP were calculated using the recipient's projected demand multiplied by the historic % contribution by the MWP to the recipient's total water use. All info from recipient's survey questionnaire
Amarillo	IBP, Inc.	Manufacturing	Potter	RED	MFG	17600	422225	011001188	A	1001	1001	188	2	4068	4149	4356	4573	4801	5040	5292	Projected Demands on MWP were calculated using the recipient's projected demand multiplied by the historic % contribution by the MWP to the recipient's total water use. Used 5% increase every 10 years through period. Projected Demands on MWP were calculated using the recipient's projected
Amarillo	Amarillo	Amarillo	Randall	RED	MUN	17600	17600	010020000	A	20	14	191	2	13353	19763	21928	23822	26287	29217	32803	demand multiplied by the historic % contribution by the MVP to the recipient's total water use. Historic data from "munhist.xis." This represents INTERNAL DEMAND for the city of Amarillo based on Table 5, contract amount for 5 MGD, maximum provided - average =
Amarillo	City of Canyon	Canyon	Randall	RED	MUN	17600	133000	010145000	A	145	96	191	2	807	2323	2435	2800	2800	2800	2800	2.5 MGD (2800 ac-ft/yr) Projected Demands on MWP were calculated using the recipient's demand
Amarillo Amarillo	TPWD Owens-Corning		Randall Randall	RED	MUN MFG	17600 17600	854196 632546	010996191	A	996	757	191 191	2	31	31 300	31	31 300	31 300	31		Frigeted Demands on WWP Were calculated using the recipient's demand from 1996, multiplied by the historic % contribution by the MWP to the recipient's total water use. Historic data from "munhist.xts" estimated Owens Corning demand.
CRMWA	City of Lamesa	Lamesa	Dawson	COLORADO	MUN	10	483600	150507000	0	507	343	58	14	1591	1677	2194	2194	2194	2194	2194	Projected Demands on MWP were provided by CRMWA and represent the lesser of the recipients total water demand or CRMWA's max system capacity. Historic data from "munhist.xis"
	City of Odonnell	Odonnell	Dawson	COLORADO	MUN	10	622000	150645000	0	645	439	58	14	20	20	22	22	21	21	21	Projected Demands on MWP were provided by CRMWA and represent the lesser of the recipients total water demand or CRMWA's max system capacity. Historic data from "munhist.xls" Projected Demands on MWP were provided by CRMWA and represent the
CRMWA	City of Pampa	Pampa	Gray	CANADIAN	MUN	10	642200	010674000	A	674	452	90	1	2675	3499	3966	3941	3404	3314		lesser of the recipients total water demand or CRMWA's max system capacity. Historic data from "munhist.xls" Projected Demands on MWP were provided by CRMWA and represent the
	City of Plainview	Plainview	Hale Hockley	BRAZOS	MUN	10	684600 492400	150703000	0	518	471	95	12	2657	2735 1867	4296 2302	4296 2302	4267 2302	4074 2176		lesser of the recipients total water demand or CRMWA's max system capacity. Historic data from "munhist.xls" Projected Demands on MWP were provided by CRMWA and represent the lesser of the recipients total water demand or CRMWA's max system capacity.
CRMWA	AGRIUM	Manufacturing	HUTCHINSON	CANADIAN	MFG	10	130755	011001117	A	1001	1001	117	1	0	2000	2000	2000	2000	2000	2000	Historic data from "munhist.xls" Projected Demands on MWP were provided by CRMWA. Historical information
-	City of Borger		HUTCHINSON	CANADIAN	MUN	10	88000	010100000	A	1001	67	117		2695	700	2000	700	700	2000		not available. Projected Demands on MWP were provided by CRMWA Historic data from
	City of Lubbock WTP	Borger	Lubbock	BRAZOS	MUN	10	518000	150546000	0	546	370	152	12	2995	33771	39556	40206	41123	41123	41123	"munhist.xls" Projected Demands on MWP were provided by CRMWA and represent the lesser of the recipients total water demand or CRMWA's max system capacity. Historic data from "munhist.xls"
CRMWA	City of Slaton	Slaton	Lubbock	BRAZOS	MUN	10	801800	150835000	0	835	563	152	12	683	827	891	864	946	969	997	Projected Demands on MWP were provided by CRMWA and represent the lesser of the recipients total water demand or CRMWA's max system capacity. Historic data from "munhist.xls"
CRMWA	City of Odonnell	Odonnell	Lynn	COLORADO	MUN	10	622000	150645000	o	645	439	153	14	146	148	157	157	157	152	151	Projected Demands on MWP were provided by CRMWA and represent the lesser of the recipients total water demand or CRMWA's max system capacity. Historic data from "munhist.uls" Projected Demands on MWP were provided by CRMWA and represent the
	City of Tahoka	Tahoka	Lynn	BRAZOS	MUN	10	842000	150879000	0	879	594	153	12	325	374	480	480	480	480		lesser of the recipients total water demand or CRMWA's max system capacity. Historic data from "munhist.xls" Calculated from Table 5, Amarillo sheet, for use from CRMWA. The
CRMWA	Amarillo Amarillo	Amarillo Amarillo	Potter	CANADIAN	MUN	10	17600	010020000	A	20	14	188	2	9521	12219	11895	11635	11440	11197		distribution between county and basin assumes all other users use CRMWA water. Calculated from Table 5, Amarillo sheet, for use from CRMWA. The distribution between county and basin assumes all other users use CRMWA
CRMWA	Southwestern Public Service	Harrington Station	Potter	CANADIAN	PWR	10	816300	011002188	A	1002	1002	188	1	3507	740	905	1023	1080	1144	1208	water. Projected Demands on MWP were calculated using the recipient's projected demand from SPS report for Task 2, multiplied by the historic % contribution of purchased surface water to the recipient's total water use. Historic data from surver results and report provided by SPS.
CRMWA	Amarillo	Amarillo	Randall	RED	MUN	10	17600	010020000	A	20	14	191	2	13353	17687	18398	18942	19346	19820	20291	Calculated from Table 5, Amarillo sheet, for use from CRMWA. The distribution between county and basin assumes all other users use CRMWA water.
CRMWA	City of Brownfield	Brownfield	Terry	COLORADO	MUN	10	99200	150117000	o	117	79	223	14	1173	1311	1712	1719	1719	1719	1719	Projected Demands on MWP were provided by CRMWA and represent the lesser of the recipients total water demand or CRMWA's max system capacity. Historic data from "munhist.xls"
Greenbelt M&IWA	City of Childress	Childress	Childress	RED	MUN	20	149000	010164000	А	164	109	38	2	1365	1370	1394	1379	1392	1410	1443	Projected Demands on MWP were calculated using the recipient's projected demand multiplied by the historic % contribution by the MWP to the recipient's total water use. Historic data from "munhistus". Includes estimate of municipa sales from Childress (200 afy new demand)
Greenbelt M&IWA	Red River Authority	County-Other	Childress	RED	MUN	20	721174	10996038	A	996	757	38	2	45	45	45	45	45	45	45	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls"
Greenbelt M&IWA	Red River Authority	County-Other	Childress	RED	MUN	20	721175	10996038	А	996	757	38	2	11	11	11	11	11	11	11	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls"
Greenbelt M&IWA	Red River Authority	County-Other	Childress	RED	MUN	20	721100	10996038	A	996	757	38	2	39	39	39	39	39	39	39	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls"
Greenbelt M&IWA	Red River Authority	County-Other	Childress	RED	MUN	20	721173	10996038	A	996	757	38	2	42	42	42	42	42	42	42	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xis"
	Red River Authority	County-Other	Childress	RED	MUN	20	721176	10996038		996	757	38	2	9	9	9	9	9	9	9	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls" Projected Demande on MWP were calculated using the recipient's demand
	Red River Authority	County-Other	Childress	RED	MUN	20	/211/2	10996038	A	996		38	2	98	98	98	98	98	98	98	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xis" Projected Demands on MWP were calculated using the recipient's demand
	Red River Authority	County-Other	Collingsworth	RED	MUN	20	721185	10996044	A	996		44	2	7	7	7	7	7	7	7	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls" Projected Demands on MWP were calculated using the recipient's demand
Greenbelt M&IWA	Red River Authority	County-Other	Donley	RED	MUN	20	721177	10996065	A	996	757	65	2	27	27	27	27	27	27	27	from MWP from 1996. Historic data from "munhist.xls"

Major Water Provider Name	Name of Recipient of Water	Recipient's City Name	Recipient's County Name	Recipient's Basin Name		Major Water Provider Number (TWDB Alpha Number)	Recipient of Water from the Major Provider. User Number (TWDB Alpha Number)	Recipient's Water User Group Identifier	Recipient's Regional Water Planning Group Letter	Recipient's Sequence Number	Recipient's City Number	Recipient's County Number	Recipient's Basin Number	1996 Demand Value	Projected 2000 Demand Value	Projected 2010 Demand Value	Projected 2020 Demand Value	Projected 2030 Demand Value	Projected 2040 Demand Value	Projected 2050 Demand Value	COMMENT
Greenbelt M&IWA	City of Clarendon	Clarendon	DONLEY	RED	MUN	20	156200	010170000	А	170	112	65	2	397	503	465	433	396	365	332	Projected Demands on MWP were calculated using the recipient's projected demand multiplied by the historic % contribution by the MWP to the recipient's total water use. Historic data from "munhist.xls"
Greenbelt M&IWA	City of Hedley	Hedley	DONLEY	RED	MUN	20	378800	010996065	А	996	757	65	2	91	91	91	91	91	91	91	Projected Demands on MWP were calculated using the recipient's demand from 1996, multiplied by the historic % contribution by the MWP to the recipient's total water use. Historic data from "munhist.xis"
Greenbelt M&IWA	City of Crowell	Crowell	Foard	RED	MUN	20	195400	020217000	в	217	144	78	2	247	313	294	275	257	243	230	Projected Demands on MWP were calculated using the recipient's projected demand multiplied by the historic % contribution by the MWP to the recipient's total water use. Historic data from "munhist.xis"
Greenbelt M&IWA	Red River Authority	County-Other	Foard	RED	MUN	20	721178	20996078	в	996	757	78	2	68	68	68	68	68	68	68	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls"
Greenbelt M&IWA	City of Memphis	Memphis	Hall	RED	MUN	20	555800	010585000	А	585	394	96	2	69	71	67	62	58	56	54	Projected Demands on MWP were calculated using the recipient's projected demand multiplied by the historic % contribution by the MWP to the recipient's total water use. Historic data from "munhist.xls"
Greenbelt M&IWA	Red River Authority	County-Other	Hall	RED	MUN	20	721186	10996096	А	996	757	96	2	9	9	9	9	9	9	9	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls"
Greenbelt M&IWA	Red River Authority	County-Other	Hall	RED	MUN	20	721183	10996096	А	996	757	96	2	49	49	49	49	49	49	49	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls"
Greenbelt M&IWA	Red River Authority	County-Other	Hall	RED	MUN	20	721188	10996096	A	996	757	96	2	9	9	9	9	9	9	g	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls"
Greenbelt M&IWA	Red River Authority	County-Other	Hall	RED	MUN	20	721154	10996096	А	996	757	96	2	20	30	39	20	20	39	20	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls"
Greenbelt M&IWA	City of Chillicothe	Chillicothe	Hardeman	RED	MUN	20	149800	020165000	в	165	110	99	2	36	61	58	56	56	55		Projected Demands on MWP were calculated using the recipient's projected demand multiplied by the historic % contribution by the MWP to the recipient's total water use. Historic data from "munhist.xls"
Greenbelt M&IWA	City of Quanah	Quanah	Hardeman	RED	MUN	20	708800	020727000	в	727	488	99	2	752	614	572	532	514	502	492	Projected Demands on MWP were calculated using the recipient's projected demand multiplied by the historic % contribution by the MWP to the recipient's total water use. Historic data from "munhist.xis"
Greenbelt M&IWA	Red River Authority	Georgia-Pacific	Hardeman	RED	MFG	20	72050	021001099	в	1001	1001	99	2	327	347	374	398	424	452	480	Projected Demands on MWP were calculated using the recipient's demand from 1996, multiplied by the historic % contribution by the MWP to the recipient's total water use - assumed 100%. Historic and projected data from coordination with Region B
Greenbelt M&IWA	Red River Authority	County-Other	Hardeman	RED	MUN	20	721189	20996099	в	996	757	99	2	73	73	73	73	73	73	73	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls"
Greenbelt M&IWA	Red River Authority	County-Other	Hardeman	RED	MUN	20	721191	20996099	в	996	757	99	2	7	7	7	7	7	7	7	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls"
Greenbelt M&IWA	Red River Authority	County-Other	Hardeman	RED	MUN	20	721198	20996099	в	996	757	99	2	10	10	10	10	10	10	10	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls"
Greenbelt M&IWA	Red River Authority	County-Other	Hardeman	RED	MUN	20	721190	20996099	в	996	757	99	2	58	58	58	58	58	58		Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls"
Greenbelt M&IWA	Red River Authority	County-Other	Hardeman	RED	MUN	20	721193	20996099	в	996	757	99	2	11	11	11	11	11	11		Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls"
Greenbelt M&IWA	Red River Authority	County-Other	Hardeman	RED	MUN	20	721192	20996099	в	996	757	99	2	7	7	7	7	7	7	7	Projected Demands on MWP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.ks"
Greenbelt M&IWA	Red River Authority	County-Other	Wilbarger	RED	MUN	20	721168	20996244	в	996	757	244	2	3	3	3	3	3	3	3	Projected Demands on MVP were calculated using the recipient's demand from MWP from 1996. Historic data from "munhist.xls"

Table 4: Current Water Supply Sources

	Type of	Regional Water Planning Group	Number For		Basin Number For	Basin	Identifier for	2000 of Total	2010 of Total 2	020 of Total	Value for Year 2030 of Total	Value for Year 2040 of Total	Value for Year 2050 of Total			
Name of Specific Source DOCKUM	Water Supply 01	Where Supply Source is Located	Supply Source is Located 006	ARMSTRONG	Basin Where Supply Source is Located 02	Red Name	Specific Source 00626	Source (ac-ft/yr)	Source (ac-ft/yr)	Source (ac-ft/yr) 17	Source (ac-ft/yr)	Supply from this Source (ac-ft/yr) 17	Supply from this Source (ac-ft/yr) 17	Comment	Comment_tlh No data in Ixxx-12.txt; from Bradley 1997, 50% of storage ove 50 yrs + recharge	TS Comments r Supply added per TWDB comments. Information
local supply - stock ponds	00	A	006	ARMSTRONG	02	Red	02997	41,900	232	41,900	232	232	232		BEG Model availability	Supply added per tw DB comments information from Table 5 (TWDB print version) Vol 1, Draft Regional Water Plan, p. 3-4, paragra 1 states that groundwater availability is considered be 50% of current total storage, allocated over 50 year planning period. Appendix K, Draft Regiona Water Plan, Table 11, p. 74 lists Ogallala volume
OTHER U-DIF (Whitehorse)	01	A	006	ARMSTRONG	02	Red	00622	120	120	120	120	120	120		historical pumpage	storage i.e. Armstrong County Ogallala storage 4.01 MM ac-ft in Year 2000. 50% availability = : MM ac-ft. Per year availability over 50-year plan period: 2.005 MM ac-ft/50 years = 40,100 ac-ft/y
AMARILLO SYSTEM	02	А	033	CARSON	01	Canadian	03321	2,614	3,322	4,124	5,046	3,498	0	BEG Model availability, after accounting for Amarillo system well field BEG Model availability,	Amarillo System well field allocation (divided by basin allocation). 42,964 afy of CRMWA System supply allocated to Amarillo System. Amarillo System well field allocation	
AMARILLO SYSTEM DOCKUM	02	A	033 033	CARSON CARSON	02	Red Canadian	03321 03326	2,832	3,599	4,467	5,467	3,790	0	after accounting for Amarillo system well field	(divided by basin allocation). 42,964 afy of CRMWA System supply allocated to Amarillo System. No data in Ixxx-12.txt; from Bradley 1997, 50% of storage ove 50 yrs + recharge	r
DOCKUM local supply - stock ponds local supply - stock ponds	01 00 00	A A A	033 033 033	CARSON CARSON CARSON	02 01 02	Red Canadian Red	03326 01997 02997	12 188 243	12 188 243	12 188 243	12 188 243	12 188 243	12 188 243		No data in 1xxx-12.txt; from Bradley 1997, 50% of storage ove 50 yrs + recharge	supply added per TWDB comments. Information from Table 5 (TWDB print version) Supply added per TWDB comments. Information from Table 5 (TWDB print version)
OGALLALA	01	А	033	CARSON	01	Canadian	03321	74,304	74,304	74,304	74,304	74,304	58,824		BEG Model availability, after accounting for Amarillo system well field	Vol 1, Draft Regional Water Plan, p. 3-4, paragra I states that groundwater availability is consider be 50% of current total storage, allocated over 50 year planning period. Appendix K, Draft Region Water Plan, Table 11, p. 74 lists Ogallala volume storage. i.e. Armstrong County Ogallala storage
															weirneid	4.01 MM ac-ft in Year 2000. 50% availability = : 4.01 MM ac-ft. Per year availability over 50-year plan period: 2.005 MM ac-ft/50 years = 40,100 ac-ft/y Vol 1, Draft Regional Water Plan, p. 3-4, paragra 1 states that groundwater availability is consider
OGALLALA	01	А	033	CARSON	02	Red	03321	111,792	111,792	111,792	111,792	111,792	72,124		BEG Model availability, after accounting for Amarillo system well field	be 50% of ourrent total storage, allocated over 50 year planning period. Appendix K, Draft Regiona Water Plan, Table 11, p. 74 lists Ogallala volume storage. i.e. Armstrong County Ogallala storage 4.01 MM ac-ft in Year 2000. 50% availability = : MM ac-ft. Per year availability over 50-year plan
REUSE: BaZoCou 01-02-033 REUSE: BaZoCou 02-01-033 BAYLOR	00 00 00 00	A A A	033 033 038	CARSON CARSON CHILDRESS	01 02 02	Canadian Red Red	36005 36019 02090	4 10 0	4 10 0	3 10 0	3 10 0	3 10 0		2REUSE 1REUSE 2BUILT	Data from Ixxxx-14.txt on CD Data from Ixxxx-14.txt on CD no infrastructure and no firm yiele study available for this source	period: 2.005 MM ac-ft/50 years = 40,100 ac-ft/5 F: Leading zero added G-L: Value format changed to show "0" instead of
BLAINE local supply	01	A	038	CHILDRESS	02	Red Red	03806 02999	29,075	29,075	29,075	29,075	29,075	29,075		F&N availability estimate 4-3-00 mining usage	Basin corrected to 02 (Red) based on Draft Regic Water Plan Figure 1-1 PWPA Map Basin bounda and to correlate with Table 5 comments per TWI Supply added per TWDB comments. Information from Table 5 (TWDB print version) Supply added per TWDB comments. Information
local supply - stock ponds OTHER U-DIF (Whitehorse) REUSE: BaZoCou 02-02-038 SEYMOUR	00 01 00 01 01	A A A A	038 038 038 038	CHILDRESS CHILDRESS CHILDRESS CHILDRESS	02 02 02 02	Red Red Red Red	02997 03822 36037 03804	560 62 120 4,625	560 62 120 4,625	560 62 117 4,625	560 62 117 4,625	560 62 118 4,625	62 120 4,625	2REUSE	historical pumpage Data from Ixxxx-14.txt on CD F&N availability estimate 4/3/00	from Table 5 (TWDB print version) Basin corrected to 02 (Red) based on Draft Regit Water Plan Figure 1-1 PWPA Map Basin bounda and to correlate with Table 5 comments per TWU
BLAINE IRRIGATION LOCAL SUPPLY2 - 44 - 2 local supply - stock ponds	01	A A A	044 044 044	COLLINGSWORTH COLLINGSWORTH COLLINGSWORTH	02	Red Red Red	04406 44996 02997	48,403	48,403 41 797	48,403 41 797	48,403 41 797	48,403 41 797	48,403 41 797		F&N availability estimate 4-3-00 Data from Irls.xls on CD	Basin corrected to 02 (Red) based on Draft Regit Water Plan Figure 1-1 PWPA Map Basin bounda and to correlate with Table 5 comments per TWI F: Leading zero added Supply added per TWDB comments. Information
OTHER U-DIF (Whitehorse) SEYMOUR	01	A	044	COLLINGSWORTH COLLINGSWORTH	02	Red Red	04422	20,595	30 20,595	30 20,595	30 20,595	30 20,595	30		historical pumpage F&N availability estimate 4/3/00 Ground water availability = 10,00	and to correlate with Table 5 comments per TWI
DOCKUM local supply - stock ponds OGALLALA REUSE: BaZoCou 01-02-056	01 00 01 01 00	A A A A	056 056 056 056	DALLAM DALLAM DALLAM DALLAM	01 01 01 01 01	Canadian Canadian Canadian Canadian	05626 01997 05621 36006	200 757 389,054 431	200 757 392,932 430	200 757 393,613 421	400 757 120,998 409	0 757 0 391	0 757 0 379	2REUSE	BEG Model availability, using maximum use distribution Data from Ixxxx-14.txt on CD	exhausted at same point that Ogallala supply exhausted. Supply added per TWDB comments. Information from Table 5 (TWDB print version) Revised supply per Dutton Ogallala changes. Ma use allocation.
RITA BLANCA AQUIFER AMARILLO SYSTEM	01	A	056	DALLAM DEAF SMITH	01	Canadian	05623	5,250	5,250	5,250	5,250	5,250	5,250	Maximum use scenario, includes CRMWA contract (42,964) plus Carson, Potter, Randall	No data in Ixxx-12.txt; 5,250 fron gw-pumpage.xls 42,964 afy of CRMWA System supply allocated to Amarillo System.	Maximum use allocation for County. Supply exhausted at same point that Ogallala supply exhausted. 3.9% (basin allocation) of Amarillo System supp for Roberts County/Ogallala
Greenbelt Reservoir local supply - stock ponds	00	A	065	DONLEY	02	Red	02050	7,699	7,548	7,396	7,245	7,093	6,942	and Deaf Smith well fields.	value from MZE firm yield projections (t:\task3\res_yield_proj.xls)	F: Leading zero added Supply added per TWDB comments. Information from Table 5 (TWDB print version)
OGALLALA	01	A	065	DONLEY	02	Red	06521	39,800	39,800	39,800	39,800	39,800	39,800		BEG Model availability. Revised per November Dutton corrections	Vol 1, Draft Regional Water Plan, p. 3-4, paragr 1 states that groundwater availability is consider be 50% of current total storage, allocated over 50 year planning period. Appendix K, Draft Region Water Plan, Table 11, p. 74 lists Ogallala volum
OTHER U-DIF (Whitehorse)	01	A	065	DONLEY	02	Red	06522	71	71	71	71	71	71		max. historical pumpage	storage. i.e. Armstrong County Ogallala storage 4.01 MM ac-ft in Year 2000. 50% availability = MM ac-ft. Per year availability over 50-year pla period: 2.005 MM ac-ft/50 years = 40,100 ac-ft/ adjusted to historical maximum to match Table : yalues.
SEYMOUR local supply - stock ponds	01	A	065	DONLEY GRAY	02	Red Canadian	06504	12	396	12 396	12 396	396	396		F&N availability estimate 4/3/00	Basin corrected to 02 (Red) based on Draft Regi Water Plan Figure 1-1 PWPA Map Basin bound and to correlate with Table 5 comments per TWI Supply added per TWDB comments. Informatio from Table 5 (TWDB print version) Supply added per TWDB comments. Informatio
OCALLALA	00	A	090	GRAY	02	Red	02997	2,515	2,515	2,515	2,515	2,515	2,515		BEG Model availability, values	from Table 5 (TWDB print version) Vol 1, Draft Regional Water Plan, p. 3-4, paragr I states that groundwater availability is consider be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Region
OGALLALA	01	A	090	GRAY	01	Canadian	09021	35,248	35,248	35,248	35,248	35,248	35,248		revised (11/25) per Dutton November supply corrections	Water Plan, Table 11, p. 74 lists Ogallala volum storage. i.e. Armstrong County Ogallala storage 4.01 MM ac-ft in Year 2000. 50% availability = MM ac-ft. Per year availability over 50-year plan period: 2.005 MM ac-ft/50 years = 40,100 ac-ft/
OGALLALA	01	А	090	GRAY	02	Red	09021	185,052	185,052	185,052	185,052	185,052	185,052		BEG Model availability, values revised (11/25) per Dutton November supply corrections	Vol 1, Draft Regional Water Plan, p. 3-4, paragr 1 states that groundwater availability is consider be 50% of current total storage, allocated over 50 year planning period. Appendix K, Draft Region Water Plan, Table 11, p. 74 lists Ogallala volum storage. i.e. Armstrong County Ogallala storage 4 01 MM ac-ft in Year 2000. 50% availability e
OTHER U-DIF (Whitehorse) REUSE: BaZoCou 01-02-090 REUSE: BaZoCou 02-01-090	01 00 00	A A A	090 090 090	GRAY GRAY GRAY	02 01 02	Red Canadian Red	09022 36008 36025	0 1,683 233	0 1,672 230	0 1,654 225	0 1,423 192	0 1,383 185	0 1,346 179		historical pumpage Data from Ixxxx-14.txt on CD Data from Ixxxx-14.txt on CD	4.01 MM ac-ft in Year 2000. 50% availability = MM ac-ft. Per year availability over 50-year pla period: 2.005 MM ac-ft/50 years = 40,100 ac-ft/ G-L: Value format changed to show "0" instead "
BLAINE local supply - stock ponds	00 01 01 00 00	A	096	GRAY HALL HALL	02	Red Red Red	09606	3,063	230 3,063 375	3,063	192 3,063 375	185 3,063 375	3,063	IREUSE	Data from Ixxxx-14.txt on CD F&N availability estimate 4-3-00	Basin corrected to 02 (Red) based on Draft Regi Water Plan Figure 1-1 PWPA Map Basin bound and to correlate with Table 5 comments per TW Supply added per TWDB comments. Informatio from Table 5 (TWDB print version)
OTHER U-DIF (Whitehorse) REUSE: BaZoCou 02-02-096 SEYMOUR IRRIGATION LOCAL SUPPLY1 - 98 - 1	01 00 01 00	A A A	096 096 096 098	HALL HALL HALL HANSFORD	02 02 02 01	Red Red Red Canadian	09622 36043 09604 98996	46 7 11,612 161	46 7 11,612 161	46 6 11,612 161	46 6 11,612 161	46 6 11,612 161		2REUSE	max. historical pumpage Data from Ixxxx-14.txt on CD F&N availability estimate 4/3/00 Data from Irls.xls on CD	Basin corrected to 02 (Red) based on Draft Reg Water Plan Figure 1-1 PWPA Map Basin bound and to correlate with Table 5 comments per TW F: Leading zero added
local supply - stock ponds	00	A	098	HANSFORD	01	Canadian	01997	4,061	4,061	4,061	4,061	4,061	4,061		BEG Model availability, values	Supply added per TWDB comments. Informatic from Table 5 (TWDB print version) Vol 1, Draft Regional Water Plan, p. 3-4, parag I states that groundwater availability is conside be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Region
OGALLALA	01	A	098	HANSFORD	01	Canadian	09821	241,700	241,700	241,700	241,700	241,700	241,700		BEG Model availability, values revised (11/25) per Dutton November supply corrections	year planning period. Appendix K, Draft Region Water Plan, Table 11, p. 74 lists Ogallala volum storage. i.e. Armstrong County Ogallala storage 4.01 MM ac-ft in Year 2000. 50% availability = MM ac-ft. Per year availability over 50-year pla period: 2.005 MM ac-ft/50 years = 40,100 ac-ft F: Leading zero added
PALO DURO REUSE: BaZoCou 01-01-098 DOCKUM	00 00 01	A A A	098 098 103	HANSFORD HANSFORD HARTLEY	01 01 01	Canadian Canadian Canadian	01020 36001 10326	6,543 259 390	6,453 260 390	6,363 252 390	6,273 243 390	6,182 232 390	6,092 223 390	1BUILT 1REUSE	No supply currently available Data from Ixxxx-14.txt on CD No data in Ixxx-12.txt; from Bradley 1997, 50% of storage ove 50 yrs + recharge	F: Leading zero added G-L: Values from t:\task3\yield_projections.xls same as in Table 3-11 of Task 3 repor
local supply - stock ponds	00	A	103	HARTLEY	01	Canadian	01997	3,027	3,027	3,027	3,027	3,027	3,027			Supply added per TWDB comments. Informatic from Table 5 (TWDB print version) Vol 1, Draft Regional Water Plan, p. 3-4, paragr 1 states that groundwater availability is consider be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Regio
OGALLALA	01	A	103	HARTLEY	01	Canadian	10321	380,200	380,200	380,200	380,200	380,200	380,200	20 E1105	BEG Model availability	
REUSE: BaZoCou 01-02-103 RITA BLANCA AQUIFER local supply - stock ponds local supply - stock ponds	00 01 00 00	A A A A	103 103 106 106	HARTLEY HARTLEY HEMPHILL HEMPHILL	01 01 01 02	Canadian Canadian Canadian Red	36009 10323 01997 02997	240 0 858 594	258 0 858 594	250 0 858 594	248 0 858 594	247 0 858 594	249 0 858 594	2REUSE	Data from Ixxxx-14.txt on CD No data in Ixxx-12.txt; no pumpage shown in gw- pumpage.xls	G-L: Value format changed to show "0" instead " Supply added per TWDB comments. Informatic from Table 5 (TWDB print version) Supply added per TWDB comments. Informatic
local supply - stock ponds OGALLALA	00	A	106	HEMPHILL	02	Red	02997	115,656	115,656	594	594	115,656	594		BEG Model availability, values revised (11/25) per Dutton	from Table 5 (TWDB print version) Vol 1, Draft Regional Water Plan, p. 3-4, parage I states that groundwater availability is consider be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Region Water Plan, Table 11, p. 74 lists Ogalala volum
OGALLALA	01	А	106	HEMPHILL	01	Canadian	10621	115,656	115,656	115,656	115,656	115,656	115,656		revised (11/25) per Dutton November supply corrections	storage. i.e. Armstrong County Ogallala storage 4.01 MM ac-ft in Year 2000. 50% availability = MM ac-ft. Per year availability over 50-year pla period: 2.005 MM ac-ft/50 years = 40,100 ac-ft/ (56.75% Canadian). Vol 1, Draft Regional Water Plan, p. 3-4, paragg
OGALLALA	01	А	106	HEMPHILL	02	Red	10621	88,144	88,144	88,144	88,144	88,144	88,144		BEG Model availability, values revised (11/25) per Dutton November supply corrections	1 states that groundwater availability is consider be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Regior Water Plan, Table 11, p. 74 lists Ogallala volum storage. i.e. Armstrong County Ogallala storage 4.01 MM ac-ft in Year 2000. 50% availability =
REUSE: BaZoCou 01-02-106 REUSE: BaZoCou 02-01-106	00 00	A	106 106	HEMPHILL HEMPHILL	01 02	Canadian Red	36010 36027	125 13	126 13	121 12	116 11	110 10	107 10	2REUSE 1REUSE	Data from Ixxxx-14.txt on CD Data from Ixxxx-14.txt on CD 76,000 afy firm yield from Lake	MM ac-ft. Per year availability over 50-year pla period: 2.005 MM ac-ft/50 years = 40,100 ac-ft/ (43.25% Red)
AMARILLO SYSTEM	02	А	117	HUTCHINSON	01	Canadian	010A0	31,551	31,551	31,551	31,551	31,551	31,551	2BUILT	Meredith. 42,964 afy total allocation from CRMWA System to Amarillo System. Remaining amount from Roberts County wellfield. 76,000 afy firm yield from Lake	
CRMWA SYSTEM local supply - stock ponds	02	A	117	HUTCHINSON HUTCHINSON	01	Canadian	010A0 01997	994	44,449 994	44,449 994	44,449 994	44,449 994	44,449	2BUILT	Meredith. 42,964 afy total allocation from CRMWA System to Amarillo System. Remaining amount from Roberts County wellfield.	Supply added per TWDB comments. Informatic from Table 5 (TWDB print version)
OGALLALA	01	А	117	HUTCHINSON	01	Canadian	11721	77,000	79,000	79,000	79,000	79,000	81,000		BEG Model availability, values revised (12/11) per Dutton November supply corrections and to meet projected demands	Vol 1, Draft Regional Water Plan, p. 3-4, paragu 1 states that groundwater availability is consider be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Regior Water Plan, Table 11, p. 74 lists Ogallala volum storage. i.e. Armstrong County Ogallala storage
REUSE: BaZoCou 01-02-117 IRRIGATION LOCAL SUPPLY1 - 148 - 1 local supply - stock ponds	00 00 00	A A A	117 148 148	HUTCHINSON LIPSCOMB LIPSCOMB	01 01	Canadian Canadian Canadian	36011 148996 01997	1,376 75 1,547	1,332 75 1,547	1,270 75 1,547	1,198 75 1,547	1,112 75 1,547	1,073 75 1,547	2REUSE	Data from Ixxxx-14.txt on CD Data from Irls.xls on CD	4.01 MM ac-ft in Year 2000. 50% availability = MM ac-ft. Per year availability over 50-year pla period: 2.005 MM ac-ft/50 years = 40,100 ac-ft/ Supply added per TWDB comments. Informatic
OGALLALA	01	A	148	LIPSCOMB	01	Canadian	14821	1,347	1,347	1,347	1,347	1,347	1,347		BEG Model availability	from Table 5 (TWDB print version) Vol 1, Draft Regional Water Plan, p. 3-4, paragr 1 states that groundwater availability is consider be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Regior Water Plan, Table 11, p. 74 lists Ogallala volum
REUSE: BaZoCou 01-01-148	00	A	148	LIPSCOMB	01	Canadian	36002	34	34	33	32	31		IREUSE	Data from Ixxxx-14.txt on CD No data in Ixxx-12.txt; from	storage. i.e. Armstrong County Ogallala storage 4.01 MM ac-ft in Year 2000. 50% availability = MM ac-ft. Per year availability over 50-year pla period: 2.005 MM ac-ft/50 years = 40,100 ac-ft/
DOCKUM local supply local supply - stock ponds	01 00 00	A A A	171 171 171	MOORE MOORE MOORE	01 01 01	Canadian Canadian Canadian	17126 01999 01997	3 1,658 1,600	3 1,658 1,600	3 1,658 1,600	3 1,658 1,600	3 1,658 1,600	3 1,658 1,600		Bradley 1997, 50% of storage ove 50 yrs + recharge mining usage	Supply added per TWDB comments. Informatio from Table 5 (TWDB print version) Supply added per TWDB comments. Informatio from Table 5 (TWDB print version)
OGALLALA	01		171	MOORE	01	Canadian	17121	214,150	218,559	199,791		0	0		BEG Model availability, using maximum use distribution, values	G-L: Value format changed to show "0" instead " Vol 1, Draft Regional Water Plan, p. 3-4, paragr 1 states that groundwater availability is consider be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Regior Water Plan, Table 11, p. 74 lists Ogallala volum
UGALLALA	01	A	1/1	MOOKE	01	Canadian	1/121	214,150	218,559	199,791	0	0	0		changed per Dutton supply revisions	Water Plan, Table 11, p. /4 niss Oganata volum storage, i.e. Moore County Ogallala storage = 1 MM ac-ft in Year 2000. 50% availability = 6.18 ac-ft. Max. demands met by decade until supply shortage, then remaining supply allocated equal over next decade. No remaining supply shown f subsequent decades.
local supply - stock ponds	00	А	179	OCHILTREE	01	Canadian	01997	2,183	2,183	2,183	2,183	2,183	2,183			Supply added per TWDB comments. Informatic from Table 5 (TWDB print version) Vol 1, Draft Regional Water Plan, p. 3-4, paragr 1 states that groundwater availability is consider be 50% of current total storage, allocated over 5
OGALLALA	01	А	179	OCHILTREE	01	Canadian	17921	187,400	187,400	187,400	187,400	187,400	187,400		BEG Model availability	year planning period. Appendix K, Draft Regior Water Plan, Table 11, p. 74 lists Ogallala volum storage. i.e. Armstrong County Ogallala storage 4.01 MM ac-ft in Year 2000. 50% availability = MM ac-ft. Per year availability over 50-year pla period: 2.005 MM ac-ft/50 years = 40,100 ac-ft/
DOCKUM	01	А	180	OLDHAM	01	Canadian	18026	7,402	7,402	7,402	7,402	7,402	7,402		Data Ixxx-12.txt; 96% of aquifer in co/basin; was 9600; from Bradley 1997, 50% of storage ove 50 yrs + recharge	G-L corrected to 7,402 from 4,714
DOCKUM local supply - stock ponds	01	A	180	OLDHAM	02	Red	18026	308	308	308	308	308	308		Data Ixxx-12.txt; 4% of aquifer ir co/basin; was 400; from Bradley 1997, 50% of storage over 50 yrs recharge	recharge (see Appendix L, p. L-2 of Draft Regit Water Plan). Correct County availability should 7,710 afy (308 afy in Red basin) G-L corrected to 308 from 196 Supply added per TWDB comments. Informatic
local supply - stock ponds OGALLALA	00 01	A	180	OLDHAM OLDHAM	02	Red Canadian	02997 18021	108	108	108	108	1,855 108 9,404	108		BEG 2000 data; using maximum use distribution for entire county	from Table 5 (TWDB print version) Supply added per TWDB comments. Informatic from Table 5 (TWDB print version)
OGALLALA	01	А	180	OLDHAM	02	Red	18021	18,746	18,759	18,762	18,771	17,183	0		BEG 2000 data; using maximum use distribution for entire county	L: Value format changed to show "0" instead of Vol 1, Draft Regional Water Plan, p. 3-4, parag 1 states that groundwater availability is conside
AMARILLO SYSTEM	02	А	188	POTTER	01	Canadian	18821	3487	4443	5553	6857	6344	0		BEG Model availability (18% in Red, 82% in Canadian, allocated by aquifer area in basins). 42,964 afy of CRMWA System supply allocated to Amarillo System.	be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Region Water Plan, Table 11, p. 74 lists Ogallala volum storage. i.e. Moore County Ogallala storage = 1 MM ac-ft in Year 2000. 50% availability = 6.18 ac-ft. Max. demands met by decade until supply shortage, then remaining supply allocated equal
																over next decade. No remaining supply shown f subsequent decades. K-L: Value format changed to show "0" instead " Vol 1, Draft Regional Water Plan, p. 3-4, parag
AMARILLO SYSTEM	02	А	188	POTTER	02	Red	18821	764	977	1217	1505	1392	0		BEG Model availability (18% in Red, 82% in Canadian, allocated by aquifer area in basins). 42,964 afy of CRMWA System supply allocated to Amarillo System.	I states that groundwater availability is conside be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Region Water Plan, Table 11, p. 74 lists Ogallala volum storage. i.e. Moore County Ogallala storage = 1 MM ac-ft in Year 2000. 50% availability = 6.18
DOCKUM	01	A	188	POTTER	01	Canadian	18826	1,848	1,848	1,848	1,848	1,848	1,848		No data in 1xxx-12.txt; from Bradley 1997, 50% of storage ove 50 yrs + recharge	ac-ft. Max. demands met by decade until supply shortage, then remaining supply allocated equal over next decade. No remaining supply shown I subsequent decades.
DOCKUM IRRIGATION LOCAL SUPPLY1 - 188 - 2 IRRIGATION LOCAL SUPPLY2 - 188 - 1 local supply - stock ponds	01 00 00 00	A A A A	188 188 188 188	POTTER POTTER POTTER POTTER	02 01 02 01	Red Canadian Red Canadian	18826 188996 188996 01997	252 340 1,363 736	252 340 1,363 736	252 340 1,363 736	252 340 1,363 736	252 340 1,363 736	252 340 1,363 736		No data in Ixxx-12.txt; from Bradley 1997, 50% of storage ove 50 yrs + recharge Data from Irls.xls on CD Data from Irls.xls on CD	rl: Value corrected to 252 from 25. Supply added per TWDB comments. Informatic from Table 5 (TWDB print version)
local supply - stock ponds	00	А	188	POTTER	02	Red	02997	56	56	56	56	56	56			Supply added per TWDB comments. Informatic from Table 5 (TWDB print version) L: Value format changed to show "0" instead of Vol 1, Draft Regional Water Plan, p. 3-4, paragg 1 states that groundwater availability is consider
OGALLALA	01	А	188	POTTER	01	Canadian	18821	15,433	19,123	21,728	22,812	3,264	0		BEG Model availability, using maximum use distribution, after accounting for Amarillo system, value revised (11/25) per Dutton Ogallala supply correction.	be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Region Water Plan, Table 11, p. 74 lists Ogallala volum storage. i.e. Moore County Ogallala storage = 1 MM ac-ft in Year 2000. 50% availability = 6.18 ac-ft. Max. demands met by decade until supply shortage, then remaining supply allocated equal
																shortage, then remaining supply allocated equal over next decade. No remaining supply shown f subsequent decades. K-L: Value format changed to show "0" instead " Vol 1, Draft Regional Water Plan, p. 3-4, paraget to text the reproduction considering in consider
OGALLALA	01	А	188	POTTER	02	Red	18821	8,943	8,742	8,505	2,904	0	0		BEG Model availability, using maximum use distribution, after accounting for Amarillo system, value revised (11/25) per Dutton Ogallala supply correction.	l states that groundwater availability is consider be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Region Water Plan, Table 11, p. 74 lists Ogallala volum storage. i.e. Moore County Ogallala storage = 1 MM ac-ft in Year 2000. 50% availability = 6.18
REUSE: BaZoCou 01-02-188 REUSE: BaZoCou 02-01-188	00	A A	188 188	POTTER POTTER	01 02	Canadian Red	36014 36030	7,046	7,155 5341	7,401 5524	7,736 5775	8,086 6035	8,537 6372	1REUSE Maximum use scenario,	Data from Ixxxx-14.txt on CD Data from Ixxxx-14.txt on CD	ac-ft. Max. demands met by decade until supply shortage, then remaining supply allocated equal over next decade. No remaining supply shown f subsequent decades. Supply values corrected 10-16-00. Supply values corrected 10-16-00.
AMARILLO SYSTEM	02	A	191	RANDALL	02	Red	19121	410	524	653	807	747	0	Maximum use scenario, includes CRMWA contract (42,964) plus Carson, Potter, Randall and Deaf Smith well fields.	42,964 afy of CRMWA System supply allocated to Amarillo System. No data in Ixxx-12.txt; from Bradley 1997, 50% of storage ove	3.9% (basin allocation) of Amarillo System sup for Roberts County/Ogallala G-L: Value format changed to show "0" instead
DOCKUM DOCKUM IRRIGATION LOCAL SUPPLY2 - 191 - 1 local supply - stock ponds	01 01 00 00	A A A A	191 191 191 191	RANDALL RANDALL RANDALL RANDALL	01 02 02 01	Canadian Red Red Canadian	19126 19126 191996 01997	0 230 671 10	0 230 671 10	0 230 671 10	0 230 671 10	0 230 671 10	0 230 671 10		Bradley 1997, 50% of storage ove 50 yrs + recharge No data in Ixxx-12.txt; from Bradley 1997, 50% of storage ove 50 yrs + recharge Data from Irls.xls on CD	r r Supply added per TWDB comments. Informatic
local supply - stock ponds OGALLALA	00 01	A A	191 191	RANDALL RANDALL	02	Red Canadian	02997 19121	10 972 902	10 972 947	10 972 993	10 972 927 56 344	10 972 4 9.041	10 972 4		BEG 2000 data; using maximum use distribution BEG 2000 data; using maximum use distribution after accounting	Supply added per TWDB comments. Informatic from Table 5 (TWDB print version) Supply added per TWDB comments. Informatic from Table 5 (TWDB print version)
OGALLALA OTHER U-DIF (Santa Rosa) REUSE: BaZoCou 01-02-191 REUSE: BaZoCou 02-01-191	01 01 00 00	A A A A	191 191 191 191	RANDALL RANDALL RANDALL RANDALL	02 02 01 02	Red Red Canadian Red	19121 19122 36015 36031	57,486 57 16 9,881	57,370 40 20 10,963	56,601 <u>40</u> 23 11,911	56,344 37 26 13,144	9,041 35 30 14,609	0 35 35 16,402		use distribution, after accounting for Amarillo system Partial Happy demands Data from Ixxxx-14.txt on CD Data from Ixxxx-14.txt on CD 76,000 afy firm yield from Lake	Values adjusted by 1 afy for rounding error.
CRMWA SYSTEM	02	А	197	ROBERTS	01	Canadian	19721	24,011	24,011	24,011	24,011	24,011	24,011		Meredith plus 40,000 afy from Robert County well field project. 42,964 afy Amarillo System allocation from CRMWA System. 96.1% (basin allocation) of Amarillo System supply for Roberts County/Ogallala	
AMARILLO SYSTEM	02	А	197	ROBERTS	01	Canadian	19721	10,967	10,967	10,967	10,967	10,967	10,967		76,000 afy firm yield from Lake Meredith plus 40,000 afy from Robert County well field project. 42,964 afy Amarillo System allocation from CRMWA System. 96.1% (basin allocation) of Amarillo System supply	s
CRMWA SYSTEM	02	А	197	ROBERTS	02	Red	19721	974	974	974	974	974	974		for Roberts County/Ogallala 76,000 afy firm yield from Lake Meredith plus 40,000 afy from Robert County well field project. 42,964 afy Amarillo System allocation from CRMWA System. 3.9% (basin	s
AMARILLO SYSTEM	02	A	197	ROBERTS	02	Red	19721	446	446	446	446	446	446		CRMWA System. 3.9% (basin allocation) of Amarillo System supply for Roberts County/Ogallala 76,000 afy firm yield from Lake Meredith plus 40,000 afy from Robert County well field project. 42,964 afy Amarillo System allocation from	
local supply - stock ponds	00	А	197	ROBERTS	01	Canadian	01997	446 529	446 529	446 529	446 529 20	446 529 22	446 529 24			Supply added per TWDB comments. Informati from Table 5 (TWDB print version) Supply added per TWDB comments. Informati
local supply - stock ponds	00	А	197	ROBERTS	02	Red	02997	16	18	19	20	22	24		BEG Model availability (minus	Supply added per TWDB comments. Informatie from Table 5 (TWDB print version) Vol 1, Draft Regional Water Plan, p. 3-4, parag I states that groundwater availability is conside be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Regio
OGALLALA	01	А	197	ROBERTS	01	Canadian	19721	203,540	203,540	203,540	203,540	203,540	203,540		CRMWA 40,000 afy, minus Amarillo System afy, then 96.1%	Water Plan, Table 11, p. 74 lists Ogallala volun storage. i.e. Armstrong County Ogallala storag 4.01 MM ac-ft in Year 2000. 50% availability = MM ac-ft. Per year availability over 50-year pla period: 2.005 MM ac-ft/50 years = 40,100 ac-ft
																Allocated 3.9% of available Ogallala supply (30 afy) to Roberts / Red (11,794) G-L: Value format changed to show "0" instead " Vol 1, Draft Regional Water Plan, p. 3-4, parag I states that groundwater availability is conside
06411414				Dom		-										1 states that groundwater availability is conside be 50% of current total storage, allocated over year planning period. Appendix K, Draft Regio Water Plan, Table 11, p. 74 lists Ogallala volum storage. i.e. Armstrong County Ogallala storag 4.01 MM ac-ft in Year 2000. 50% availability = MM ac-ft. Per year availability over 50-year pl
OGALLALA	01	А	197	ROBERTS	02	Red	19721	8,260	8,260	8,260	8,260	8,260	8,260		Amarillo System afy, then 96.1%	MM ac-ft. Per year availability over 50-year pl period: 2.005 MM ac-ft/50 years = 40,100 ac-f No supply shown in Table 4 for Roberts/Canadian/Ogallala. Table 5 has ~ 5,80 supply. Red Basin has 294,000 afy excess. Cor transferring extra supply to Canadian to meet T
REUSE: BaZoCou 01-02-197	00	A	197	ROBERTS	01	Canadian	36016	25	25	23	22	20	18	2REUSE	Data from Ixxxx-14.txt on CD No data in Ixxx-12.txt; from	5 levels. Allocated 3.9% of available Ogallala supply (3 afy) to Roberts / Red (11,794)
DOCKUM IRRIGATION LOCAL SUPPLY1 - 211 - 1 local supply - stock ponds	01 00 00	A A A	211 211 211	SHERMAN SHERMAN SHERMAN	01 01 01	Canadian Canadian Canadian	21126 211996 01997	0 418 846	0 418 846	0 418 846	0 418 846	0 418 846	0 418 846		No data in Ixxx-12.txt; from Bradley 1997, 50% of storage ove 50 yrs + recharge Data from Irls.xls on CD	Supply added per TWDB comments. Informati from Table 5 (TWDB print version)
OGALLALA	01	A	211	SHERMAN	01	Canadian	21121	208,300	208,300	208,300	208,300	208,300	208,300		BEG Model availability, values revised (11/25) per Dutton November supply corrections	L: Value format changed to show "0" instead o Vol 1, Draft Regional Water Plan, p. 3-4, parag I states that groundwater availability is conside be 50% of current total storage, allocated over year planning period. Appendix K, Draft Regic Water Plan, Table 11, p. 74 lists Ogallala volur storage. i.e. Moore County Ogallala storage =
																MM ac-ft in Year 2000. 50% availability = 6.1 ac-ft. Max. demands met by decade until suppl shortage, then remaining supply allocated equa over next decade. No remaining supply shown subsequent decades.
	01	A	242	WHEELER WHEELER	02	Red Red	24206 02997	2,236	2,236	14,241 2,236	14,241 2,236	14,241 2,236	14,241 2,236		F&N availability estimate 4-3-00	and to correlate with Table 5 comments per TW Supply added per TWDB comments. Informatie from Table 5 (TWDB print version)
				1												G-L: Value format changed to show "0" instead " Vol 1, Draft Regional Water Plan, p. 3-4, parage
BLAINE local supply - stock ponds OGALLALA	01	A	242	WHEELER	02	Red	24221	98,000	98,000	98,000	98,000	98,000	98,000		BEG Model availability, values revised (11/25) per Dutton November supply corrections	l states that groundwater availability is consider be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Regior Water Plan, Table 11, p. 74 lists Ogallala volum
local supply - stock ponds	01	A	242	WHEELER	02	Red	24221	98,000	98,000	98,000	98,000	98,000	98,000		revised (11/25) per Dutton	1 states that groundwater availability is consider be 50% of current total storage, allocated over 5 year planning period. Appendix K, Draft Region

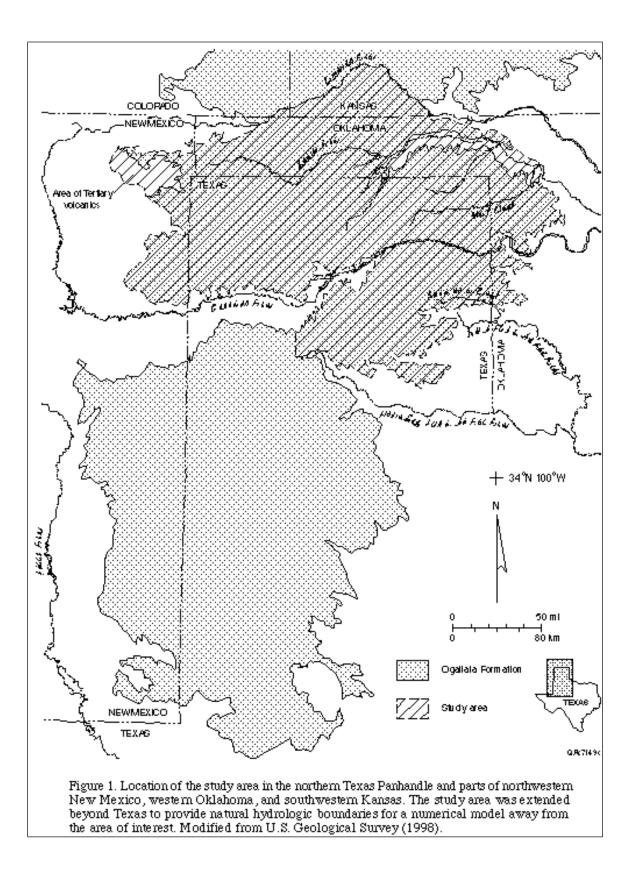
A B	в	с	DE	F	G	н і	J	К	L	м	N	0	Р	0	R	s	т						
WUGNAME WUG	JGNUM	WUG RWPG	SEQ# WUG CITY#	WUG COUNTY#	WUG BASIN#	Type of Water Supply Source	SUPPLY RWPG	SUPPLY COUNTY#	SUPPLY BASIN#	SPECIFIC SOURCE IDENTIFIER	SPECIFIC SOURCE NAME	YEAR 2000 SUPPLY	YEAR 2010 SUPPLY	YEAR 2020 SUPPLY	2030	YEAR 2040 UPPLY S	YEAR 2050 SUPPLY	Comments	Status of Supply Values	TS comments from TWDB review	MAJOR WATER PROVIDER NAME	DATA COUNTY CAT NAME	BASIN NAME
CLAUDE 01017	0173000	А	0173 0114	006	02	01	Λ	006	02	00621	OGALLALA	265	266	267	124	0	0	From PGWCD3-Cities.xls. Allocated to meet demands until supply exhausted.	Updated 3/16/00	S-T: Value format changed to show "0" instead of "-"		MUN ARMSTRONG	RED
	0996006	Α	0996 0757	006	02	01	Α	006	02	00621	OGALLALA	139	139	139	139	139	139	HISTORICAL MAXIMUM USE Ratioed among CATs w/ hist pumpage. Claude had no pumpage	Updated 5/4/00			MUN ARMSTRONG	RED
	996006	Α	0996 0757	006	02	01	Α	006	02	00622	OTHER U-DIF (Whitehorse)	2	1	1	1	1	1	in HistMunA.xls	Updated 2/14/00			MUN ARMSTRONG	RED
	1004006	Α	1004 1004	006	02	01	Α	006	02	00626	DOCKUM	16		15	15	15	15	No historical pumpage (gw_pumpage xls); All supply allocated to IRR and STK by Table 2 demand ratio. HISTORICAL MAXIMUM USE				IRR ARMSTRONG	RED
	1004006	A A	1004 1004 1004 1004	006	02	01	A	006	02	00621	OGALLALA OTHER U-DIF (Whiteborse)	16,951	16,951	16,951	16,951	16,951	10,000	HISTORICAL MAXIMUM USE HISTORICAL MAXIMUM USE	Updated 4/21/00 Updated 4/1/00	O-T: Value format changed to show "0"		IRR ARMSTRONG	RED
												U		0	0	0		No historical number (ew number vis): All supply allocated to		instead of "-"			KED
LIVESTOCK 01100	1005006	Α	1005 1005	006	02	01	Α	006	02	00626	DOCKUM	1	1	2	2	2	2	IRR and STK by Table 2 demand ratio.	Updated 2/11/00	Table 4 updated to include stock pond		STK ARMSTRONG	RED
	1005006	А	1005 1005	006	02	00	А	006	02	02997	local supply - stock ponds	232	232	232	232	232		HISTORICAL MAXIMUM USE		supply information B-G, K:Info added. M: ID corrected to 02997		STK ARMSTRONG	RED
LIVESTOCK 01100 MINING 01100	1005006	Α	1005 1005 1003 1003	006 006	02	01 01	A	006	02	00621 00621	OGALLALA OGALLALA	926 26	926	926 26	926 26	926 26	26	HISTORICAL MAXIMUM USE 125% OF HISTORICAL MAXIMUM USE	Updated 4/1/00 Updated 4/1/00			STK ARMSTRONG MIN ARMSTRONG	RED
COUNTY-OTHER 01099	0996033	Α	0996 0757	033	01	01	Α	033	01	03321	OGALLALA	114	107	95	100	93	90	used demands	Updated 3/20/00	S-T: Value format changed to show "0"		MUN CARSON	CANADIA
COUNTY-OTHER 01099	1996033	А	0996 0757	033	02	01	А	033	02	03321	OGALLALA	350	341	324	328	331	334		Updated 3/29/00	instead of ".". Table 5 submittal to TWDB shows 2030-328, 2040-331, 2050-334		MUN CARSON	RED
GROOM 01036	365000	Α	0365 0875	033	02	01	Λ	033	02	03321	OGALLALA	180	173	163	149	81	0	From PGWCD3-Cities.xls. Allocated to meet demands until supply exhausted.	Updated 3/29/00	T: Value format changed to show "0" instead of "-"		MUN CARSON	RED
IRRIGATION 01100	1004033	А	1004 1004	033	02	01	Λ	033	02	03326	DOCKUM	0	0	0	0	0	0	HISTORICAL MAXIMUM USE	Updated 4/1/00	O-T: Value format changed to show "0" instead of "-"		IRR CARSON	RED
IRRIGATION 01100			1004 1004	033	01	01	Α	033	01	03321	OGALLALA	46,832		46,832	46,832	46,832		HISTORICAL MAXIMUM USE	Updated 4/21/00	S-T: Value format changed to show "0"		IRR CARSON	CANADIA
IRRIGATION 01100	1004033	Α	1004 1004 1004 1004	033	02	01	Α	033	02	03321 36005	OGALLALA	63,244	63,244	63,244	63,244	63,244		Maximum use scenario - from storage	Updated 5/5/00	S-1: Value format changed to show '0' instead of "-"		IRR CARSON	RED
IRRIGATION 01100 IRRIGATION 01100	1004033	A	1004 1004 1004 1004	033	01	00	A	033	01	36005	REUSE: BaZoCou 01-02-033 REUSE: BaZoCou 02-01-033	4	4	3	3	10		All reuse assumed to IRR unless otherwise specified. All reuse assumed to IRR unless otherwise specified.	Get w/ TLS re: reuse allocations Get w/ TLS re: reuse allocations	Source identifier corrected from 36005		IRR CARSON IRR CARSON	RED
	1005033	A	1005 1005	033	02	01	A	033	02	03326	DOCKUM	0	0	0	0	0		HISTORICAL MAXIMUM USE	Updated 4/1/00	to 36019 O-T: Value format changed to show "0" instead of ""		STK CARSON	RED
LIVESTOCK 01100	1005033	А	1005 1005	033	01	00	А	033	01	01997	local supply - stock ponds	188	188	188	188	188	188	HISTORICAL MAXIMUM USE		Table 4 updated to include stock pond supply information B-G, K:Info added. M: ID added.		STK CARSON	CANADIA
LIVESTOCK 01100	1005033	А	1005 1005	033	02	00	٨	033	02	02997	local supply - stock ponds	243	243	243	243	243	243	HISTORICAL MAXIMUM USE		Table 4 updated to include stock pond supply information B-G, K:Info added. M: ID corrected, was 02999.		STK CARSON	RED
LIVESTOCK 01100	1005033	А	1005 1005	033	01	01	А	033	01	03321	OGALLALA	753	753	753	753	753	753	HISTORICAL MAXIMUM USE	Updated 4/1/00			STK CARSON	CANADIA
LIVESTOCK 01100	1005033	А	1005 1005	033	02	01	Α	033	02	03321	OGALLALA	362	407	447	485	526	571	Maximum use scenario - from storage	Updated 3/29/00	S-T: Value format changed to show "0" instead of "-"		STK CARSON	RED
MANUFACTURING 01100	1001033	А	1001 1001	033	02	01	Α	033	02	03321	OGALLALA	825	987	1,168	1,368	1,586		Maximum use scenario - from storage	Updated 3/29/00	S-T: Value format changed to show "0" instead of "-"		MFG CARSON	RED
MINING 01100	1003033	Α	1003 1003	033	01	01	Λ	033	01	03321	OGALLALA	1,456		1,165	1,165	1,165		HISTORICAL MAXIMUM USE, increased for 2000 to 125%	Updated 4/1/00	S-T: Value format changed to show "0"		MIN CARSON	CANADIA
MINING 01100	1003033	Α	1003 1003	033	02	01	Α	033	02	03321	OGALLALA	727		726	739	757	778	Maximum use scenario - from storage	Updated 3/29/00	instead of "-"		MIN CARSON	RED
PANHANDLE 01067	675000	Α	0675 0453	033	02	01	Α	033	02	03321	OGALLALA	589	844	879	902	175	0	From PGWCD3-Cities.xls. Allocated to meet demands until supply exhausted.	Updated 3/29/00	T: Value format changed to show "0" instead of "-"		MUN CARSON	RED
SKELLYTOWN 01083	0834000	А	0834 0960	033	01	01	Α	033	01	03321	OGALLALA	88	83	32	0	0	0	From PGWCD3-Cities.xls. Allocated to meet demands until supply exhausted.	Updated 3/20/00	R-T: Value format changed to show "0" instead of "-"		MUN CARSON	CANADIA
WHITE DEER 01096	962000	Α	0962 0647	033	01	01	Α	033	01	03321	OGALLALA	253	261	257	261	217	0	From PGWCD3-Cities.xls. Allocated to meet demands until supply exhausted.	Updated 3/20/00	T: Value format changed to show "0" instead of "-"		MUN CARSON	CANADIA
WHITE DEER 01096	962000	А	0962 0647	033	02	01	А	033	02	03321	OGALLALA	13	14	14	14	11	0	From PGWCD3-Cities.xls. Allocated to meet demands until supply exhausted.		J: RWPG A listed for supply. O-T: Values in this table are different than TWDB submittal B-M: Info added.		MUN CARSON	RED
CHILDRESS 1010	0164000	А	0164 0109	038	02	00	А	065	02	02090	Baylor	0	0	0	0	0	0	Baylor lake, 397 affy water rights are to City of Childress. No infrastructure. No firm yield study available.	36,570	D-M. HING BARA.		MUN CHILDRESS	RED
CHILDRESS 01016	0164000	А	0164 0109	038	02	00	Λ	065	02	02050	Greenbelt Reservoir	1,170	1,194	1,179	1,192	1,210	1,243	Greenbelt Supply = Demand from Table 2	Updated 3/20/00		Greenbelt	MUN CHILDRESS	RED
CHILDRESS 01016	0164000	Α	0164 0109	038	02	01	Α	038	02	03804	SEYMOUR	0	0	0	0	0	0	Recent historical use = 0	Updated 2/14/00	H: Corrected to 01 for ground water source.		MUN CHILDRESS	RED
COUNTY-OTHER 01099	1996038	А	0996 0757	038	02	00	А	065	02	02050	Greenbelt Reservoir	400	400	400	400	400	400	Sales from Childress and Red River Authority	Updated 4/1/00	B-G: Info added. J: RWPG A listed for supply. K-L: Info from SFK sheet M: Leading zero added	Greenbelt	MUN CHILDRESS	RED
	1996038	A	0996 0757	038	02	01	A	038	02	03804	SEYMOUR	150	150	150	150	150		HISTORICAL USE	Updated 2/14/00 Updated 2/11/00			MUN CHILDRESS	RED
IRRIGATION 01100 IRRIGATION 01100	1004038	A	1004 1004 1004 1004	038 038	02	01 01	A	038 038	02	03806 03822	OTHER U-DIF (Whitehorse)	5,182		5,104	5,092	5,080 62	5,066	Blaine supply to IRR and STK IRR is only CAT w/ hist pumpage (gw_pumpage.xls)	Updated 2/11/00			IRR CHILDRESS IRR CHILDRESS	RED
	1004038	A	1004 1004	038	02	00	٨	038	02	36037	REUSE: BaZoCou 02-02-038	120	120	117	117	118		All reuse assumed to IRR unless otherwise specified.	Get w/ TLS re: reuse allocations	M: Had no value. Was 999 in TWDB submittal. Corrected per TWDB comment.		IRR CHILDRESS	RED
	1004038	A	1004 1004	038	02	01	A A	038	02	03804	SEYMOUR BLAINE	52	52	52	52	52	52		Updated 4/1/00 Update 8/25/00	B-H: Info added. J: RWPG A listed for supply.		IRR CHILDRESS STK CHILDRESS	RED
			1005 1005									0	0	0	0	0	0	no historical usage	Update 8/25/00	J: RWPG A listed for supply. K: County #38 added. Table 4 updated to include stock pond supply information			RED
	1005038	Α	1005 1005	038	02	00	Α	038	02	02997	local supply - stock ponds	560	560	560	560	560		HISTORICAL MAXIMUM USE		B-G, K:Info added. M: ID added.		STK CHILDRESS	RED
LIVESTOCK 01100	1005038	A	1005 1005 1003 1003	038	02	01	A	038	02	03804	SEYMOUR	49	49	49	49	49		HISTORICAL USE	Updated 2/14/00	This row inserted to match SFK sheet.		STK CHILDRESS MIN CHILDRESS	RED
	1003038	Α		038	02	01	Α	038	02	02999	LOCAL SUPPLY	21		21	21			HISTORICAL MAX USE No historical nummana (historical nummana vlc): Damand		Now matches TWDB version.			RED
MINING 01100 COUNTY-OTHER 01099	1003038	A	1003 1003 0996 0757	038 044	02	01	A	038	02	03804 04406	SEYMOUR BLAINE	20		20	21	22	22	No historical pumpage (historical gw_pumpage xls); Demand shown in Table 2 HISTORICAL MAXIMUM USE	Updated 2/14/00 Updated 4/1/00			MIN CHILDRESS MUN COLLINGSWORTH	RED
	7770044	Α							02			03	03	03	65	03	0	Historical MUN pumpage (gw_pumpage.xls) Ratioed among CATs w/ hist pumpage. HistMunA.xls shows no Wellington	Updated 10-18-00. Matches				n KED
	1996044	Α	0996 0757	044	02	01	Α	044	02	04422	OTHER U-DIF (Whitehorse)	6	6	6	6	6	6	pumpage from this aquifer	Table 4 Supply.			MUN COLLINGSWORTH	H RED
COUNTY-OTHER 01099 IRRIGATION 01100	0996044 1004044	A	0996 0757 1004 1004	044 044	02 02	01 01	A	044 044	02	04404 04406	SEYMOUR BLAINE	182 6,566	182 6,556	182 6,532	182 6,525	182 6,517	182 6,507	HISTORICAL MAXIMUM USE Ratioed among CATs w/ hist pumpage.	Updated 2/14/00 Updated 2/11/00			MUN COLLINGSWORTH IRR COLLINGSWORTH	H RED H RED
	1004044	А	1004 1004	044	02	00	Α	044	02	44996	IRRIGATION LOCAL SUPPLY2 - 44 - 2	40	40	39	39	39	39	All irrigation supply to IRR and STK unless otherwise specified. Ratioed by Table 4 demand	Updated 2/14/00			IRR COLLINGSWORTH	
IRRIGATION 01100 LIVESTOCK 01100	1004044 1005044		1004 1004 1005 1005	044 044	02	01 01	A	044 044	02	04404 04406	SEYMOUR BLAINE	19,730	19,753	19,769 36	19,779	19,790 36	36	REMAINDER OF AVAILABLE SUPPLY HISTORICAL MAXIMUM USE	Updated 2/14/00 Updated 2/11/00			IRR COLLINGSWORTH STK COLLINGSWORTH	
LIVESTOCK 01100	1005044	Α	1005 1005	044	02	00	Α	044	02	44996	IRRIGATION LOCAL SUPPLY2 - 44 - 2	1	1	2	2	2	2	All irrigation supply to IRR and STK unless otherwise specified. Ratioed by Table 4 demand.	Updated 2/14/00			STK COLLINGSWORTH	H RED
LIVESTOCK 01100	1005044	А	1005 1005	044	02	00	А	044	02	02997	local supply - stock ponds	797	797	797	797	797	797	HISTORICAL MAXIMUM USE		Table 4 updated to include stock pond supply information B-G, K:Info added. M: ID added.		STK COLLINGSWORTH	H RED
	1005044	А	1005 1005	044	02	01	А	044	02	04422	OTHER U-DIF (Whitehorse)	24	24	24	24	24	24	HISTORICAL USE	Updated 10-18-00. Matches			STK COLLINGSWORTH	H RED
LIVESTOCK 01100			1005 1005	044	02	01	A	044	02	04404	SEYMOUR	26	26	26	26	26	26	HISTORICAL MAXIMUM USE	Table 4 Supply. Updated 2/14/00			STK COLLINGSWORTH	
	1005044	А					1										200	Ratioed among CATs w/ hist pumpage. HistMunA.xls shows	Undated 2/14/00	1	1	MUN COLLINGSWORTH	H RED
LIVESTOCK 01100	1005044 1947000	A	0947 0637	044	02	01	Α	044	02	04404	SEYMOUR	657	634	618	608	597	288	historical pumpage from this aquifer for Wellington	opuneu 2/14/00				II KLD
LIVESTOCK 01100 WELLINGTON 01094	1005044 0947000 0996056	A		044 056	02	01	А А	044 056	02	04404 05621	SEYMOUR OGALLALA	657		618 176	608 174	597	0	Ratioed among CATs w/ hist pumpage. HistMunA.xls shows historical pumpage from this aquifer for Wellington Maximum use scenario - from storage, revised per Dutton Ogallala supply correction	Update 11/24/00	O-T: Value format changed to show "0" instead of "-"		MUN DALLAM	CANADIA
IVESTOCK 01100 WELLINGTON 01094 COUNTY-OTHER 01099			0947 0637											618 176 0		597 0 173	0	historical pumpage from this aquifer for Wellington Maximum use scenario - from storage, revised per Dutton Ogallada supply correction Supply provided by the city of Dalhart		O-T: Value format changed to show "0" instead of "." O-T: Value format changed to show "0" instead of "."			

DALHART	010226000		0226 0150	056				056	01	05621	OGALLALA	1.145	1.142		1.087		Maximum use scenario - from storage, revised per Dutton	Undate 11/24/00	O-T: Value format changed to show "0"		DALLAM	CANADIAN
DALHART	010226000	A	0226 0150	056	01	01	A	103	01	10321		1,145	1,142	1,118	1,087	1.037	0 Maximum use scenario - from storage, revised per Dutton Ogallala supply correction 1,002 Additional supply from Hartley when Dallam Ogallala supply submitted	Update 11/24/00 Undate 11/24/00	instead of "-" O-T: Value format changed to show "0"	. MU		CANADIAN
											OGALLALA	0	0	0	0	1,037	1,002 exhausted. All supply allocated to IRR. Future usage moved up to 2020 who		instead of "-"			
IRRIGATION	011004056	Α	1004 1004	056	01	01	Α	056	01	05626	DOCKUM	200	200	200	400	0		en Updated 2/11/00		IRR		CANADIAN
	011004056	Α	1004 1004	056	01	01	Α	056	01	05621	OGALLALA	380,620	380,670	380,701	106,554	0	0 Maximum use scenario - from storage, revised per Dutton 0 0gallala supply correction	Update 11/24/00	R-T: Value format changed to show "0" instead of "-"	IRR		CANADIAN
IRRIGATION IRRIGATION	011004056 011004056	A	1004 1004 1004 1004	056	01 01	00 01	A	056	01 01	36006 05623	REUSE: BaZoCou 01-02-056 RITA BLANCA AQUIFER	431 5,152	430 5,103	421 5,081	409 5,064	391 5,041	5.061 379 All reuse assumed to IRR unless otherwise specified.	Get w/ TLS re: reuse allocations Updated 2/14/00		IRR		CANADIAN
LIVESTOCK	011005056	А	1005 1005	056	01	01	Α	056	01	05626	DOCKUM	0	0	0	0	0	No historical pumpage (gw_pumpage.xls); All supply allocated IRR and STK by Table 2 demand ratio.	to Updated 2/11/00	O-T: Value format changed to show "0" instead of "-"	STK	DALLAM	CANADIAN
LIVESTOCK	011005056	А	1005 1005	056	01	00	А	056	01	01997	local supply - stock ponds	757	757	757	757	757	757 HISTORICAL MAXIMUM USE		Table 4 updated to include stock pond supply information B-G, K:Info added. M: ID added.	STK	DALLAM	CANADIAN
LIVESTOCK	011005056	Α	1005 1005	056	01	01	Δ	056	01	05621	OGALLALA	6,125	9,889	11,386	12,951	0	Maximum use scenario - from storage, revised per Dutton	Update 11/24/00	M: ID added.	STK	DALLAM	CANADIAN
LIVESTOCK	011005056		1005 1005		01	01	A	056	01	05623	RITA BLANCA AQUIFER	91	91	91	91	91	Ogallala supply correction 91	Updated 2/14/00			DALLAM	CANADIA
	011001056	Α	1001 1001	056	01	01	Α	056	01	05621	OGALLALA	232	232	232	232	0	0 Maximum use scenario - from storage, revised per Dutton Ogallala supply correction	Update 11/24/00	R-T: Value format changed to show "0" instead of "-"		DALLAM	CANADIAN
	011001056		1001 1001	056	01	01	Α	056	01	05623	RITA BLANCA AQUIFER	3	3	3	3	365	3 seeTLS	Updated 4/1/00		MFC Groenhelt MUR	DALLAM	CANADIAN
CLARENDON COUNTY-OTHER	010170000	A	0170 0112 0996 0757	065	02	00	A A	065	02	02050 02050	Greenbelt Reservoir Greenbelt Reservoir	503	465	433	396	365	332 Greenbelt Supply = Demand from Table 2 91 City of Henley	Updated 3/20/00 Updated 3/20/00	M: Leading zero added L: 2 added per SFK sheet.	Greenbelt MU? Greenbelt MU?		RED
COUNTY-OTHER	010996065		0996 0757	065	02	01	A	065	02	06521	OGALLALA	143	143	143	143	143	143 HISTORICAL MAX	Updated 4/1/00	M: Leading zero added	MU		RED
IRRIGATION	011004065	Α	1004 1004	065	02	01	Α	065	02	06521	OGALLALA	17,516	17,516	17,516	17,516	17,516	17,516 HISTORICAL MAX	Updated 4/1/00	O-T: Value format changed to show "0"		DONLEY	RED
IRRIGATION	011004065	Α	1004 1004	065	02	01	Α	065	02	06522	OTHER U-DIF (Whitehorse)	0	0	0	0	0	0 HISTORICAL MAX	Updated 4/1/00	instead of "-"	IRR	DONLEY	RED
LIVESTOCK	011005065	A	1005 1005 1005 1005	065	02	00	A	065	02	02997	local supply - stock ponds	1,540	1,540	1,540	1,540	1,540	1,540 100 HISTORICAL MAX	Updated 3/20/00 Updated 4/1/00	Table 4 updated to include stock pond supply information M: ID corrected, was 65999.	STK	DONLEY	RED
	011005065	A	1005 1005	065	02	01	A	065	02	06522	OTHER U-DIF (Whitehorse)	71	71	71	71	71	71 HISTORICAL MAX	Updated 4/1/00		STK	DONLEY	RED
MINING	011003065	Α	1003 1003	065	02	01	Α	065	02	06521	OGALLALA	28	28	28	28	31	125% HISTORICAL MAX, increased slightly to meet demands starting in 2040	Updated 4/1/00		MIN	DONLEY	RED
COUNTY-OTHER	010996090	А	0996 0757	090	01	01	Α	090	01	09021	OGALLALA	632	602	575	481	444	419 Ratioed among CATs w/ hist pumpage. (Pampa supply subtract from total supply before ratioing.)	ed Updated 3/20/00	K: Added County # 90.	MU	GRAY	CANADIAN
COUNTY-OTHER	010996090		0996 0757		02	01 01	A	090	02	09021 09021 09021	OGALLALA	521	521	521	521	521	521 HISTORICAL MAX	Updated 4/1/00	V. Added County # 00		GRAY	RED
IRRIGATION IRRIGATION	011004090 011004090	A	1004 1004 1004 1004	090	01	01 01	A	090	01 02	09021	OGALLALA OGALLALA	6,976 24,731	6,976 24,731	6,976 24,731		6,976 24,731	6,976 HISTORICAL MAX 24,731 HISTORICAL MAX	Updated 4/1/00 Updated 4/1/00	K: Added County # 90.	IRR	GRAY	CANADIAN RED
IRRIGATION	011004090 011004090	A	1004 1004 1004 1004	090	01 02	00	A A	090	01 02	36008 36025	REUSE: BaZoCou 01-02-090 REUSE: BaZoCou 02-01-090	1,683	1,672	1,654	1,423 192	1,383	1,346 All reuse assumed to IRR unless otherwise specified. 179 All reuse assumed to IRR unless otherwise specified.	Get w/ TLS re: reuse allocations Get w/ TLS re: reuse allocations	M: Source ID added for Gray/Red		GRAY GRAY	CANADIAN RED
	010515000		0515 0898	090	02	01	Α	090	02	09021	OGALLALA	120	88	0	0	0	179 All reuse assumed to IRR unless otherwise specified. From PGWCD3-Cities.xls. Allocated to meet demands until supply exhausted.	Updated 3/20/00	Q-T: Value format changed to show "0" instead of "-"		GRAY	RED
LIVESTOCK	011005090	А	1005 1005	090	01	00	٨	090	01	01997	local supply - stock ponds	396	396	396	396	396	396 HISTORICAL MAXIMUM USE		Table 4 updated to include stock pond supply information B-G, K:Info added. M: ID added.	STK	GRAY	CANADIAN
LIVESTOCK	011005090	А	1005 1005	090	02	00	А	090	02	02997	local supply - stock ponds	2,515	2,515	2,515	2,515	2,515	2,515 HISTORICAL MAXIMUM USE		Table 4 updated to include stock pond supply information B-G, K:Info added. M: ID added.	STK	GRAY	RED
LIVESTOCK	011005090		1005 1005	090	01	01	A	090	01	09021	OGALLALA	44	44	44	44	78	122 HISTORICAL MAX, increased to meet demands	Updated 4/1/00	K: Added County # 90.		GRAY	CANADIAN
LIVESTOCK MANUFACTURING	011005090	A	1005 1005 1001 1001	090	02	01	A A	090	02	09021 09021	OGALLALA OGALLALA	239 3,947	239 4,225	239 4,332	4,407	495 4,692	775 HISTORICAL MAX, increased to meet demands used demands, increased historical use to meet demands to 125%	Updated 4/1/00 6 Updated 4/1/00	K: Added County # 90.	MFG	GRAY GRAY	RED CANADIAN
MCLEAN	010578000	A		090						09021	OGALLALA	266	266	4,002	4,407	4,072	From PGWCD3-Cities xls. Allocated to meet demands until supply exhausted.	Undated 3/20/00	R-T: Value format changed to show "0" instead of "-"	MIR		
	010578000		0578 0380 1003 1003	090	02	01	A	090	02	09021	OGALLALA	200	200	19	125	135	supply exhausted. 135 HISTORICAL MAX	Updated 4/1/00	instead of "-" K: Added County # 90.	mo	GRAY	RED
MINING	011003090	Α	1003 1003	090	02	01	A	090	02	09021	OGALLALA	1,655	1,324	1,324	1,324	1,324	1,324 125% HISTORICAL MAX for year 2000	Undated 4/1/00		MIN	GRAY	RED
PAMPA	010674000	Α	0674 0452	090	01	02 10	Α	117	01	010A0	CRMWA SYSTEM	2,292	2,598	2,582	2,230	2,171	2,114 From CRMWA Information system max capacity by City (CRMA information for Table3.xls)	36,57	M: Added 010A0 for CRMWA System per TWDB comment.	CRMWA MU?	GRAY	CANADIAN
PAMPA	010674000	Α	0674 0452	090	01	02 10	А	191	01	19721	CRMWA SYSTEM	1,159	1,314	1,306	1,128	1,098	1,069 From CRMWA Information system max capacity by City (CRMA information for Table3.xls)			CRMWA MU?	GRAY	CANADIAN
PAMPA	010674000	Α	0674 0452	090	01	02 10	А	191	02	19721	CRMWA SYSTEM	47	53	53	46	45	43 From CRMWA Information system max capacity by City (CRMA information for Table3.xls)			CRMWA MU?	GRAY	CANADIAN
PAMPA	010674000	А	0674 0452	090	01	01	Α	090	01	09021	OGALLALA	736	736	736	736	736	736 Based on City survey (citysurveryresponse.xls).	Updated 3/20/00	K: Added County # 90.	MU?	GRAY	CANADIAN
COUNTY-OTHER	010996096	A	0996 0757	096	02	00	A.	065	02	02050	Greenbelt Reservoir SEYMOUR	120	120	120	120	120	120 sales from Red River Authority 176 Ratioed among CATs w/ hist pumpage. (gw_pumpage.xls)	Updated 4/1/00 Updated 2/14/00	M: Leading zero added K: Value corrected to 65 from 96 L: Basin corrected to 2 (Red)	Greenbelt MU?	HALL	RED
IRRIGATION	011004096		1004 1004	096	02	01	A	096	02	09606	BLAINE	0	0	0	0	0	0 HISTORICAL MAX	Updated 4/1/00	O-T: Value format changed to show "0" instead of "."		HALL	RED
IRRIGATION	011004096	А	1004 1004		02	00	А	096	02	36043	REUSE: BaZoCou 02-02-096	7	7	6	6	6	5 All reuse assumed to IRR unless otherwise specified.	Get w/ TLS re: reuse allocations	M: Added Source ID, was 999	IRR	HALL	RED
	011004096		1004 1004 1005 1005	096	02	01	Α	096	02	09604	SEYMOUR	10,797	10,807	10,820	10,829	10,830	10,825 Ratioed among CATs w/ hist pumpage. (gw_pumpage.xls)	Updated 2/14/00	O-T: Value format changed to show "0"		HALL	RED
LIVESTOCK	011005096	A	1005 1005 1005 1005	096	02	01	л л	096	02	09606	BLAINE local supply - stock ponds	375	375	375	375	375	0 HISTORICAL MAX 375	Updated 4/1/00	instead of "-" Table 4 updated to include stock pond supply information	STK	HALL	RED
LIVESTOCK	011005096	Δ	1005 1005	096	02	01	Δ	096	02	09622	OTHER U-DIF (Whiteborse)	1.	10	10	10	10	18 HISTORICAL usage	Updated 10-18-00. Matches	M: ID corrected, was 02999.	STK	HALL	RED
	011005096		1005 1005	096	02	01	A	096	02	09622	SEYMOUR	21	21	21	21	21	21 HISTORICAL MAX	Table 4 Supply. Updated 4/1/00			HALL	RED
MEMPHIS	010585000		0585 0394	096	02	00	Α	065	02	02050	Greenbelt Reservoir	71	67	62	58	56	54 Greenbelt Supply = Demand from Table 2	Updated 4/25/00			HALL	RED
MEMPHIS	010585000	Α	0585 0394	096	02	01	Α	065	02	06521	OGALLALA	405	405	405	405	405	405 supply shown in Hall. Supply available from Seymour aquifer.	Updated 4/25/00			HALL	RED
MINING	011003096	А	1003 1003	096	02	01	Α	096	02	09622	OTHER U-DIF (Whitehorse)	28	28	28	28	28	28 125% historical max uage	Updated 10-18-00. Matches Table 4 Supply.		MIN		RED
	010915000 010996098		0915 0979 0996 0757	096 098	02	01	A	096 098	02 01	09604 09821	SEYMOUR OGALLALA	128	128 265	128 265	128 265	128	128 HISTORICAL MAX 265 HISTORICAL MAXIMUM USE	Updated 4/1/00 Updated 2/11/00		MU? MU?	HALL HANSFOR	RED D CANADIAN
COUNTY-OTHER	010996098	А	0996 0757	098	01	00	А	098	01	01020	PALO DURO	0	0	0	0	0	0 Waiting for info from PDRA	Updated 2/14/00	H: Corrected to 00 for surface water M: Source ID with leading zero added. O-T: Value format changed to show "0" instead of "."	, MU?	HANSFOR	D CANADIAN
GRUVER	010368000	А	0368 0256	098	01	01	Α	098	01	09821	OGALLALA	377	86	0	0	0	From City survery response (citysurveyresponse.xls). 50% of water rights developed in 2000	Updated7/21/00	mounded the -	MU?	HANSFOR	D CANADIAN
GRUVER	010368000	Α	0368 0256	098	01	00		098	01	01020	PALO DURO	0	0	0	0	0	0 Waiting for info from PDRA	Undated 2/14/00	H: Corrected to 00 for surface water M: Source ID with leading zero added.	MU		
	011004098	Δ.	1004 1004	098	01	00	A.	098	01	98996	IRRIGATION LOCAL SUPPLY1 - 98 - 1	154	150	149	147	146	144 All irrigation supply to IRR and STK unless otherwise specified		O-T: Value format changed to show "0" instead of "-"	IRR		
IRRIGATION			1004 1004		01	01	A	098	01	09821	OGALLALA				231,994		229,190 Remaining supply after other users supplies allocated.	Updated 11/25/00			HANSFOR	
	011004098	A			01	00	А	098	01	01020	PALO DURO	0	0	0	0	0	0 Waiting for info from PDRA 223 All reuse assumed to IRR unless otherwise specified.	Updated 2/14/00	H: Corrected to 00 for surface water M: Source ID with leading zero added. O-T: Value format changed to show "0" instead of "."	, IRR		
IRRIGATION	011004098	А	1004 1004	098		00		000		2(00)	DELICE D 7 C 01 01 000	200	27-	A***								
IRRIGATION IRRIGATION IRRIGATION		А	1004 1004 1004 1004 1005 1005		01 01 01	00	A	098 098	01	36001 98996	REUSE: BaZoCou 01-01-098 IRRIGATION LOCAL SUPPLY1 - 98 - 1	259 7	260 11	252	243	232	225 All reuse assumed to IRR unless otherwise specified. 17 All irrigation supply to IRR and STK unless otherwise specified	Get w/ TLS re: reuse allocations Updated 2/14/00		IRR	HANSFOR	
IRRIGATION IRRIGATION IRRIGATION LIVESTOCK	011004098 011004098 011005098	A A A	1004 1004 1005 1005	098 098	01	00	A	098	01	98996	IRRIGATION LOCAL SUPPLY1 - 98 - 1	259	11		14	15	17 All irrigation supply to IRR and STK unless otherwise specified		Table 4 updated to include stock pond	STK	HANSFOR	D CANADIA
IRRIGATION IRRIGATION IRRIGATION LIVESTOCK	011004098	A	1004 1004	098	01							259 7 4,061	260 11 4,061	252 12 4,061					Table 4 updated to include stock pond supply information B-G, K:Info added.		HANSFOR	D CANADIA
IRRIGATION IRRIGATION IRRIGATION LIVESTOCK LIVESTOCK	011004098 011004098 011005098	А А А	1004 1004 1005 1005	098 098	01	00	A	098	01	98996	IRRIGATION LOCAL SUPPLY1 - 98 - 1	259 7 4,061 2,707	11		14	15	17 All irrigation supply to IRR and STK unless otherwise specified		Table 4 updated to include stock pond supply information B-G, K.Info added. M: ID added.	STK	HANSFOR	D CANADIAN D CANADIAN
IRRIGATION IRRIGATION IRRIGATION LIVESTOCK LIVESTOCK	011004098 011004098 011005098 011005098 011005098	A A A A	1004 1004 1005 1005 1005 1005 1005 1005	098 098 098 098	01 01 01 01 01	00 00 01	A A A	098 098 098	01 01 01	98996 01997 09821	IRRIGATION LOCAL SUPPLY1 - 98 - 1 local supply - stock ponds OGALLALA		4,061	4,061	14	4,061	17 All irrigation supply to IRR and STK unless otherwise specified 4,061 HISTORICAL MAXIMUM USE 10,037 [25% HISTORICAL MAX, increased to meet demands	Updated 2/14/00 Updated 5/4/00	Table 4 updated to include stock pond supply information B-G, K-Info added. M: ID added. H: Corrected to 00 for surface water M: Source ID with leading zero added.	STK STK	HANSFOR HANSFOR	D CANADIAN D CANADIAN D CANADIAN
RIGATION RIGATION RIGATION VESTOCK VESTOCK	011004098 011004098 011005098 011005098	А А А	1004 1004 1005 1005 1005 1005	098 098 098	01	00	A	098 098	01	98996 01997	IRRIGATION LOCAL SUPPLY1 - 98 - 1 local supply - stock ponds		4,061	4,061	14	4,061	17 All irrigation supply to IRR and STK unless otherwise specified 4,061 HISTORICAL MAXIMUM USE	Updated 2/14/00	Table 4 updated to include stock pond supply information B-G, K-info added. M: ID added. H: Corrected to 00 for surface water	STK	HANSFOR HANSFOR	D CANADIA D CANADIA D CANADIA

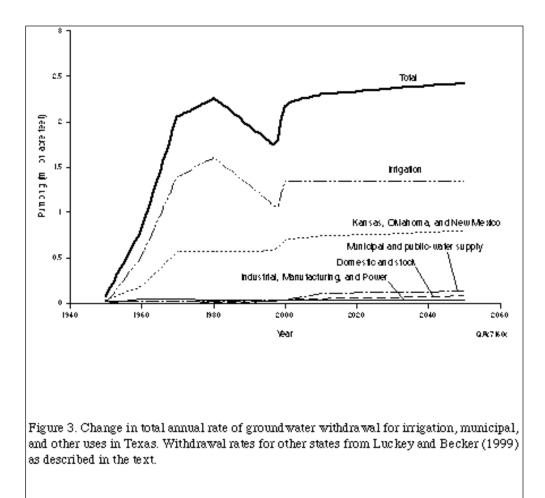
-		-																-					
																				H: Corrected to 00 for surface water M: Source ID with leading zero added.			
MANUFACTURING	011001098	Α	1001 1001	098	01	00	Α	098	01	01020	PALO DURO	0	0	0	0	0	0	Waiting for info from PDRA	Updated 2/14/00	O-T: Value format changed to show "0" instead of "-"		MFG HANSFORD	CANADIAN
MINING	011003098	А	1003 1003	098	01	01	Λ	098	01	09821	OGALLALA	1,331	1,250	1,250	1,250	1,250	1,250	HISTORICAL MAX	Updated 4/1/00			MIN HANSFORD	CANADIAN
																				H: Corrected to 00 for surface water M: Source ID with leading zero added.			
MINING	011003098	А	1003 1003	098	01	00	Α	098	01	01020	PALO DURO	0	0	0	0	0	0	Waiting for info from PDRA	Updated 2/14/00	O-T: Value format changed to show "0" instead of "."		MIN HANSFORD	CANADIAN
SPEARMAN	010849000	Α	0849 0573	098	01	01	Δ	098	01	09821	OGALLALA	892	892	892	892	892	892	HISTORICAL MAX	Updated 4/1/00	instead of "-"		MUN HANSFORD	CANADIAN
																				H: Corrected to 00 for surface water			
SPEARMAN	010849000	А	0849 0573	098	01	00	Α	098	01	01020	PALO DURO	0	0	0	0	0	0	Waiting for info from PDRA	Updated 2/14/00	M: Source ID with leading zero added. O-T: Value format changed to show "0"		MUN HANSFORD	CANADIAN
																				instead of "-"			
STEAM ELECTRIC	011002098	А	1002 1002	098	01	00		098	01	01020	PALO DURO			0			0	Waiting for info from PDRA	Updated 2/14/00	H: Corrected to 00 for surface water M: Source ID with leading zero added.		PWR HANSFORD	CANADIAN
POWER	011002070	~	1002 1002	070	0.1	00	~	0,0	0.	01020	17420 19080			0		0	0			O-T: Value format changed to show "0" instead of "-"		T WR TELESTORE	CAUNDAU
CHANNING	010159000	Α	0159 0106	103	01	01	Δ	103	01	10321	OGALLALA	96	104	100	100	100	100	Ratioed among CATs w/ hist pumpage. Dallam supply subtracted	Undated 3/20/00			MUN HARTLEY	CANADIAN
COUNTY-OTHER	010996103	A	0996 0757	103	01	01	Δ	103	01	10321		362		362	362	362		from total supply before rationing.)				MUN HARTLEY	CANADIAN
		А		103	01				01		OGALLALA	362		362	362	362		HISTORICAL MAX, increased slightly in 2010 to meet demands				MUN HARTLEY MUN HARTLEY	CANADIAN
DALHART	010226000	A	0226 0150 1004 1004	103	01	01	A A	103	01	10321	OGALLALA DOCKUM	755	818	793	791	380	303	Allocated to meet projected demands Supply ratioed b/tw IRR and STK (only two historical uses in	Updated 3/20/00 Updated 3/20/00			IRR HARTLEY	CANADIAN
												382	382	381	380	380	3 /9	gw_pumpage.xis)		BEG supply revised 11/25. Values			
IRRIGATION	011004103	А	1004 1004	103	01	01	А	103	01	10321	OGALLALA	377,956	377,474	377,069	376,761	375,219	374,887	remainder of available supply	Update 11-25-00	corrected accordingly.		IRR HARTLEY	CANADIAN
IRRIGATION	011004103	A	1004 1004	103	01	00	Α	103	01	36009	REUSE: BaZoCou 01-02-103	240	258	250	248	247	249	All reuse assumed to IRR unless otherwise specified. Supply ratioed bits IRR and STK (only two historical uses in	Get w/ TLS re: reuse allocations			IRR HARTLEY	CANADIAN
LIVESTOCK	011005103	А	1005 1005	103	01	01	Α	103	01	10326	DOCKUM	8	8	9	10	10	11	Supply ratioed b/tw IRR and STK (only two historical uses in gw_pumpage.xls)	Updated 3/20/00			STK HARTLEY	CANADIAN
	011005103		1005 1005							01997				3,027		3,027				Table 4 updated to include stock pond supply information			
LIVESTOCK	011005103	А	1005 1005	103	01	00	Α	103	01	01997	local supply - stock ponds	3,027	3,027	3,027	3,027	3,027	3,027	HISTORICAL MAXIMUM USE		supply information B-G, K:Info added. M: ID added.		STK HARTLEY	CANADIAN
LIVESTOCK	011005103	А	1005 1005	103	01	01	Α	103	01	10321	OGALLALA	1,031	1,436	1,876	2,186	2,518	2,874	used demands	Updated 4/1/00	M: ID added.		STK HARTLEY	CANADIAN
CANADIAN	010142000	Α	0142 0093	106	01	01	А	106	01	10621	OGALLALA	683	692	470				Based on City Survey Response for water rights area and Dutton values for aquifer availability. Assumes purchase of 1280 acres is	Undated 3/20/00	R-T: Value format changed to show "0"		MUN HEMPHILL	CANADIAN
							^							470	0	0		completed.		instead of "-"			
COUNTY-OTHER	010996106		0996 0757 0996 0757		01	01	A	106	01 02	10621	OGALLALA OCALLALA	174		174	174	174			Updated 4/1/00	G: Corrected to 2 for Red Basin		MUN HEMPHILL MUN HEMPHILL	CANADIAN
COUNTY-OTHER IRRIGATION	010996106 011004106	A	1004 1004		02	01 01	A A	106	01	10621 10621	OGALLALA OGALLALA	106 946	946	946	106	106 946	946	HISTORICAL MAXIMUM USE HISTORICAL MAXIMUM USE	Updated 4/1/00 Updated 4/1/00			IRR HEMPHILL	CANADIAN
IRRIGATION	011004106	A	1004 1004 1004 1004	106	02	01 00	A	106	02	10621 36010	OGALLALA REUSE: BaZoCou 01-02-106	3,424		3,424	3,424	3,424 110	3,424		Updated 4/1/00 Get w/ TLS re: reuse allocations	G: Corrected to 2 for Red Basin		IRR HEMPHILL IRR HEMPHILL	RED CANADIAN
IRRIGATION	011004106	A	1004 1004	106	02	00	Å	106	02	36027	REUSE: BaZoCou 02-01-106	13	13	12	110	10	107	All reuse assumed to IRR unless otherwise specified.	Get w/ TLS re: reuse allocations	M: Source ID added		IRR HEMPHILL	RED
																				Table 4 updated to include stock pond supply information			
LIVESTOCK	011005106	А	1005 1005	106	01	00	Α	106	01	01997	local supply - stock ponds	858	858	858	858	858	858	HISTORICAL MAXIMUM USE		B-G, K:Info added.		STK HEMPHILL	CANADIAN
							-		_											M: ID added. Table 4 updated to include stock pond			_
LIVESTOCK	011005106		1005 1005	106	02	00		106	02	02997	local supply - stock ponds	594	594	594	594	594	594	HISTORICAL MAXIMUM USE		supply information		STK HEMPHILL	RED
LIVESTOCK	011000100	~	1005 1005	100	01	00	~	100	01	02771	iotai sappiy - sock points		5,74			-		INSTORICAL MARINE OF COL		B-G, K:Info added. M: ID added.		STR HESHTILE	RLD
	011005106		1005 1005		01	01	Α	106	01	10621	OGALLALA	572	572	572	572	572	572		Updated 4/1/00			STK HEMPHILL	CANADIAN
LIVESTOCK	011005106	А	1005 1005	106	02	00	А	106	02	10621	OGALLALA	396	396	396	396	396	396	Historical use demands from Table 3		Row inserted to match SFK sheet. M: Added 010A0 for CRMWA System		STK HEMPHILL	RED
BORGER	010100000	А	0100 0067	117	01	02 10	Α	117	01	010A0	CRMWA SYSTEM	459	459	459	459	459	459	demands from Table 3	36,573	per TWDB comment.	CRMWA	MUN HUTCHINSON	CANADIAN
BORGER	010100000	А	0100 0067	117	01	02 10	Α	191	01	19721	CRMWA SYSTEM	232	232	232	232	232	232	demands from Table 3	36,573		CRMWA	MUN HUTCHINSON	CANADIAN
BORGER	010100000	А	0100 0067	117	01	02 10	А	191	02	19721	CRMWA SYSTEM	9	9	9	9	9	9	demands from Table 3	36,573	M: Added 010A0 for CRMWA System	CRMWA	MUN HUTCHINSON	CANADIAN
BORGER		Α	0100 0067		01		Δ	117	01		OGALLALA			1.510			1.190	assume ground water supply developed to meet demands (total	Undated 5/5/00	per TWDB comment.		MUN HUTCHINSON	
	010100000			117		01				11721	OGALLALA OGALLALA	1,690		1,510	1,390	1,240		rights for 2475 af/y)	Updated 5/5/00 Updated 5/5/00			MUN HUTCHINSON MUN HUTCHINSON	CANADIAN
FRITCH	010996117	A	0996 0757 0320 0222	117 117	01	01 01	A	117 117	01	11721 11721	OGALLALA	1,120	1,120	1,120	1,120	1,120	515	HISTORICAL MAX USE	Updated 5/5/00 Updated 5/5/00			MUN HUTCHINSON	CANADIAN
IRRIGATION	011004117	А	1004 1004	117	01	01	А	117	01	11721	OGALLALA	41,758	41,758	41,758	41,758	41,758	41,758	Projected demands	Updated 11/25/00	Table 4 updated to include stock pond		IRR HUTCHINSON	CANADIAN
LIVESTOCK	011005117	А	1005 1005	117	01	00	Α	117	01	01997	local supply - stock ponds	994	994	994	994	994	994	HISTORICAL MAX USE	Updated 5/5/00	supply information.		STK HUTCHINSON	CANADIAN
LIVESTOCK	011005117	Α	1005 1005	117	01	01	Δ	117	01	11721	OGALLALA	110	110	110	110	110	110	HISTORICAL MAX USE	Updated 5/5/00	M: ID added.		STK HUTCHINSON	CANADIAN
MANUFACTURING	011001117	A	1001 1001	117	01	02 1	10 A	117	01	010A0 19721	CRMWA SYSTEM	1,310	1,310	1,310	1,310	1,310	1,310	Supply to Agrium via Borger		Row inserted to match SFK sheet.	CRMWA	MFG HUTCHINSON	CANADIAN
MANUFACTURING MANUFACTURING	011001117	A	1001 1001 1001 1001	117	01	02 1	0 A	191	01	19721	CRMWA SYSTEM CRMWA SYSTEM	663	27	663	663	663	663	Supply to Agrium via Borger Supply to Agrium via Borger Projected demands		Row inserted to match SFK sheet. Row inserted to match SFK sheet.	CRMWA CRMWA	MFG HUTCHINSON MFG HUTCHINSON	CANADIAN
MANUFACTURING	011001117	Α	1001 1001	117	01		Α	117	01	19721 11721	OGALLALA	17,871		21,374	22,545	24,900	27,546	Projected demands	Updated 11/25/00			MFG HUTCHINSON	CANADIAN
STINNETT	011003117 010861000	A	1003 1003 0861 0582	117	01	01	A	117	01	11721 11721	OGALLALA OGALLALA	690 485	690 485	690 485	690 485	690 485	485	HISTORICAL MAX	Updated 5/5/00 Updated 5/5/00			MIN HUTCHINSON MUN HUTCHINSON	CANADIAN CANADIAN
																		Based on maximum usage shown in 8/31/99 TNRCC fax to J. Atkinson. Water obtained from Phillips Petroleum Co.		B, D, E: Values added per TWDB			
TCW Supply, Inc.	010996117	А	0996 0757	117	01	01	Α	117	01	11721	OGALLALA	1,350	1,350	1,350	1,350	1,350	1,350	Engineered Carbons Co., and City of Borger. Source for each is	Updated 2/11/00	comments Was 10100000, 100, blank		MUN HUTCHINSON	CANADIAN
BOOKER	010000000		0000 0066	148	01	01		149	01	14821	OGALLALA	447	447	447	447	447	447	assumed to be Ogallala. HISTORICAL MAX	Updated 4/1/00	was 10100000, 100, blank		MUN LIPSCOMB	CANADIAN
	0100996148	A	0996 0757	148	01	01	A	148	01	14821	OGALLALA	447	447	425	447	409			Updated 12/1/00			MUN LIPSCOMB	CANADIAN
IRRIGATION	011004148	А	1004 1004	148	01	00	Α	148	01	148996	IRRIGATION LOCAL SUPPLY1 - 148 - 1	73	70	70	69	68	67	All irrigation supply to IRR and STK unless otherwise specified	Updated 2/14/00			IRR LIPSCOMB	CANADIAN
IRRIGATION	011004148	А	1004 1004	148	01	01	Δ	148	01	14821	OGALLALA	35.025	35.025	35.025	35.025	35.025	35 025	INCREASED ABOVE 125% HISTORICAL MAX to meet	Undated 4/17/00			IRR LIPSCOMB	CANADIAN
IRRIGATION	011004148		1004 1004	148	01	00	A	148	01	36002	REUSE: BaZoCou 01-01-148	35,025		33	32	31	30	All reuse assumed to IRR unless otherwise specified.	Get w/ TLS re: reuse allocations			IRR LIPSCOMB	CANADIAN
LIPSCOMB	010526000	A	0526 0359	148	01	01	A	148	01	14821	OGALLALA	46	46	46	46	46	46	HISTORICAL MAX	Updated 4/1/00			MUN LIPSCOMB	CANADIAN
LIVESTOCK	011005148	А	1005 1005	148	01	00	Α	148	01	148996	IRRIGATION LOCAL SUPPLY1 - 148 - 1	2	5	5	6	7	8	All irrigation supply to IRR and STK unless otherwise specified	Updated 2/14/00			STK LIPSCOMB	CANADIAN
LIVESTOCK	011005148	Α	1005 1005	148	01	00		148	01	01997	land sometry starts at 1	1,547	1,547	1,547	1,547	1,547		HISTORICAL MAX USE	Updated 4/1/00	Table 4 updated to include stock pond		STK LIPSCOMB	CANADIAN
					01		Α				local supply - stock ponds	1,547	1,547	1,547					-	supply information. M: ID added.			
LIVESTOCK	011005148 011001148	A	1005 1005	148	01	01	A	148	01	14821	OGALLALA OGALLALA	172	729	1,093	1,454	1,870	2,351	125% HISTORICAL MAX, increased to meet demands	Updated 5/4/00 Updated 12/01/00			STK LIPSCOMB MEG LIPSCOMB	CANADIAN
MANUFACTURING	011001148 011003148	A		148	01	01 01	A	148	01	14821 14821	OGALLALA OGALLALA	156	106	172	176	188	200	125% HISTORICAL MAX	Updated 12/01/00 Updated 4/1/00			MFG LIPSCOMB MIN LIPSCOMB	CANADIAN
CACTUS	010134000	А	0134 0762	171	01	01	Α	171	01	17121	OGALLALA	445	476	511	0	0	0	Maximum use scenario - from storage, revised per Dutton Ogallala supply correction	Updated 11/25/00	S-T: Value format changed to show "0" instead of "."	1	MUN MOORE	CANADIAN
COUNTY-OTHER	010996171	Α	0996 0757	171	01	01	Α	171	01	17121	OGALLALA	453	452	441	0	0		Maximum use scenario - from storage, revised per Dutton	Undated 11/25/00	S-T: Value format changed to show "0"		MUN MOORE	CANADIAN
							_										U	Ogallala supply correction Maximum use scenario - from storage, revised per Dutton		instead of "-" S-T: Value format changed to show "0"			
DUMAS	010255000	A	0255 0170	171	01	01	Α	171	01	17121	OGALLALA	2,833	3,022	3,200	0	0	0	Ogallala supply correction	Updated 11/25/00	s-1: value format changed to show '0' instead of "-"		MUN MOORE	CANADIAN
IRRIGATION	011004171	A	1004 1004	171	01	01	Α	171	01	17126	DOCKUM	3	3	3	3	3	3	AVAILABLE STORAGE Maximum use scenario - from storage, revised per Dutton		S-T: Value format changed to show "0"		IRR MOORE	CANADIAN
IRRIGATION	011004171	А	1004 1004	171	01	01	Α	171	01	17121	OGALLALA	200,579	200,579	179,181	0	0	0	Ogallala supply correction	Updated 11/25/00	instead of "-"		IRR MOORE	CANADIAN
LIVESTOCK	011005171	А	1005 1005	171	01	00	Α	171	01	01997	local supply - stock ponds	1,600	1,600	1,600	1,600	1,600	1,600			Table 4 updated to include stock pond supply information.	1	STK MOORE	CANADIAN
											and other and have	-,	.,	-,	.,	-,	.,			M: ID added.			
LIVESTOCK	011005171	А	1005 1005	171	01	01	А	171	01	17121	OGALLALA	1,910	5,558	7,293	0	0	0	Maximum use scenario - from storage, revised per Dutton Ogallala supply correction	Updated 11/25/00	S-T: Value format changed to show "0" instead of "-"		STK MOORE	CANADIAN
MANUFACTURING	011001171	А	1001 1001	171	01	01	А	171	01	17121	OGALLALA	7,238	7,712	8,035	0	0			Updated 11/25/00	S-T: Value format changed to show "0" instead of "-"		MFG MOORE	CANADIAN
MINING	011003171	A	1003 1003	171	01	00	A	171	01	01999	Local Supply	1,658	.,	1,658	1,658	1,658	1,658	Ogallala supply correction		M: Valued added per SFK sheet		MIN MOORE	CANADIAN
MINING	011003171	A	1003 1003	171	01	01	Α	171	01	17121	OGALLALA	0	0	300	0	0	0	Maximum use scenario - from storage, revised per Dutton	Updated 11/25/00	O-T: Value format changed to show "0"		MIN MOORE	CANADIAN
STEAM ELECTRIC	011002171	A.	1002 1002	171	01	01	Δ	171	01	17121	OGALLALA	200	200	200				Ogallala supply correction Maximum use scenario - from storage, revised per Dutton	Updated 11/25/00	instead of "-" S-T: Value format changed to show "0"		PWR MOORE	CANADIAN
POWER														200	0	0	0	Ogallala supply correction		instead of "-"			
SUNRAY	010872000	А	0872 0588	171	01	01	А	171	01	17121	OGALLALA	492	560	630	0	0	0	Maximum use scenario - from storage, revised per Dutton Ogallala supply correction	Updated 11/25/00	S-T: Value format changed to show "0" instead of "-"		MUN MOORE	CANADIAN
BOOKER COUNTY-OTHER	010099000	A	0099 0066 0996 0757	179 179	01	01	A	179	01	17921	OGALLALA OGALLALA	7	7	7	7	7	7	historical max	Updated 5/03/00 Updated 5/03/00			MUN OCHILTREE MUN OCHILTREE	CANADIAN
COUNTY-OTHER	010996179 011004179	A	0996 0757 1004 1004		01	01	A	1/9	01	17921 17921	OGALLALA	255	56 388	56 388	56 388	56 388	56 388	historical max Used TAES 1997 historical use	Updated 5/03/00 Updated 3/20/00		l	IRR OCHILTREE	CANADIAN
IRRIGATION																							

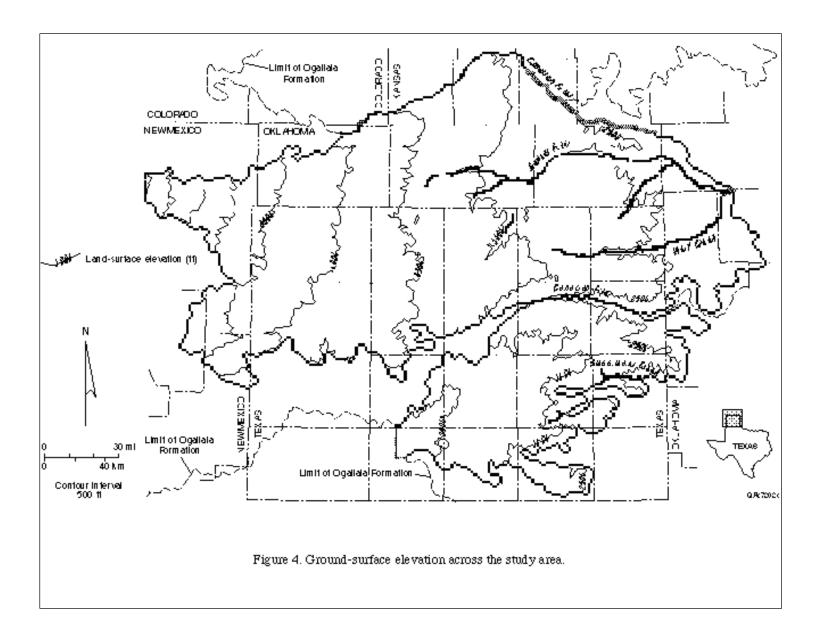
N N																						Table 4 updated to include stock pond				
Net <td>LIVESTOCK</td> <td></td> <td>Α</td> <td></td> <td>1005</td> <td>179</td> <td></td> <td>00</td> <td></td> <td>Λ</td> <td>179</td> <td>01</td> <td>01997</td> <td></td> <td>2,183</td> <td></td> <td>2,183</td> <td>2,183</td> <td></td> <td></td> <td>Updated 4/1/00</td> <td></td> <td></td> <td>STK</td> <td>OCHILTREE</td> <td>CANADIAN</td>	LIVESTOCK		Α		1005	179		00		Λ	179	01	01997		2,183		2,183	2,183			Updated 4/1/00			STK	OCHILTREE	CANADIAN
Solution Solution <	LIVESTOCK MINING		A A		1005 1003					A A						6,747 234	6,747 234	7,200								CANADIAN
Mode Mod	PERRYTON	010689000	Α	0689 (0461	179	01	01		А	179	01	17921		2,468	986	0	0	0			Q-T: Value format changed to show "0" instead of "."				CANADIAN
No No No No <th< td=""><td>COUNTY-OTHER</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>144</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>CANADIAN</td></th<>	COUNTY-OTHER																144									CANADIAN
Norm Norm Norm Norm															2,322	2,319		2,297	-		-	instead of "-"				_
Name Name Na															30	29		26				1: value format changed to show "0" instead of "-"				
And	IRRIGATION				1004	180					180		18026		33	33	33	33	33							
Name	IRRIGATION	011004180	Α	1004 1	1004	180	01	01		Α	180	01	18021	OGALLALA	7,700	7,700	7,700	7,700	6,854	0 Maximum use scenario - from storage	Updated 3/30/00	instead of "-"		IRR	OLDHAM	CANADIAN
Math	IRRIGATION		Α	1004 1			02			Α	180	02	18021		18,249	18,249	18,249	18,249	16,666	0 Maximum use scenario - from storage		T: Value format changed to show "0" instead of "-"				
Name	LIVESTOCK				1005 1005	180 180							18026	DOCKUM DOCKUM	145	145	145	181	200	578 increased from historical max to meet demands 34 increased from historical max to meet demands						RED
Norm Norm <th< td=""><td>LIVESTOCK</td><td>011005180</td><td>А</td><td>1005 1</td><td>1005</td><td>180</td><td>01</td><td>00</td><td></td><td>А</td><td>180</td><td>01</td><td>01997</td><td>local supply - stock ponds</td><td>1,855</td><td>1,855</td><td>1,855</td><td>1,855</td><td>1,855</td><td>1,855 HISTORICAL MAX USE</td><td>Updated 4/1/00</td><td>supply information</td><td></td><td>STK</td><td>OLDHAM</td><td>CANADIAN</td></th<>	LIVESTOCK	011005180	А	1005 1	1005	180	01	00		А	180	01	01997	local supply - stock ponds	1,855	1,855	1,855	1,855	1,855	1,855 HISTORICAL MAX USE	Updated 4/1/00	supply information		STK	OLDHAM	CANADIAN
mod i mod mod <	LIVESTOCK	011005180	Α	1005 1	1005	180	02	00		А	180	02	02997	local supply - stock ponds	108	108	108	108	108	105		Table 4 updated to include stock pond supply information J: RWPG A listed for supply. B-G. K: Info added.		STK	OLDHAM	RED
Math	LIVESTOCK	011005180	А	1005 1	1005	180	01	01		Α	180	01	18021	OGALLALA	0	0	0	64	204	0 Maximum use scenario - from storage	Updated 5/4/00	O-T: Value format changed to show "0" instead of "-"		STK	OLDHAM	CANADIAN
N N N N N N <th< td=""><td>LIVESTOCK</td><td>011005180</td><td>А</td><td>1005 1</td><td>1005</td><td>180</td><td>02</td><td>01</td><td></td><td>А</td><td>180</td><td>02</td><td>18021</td><td>OGALLALA</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0 Maximum use scenario - from storage</td><td>Updated 3/20/00</td><td>O-T: Value format changed to show "0"</td><td></td><td>STK</td><td>OLDHAM</td><td>RED</td></th<>	LIVESTOCK	011005180	А	1005 1	1005	180	02	01		А	180	02	18021	OGALLALA	0	0	0	0	0	0 Maximum use scenario - from storage	Updated 3/20/00	O-T: Value format changed to show "0"		STK	OLDHAM	RED
10 <td>MINING</td> <td>011003180</td> <td>А</td> <td>1003 1</td> <td>1003</td> <td></td> <td>01</td> <td>01</td> <td></td> <td></td> <td>180</td> <td>01</td> <td></td> <td></td> <td>283</td> <td>283</td> <td>283</td> <td>283</td> <td>283</td> <td>283 HISTORICAL MAX</td> <td>Updated 5/5/00</td> <td>instead of ""</td> <td></td> <td></td> <td></td> <td>CANADIAN</td>	MINING	011003180	А	1003 1	1003		01	01			180	01			283	283	283	283	283	283 HISTORICAL MAX	Updated 5/5/00	instead of ""				CANADIAN
mm k															3	3	3	3	3			O-T: Value format changed to show "0"				
Name															268	274	284	107	202			instead of "-" T: Value format changed to show "0"				
N N N N N <td></td> <td>208</td> <td>276</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>instead of "."</td> <td></td> <td></td> <td></td> <td></td>															208	276						instead of "."				
Method Me															66	68						instead of "-" T: Value format chapsed to show "0"				
	VEGA	010928000	Α	0928 0	0622	180	02	01		A	180	02	18021	OGALLALA	199	205	202	203	192			instead of "-"		MUN	OLDHAM	RED
Name Name Name Name	AMARILLO		А							A										system set to ~48.55%						CANADIAN
A A B	AMARILLO																			2,350 source per TWDB request. % from Roberts County/Canadian/Ogallala via CRMWA system set to ~24.56%	-					
Math Math M	AMARILLO	010020000	Α	0020 0	0014	188	01	02	17600	Α	191	02	19721	AMARILLO SYSTEM	119	115	112	111	107	via CRMWA system set to ~1.00%	ia Updated 12/01/00		AMARILLO	MUN	POTTER	CANADIAN
Norm Norm <th< td=""><td>AMARILLO</td><td>010020000</td><td>Α</td><td>0020</td><td>0014</td><td>188</td><td>01</td><td>02</td><td>17600</td><td>Α</td><td>033</td><td>01</td><td>03321</td><td>AMARILLO SYSTEM</td><td>649</td><td>799</td><td>978</td><td>1,188</td><td>1,062</td><td>0 source per TWDB request. % from Carson County/Canadian/Ogallala via CRMWA system set to ~6.42%</td><td>-</td><td></td><td>AMARILLO</td><td>MUN</td><td>POTTER</td><td>CANADIAN</td></th<>	AMARILLO	010020000	Α	0020	0014	188	01	02	17600	Α	033	01	03321	AMARILLO SYSTEM	649	799	978	1,188	1,062	0 source per TWDB request. % from Carson County/Canadian/Ogallala via CRMWA system set to ~6.42%	-		AMARILLO	MUN	POTTER	CANADIAN
Norme Norme <th< td=""><td>AMARILLO</td><td>010020000</td><td>А</td><td>0020</td><td>0014</td><td>188</td><td>01</td><td>02</td><td>17600</td><td>А</td><td>033</td><td>02</td><td>03321</td><td>AMARILLO SYSTEM</td><td>703</td><td>866</td><td>1,060</td><td>1,287</td><td>1,150</td><td>via CRMWA system set to ~16.95%</td><td>a Updated 12/01/00</td><td></td><td>AMARILLO</td><td>MUN</td><td>POTTER</td><td>CANADIAN</td></th<>	AMARILLO	010020000	А	0020	0014	188	01	02	17600	А	033	02	03321	AMARILLO SYSTEM	703	866	1,060	1,287	1,150	via CRMWA system set to ~16.95%	a Updated 12/01/00		AMARILLO	MUN	POTTER	CANADIAN
NAME NAME No No No No No<	AMARILLO	010020000	Α	0020	0014	188	01	02	17600	А	059	02	05921	AMARILLO SYSTEM	22	27	33	40	36	County/Red/Ogallala via CRMWA system set to ~0.22%	Updated 12/01/00		AMARILLO	MUN	POTTER	CANADIAN
Matrix Matrix<	AMARILLO	010020000	Α	0020	0014	188	01	02	17600	Α	188	01	18821	AMARILLO SYSTEM	931	1,146	1,403	1,704	1,523	0 source per TWDB request. % from Potter County/Canadian/Ogallala via CRMWA system set to ~9.21%	Updated 12/01/00		AMARILLO	MUN	POTTER	CANADIAN
N N	AMARILLO	010020000	Α	0020	0014	188	01	02	17600	Α	188	02	18821	AMARILLO SYSTEM	204	252	308	374	334	0 source per TWDB request. % from Potter County/Red/Ogallala via CRMWA system set to ~2 02%			AMARILLO	MUN	POTTER	CANADIAN
MAXIM MAX MAX </td <td>AMARILLO</td> <td>010020000</td> <td>А</td> <td>0020</td> <td>0014</td> <td>188</td> <td>01</td> <td>02</td> <td>17600</td> <td>А</td> <td>191</td> <td>02</td> <td>19121</td> <td>AMARILLO SYSTEM</td> <td>110</td> <td>135</td> <td>165</td> <td>201</td> <td>180</td> <td>via CRMWA system set to ~1.09%</td> <td>a Updated 12/01/00</td> <td></td> <td>AMARILLO</td> <td>MUN</td> <td>POTTER</td> <td>CANADIAN</td>	AMARILLO	010020000	А	0020	0014	188	01	02	17600	А	191	02	19121	AMARILLO SYSTEM	110	135	165	201	180	via CRMWA system set to ~1.09%	a Updated 12/01/00		AMARILLO	MUN	POTTER	CANADIAN
MAXIM Wig Wig </td <td>AMARILLO</td> <td>010020000</td> <td>Α</td> <td>0020</td> <td>0014</td> <td>188</td> <td>02</td> <td>02</td> <td>17600</td> <td>Α</td> <td>117</td> <td>01</td> <td>010A0</td> <td>AMARILLO SYSTEM</td> <td>6,289</td> <td>6,077</td> <td>5,951</td> <td>5,853</td> <td>5,654</td> <td>5,047 source per TWDB request. % from Lake Meredith via CRMWA system set to ~48.55%</td> <td>Updated 12/01/00</td> <td></td> <td>AMARILLO</td> <td>MUN</td> <td>POTTER</td> <td>RED</td>	AMARILLO	010020000	Α	0020	0014	188	02	02	17600	Α	117	01	010A0	AMARILLO SYSTEM	6,289	6,077	5,951	5,853	5,654	5,047 source per TWDB request. % from Lake Meredith via CRMWA system set to ~48.55%	Updated 12/01/00		AMARILLO	MUN	POTTER	RED
NAMELIC No.	AMARILLO	010020000	А	0020	0014	188	02	02	17600	А	191	01	19721	AMARILLO SYSTEM	2,186	2,111	2,068	2,035	1,965	1,754 source per TWDB request. % from Roberts County/Canadian/Deallala via CRMWA system set to ~24.56%			AMARILLO	MUN	POTTER	RED
MAME MAME MA V <td>AMARILLO</td> <td>010020000</td> <td>Α</td> <td>0020</td> <td>0014</td> <td>188</td> <td>02</td> <td>02</td> <td>17600</td> <td>Α</td> <td>191</td> <td>02</td> <td>19721</td> <td>AMARILLO SYSTEM</td> <td>89</td> <td>86</td> <td>84</td> <td>83</td> <td>80</td> <td>via CRMWA system set to ~1.00%</td> <td>ia Updated 12/01/00</td> <td></td> <td>AMARILLO</td> <td>MUN</td> <td>POTTER</td> <td>RED</td>	AMARILLO	010020000	Α	0020	0014	188	02	02	17600	Α	191	02	19721	AMARILLO SYSTEM	89	86	84	83	80	via CRMWA system set to ~1.00%	ia Updated 12/01/00		AMARILLO	MUN	POTTER	RED
MANULY With With With With With With With With	AMARILLO	010020000	А	0020	0014	188	02	02	17600	А	033	01	03321	AMARILLO SYSTEM	485	597	730	887	793	0 source per TWDB request. % from Carson County/Canadian/Ogallala via CRMWA system set to ~6.42%	Updated 12/01/00		AMARILLO	MUN	POTTER	RED
MAME MAME <th< td=""><td>AMARILLO</td><td>010020000</td><td>А</td><td>0020 0</td><td>0014</td><td>188</td><td>02</td><td>02</td><td>17600</td><td>Α</td><td>033</td><td>02</td><td>03321</td><td>AMARILLO SYSTEM</td><td>525</td><td>646</td><td>791</td><td>961</td><td>859</td><td>0 source per TWDB request. % from Carson County/Red/Ogallalz via CRMWA system set to ~16.95% Sumby from Amarillo Statem arbitrarily commanded by original</td><td>updated 12/01/00</td><td></td><td>AMARILLO</td><td>MUN</td><td>POTTER</td><td>RED</td></th<>	AMARILLO	010020000	А	0020 0	0014	188	02	02	17600	Α	033	02	03321	AMARILLO SYSTEM	525	646	791	961	859	0 source per TWDB request. % from Carson County/Red/Ogallalz via CRMWA system set to ~16.95% Sumby from Amarillo Statem arbitrarily commanded by original	updated 12/01/00		AMARILLO	MUN	POTTER	RED
MAMELING WORDOW A WORDOW WORDOW WORDOW WORDOW	AMARILLO	010020000	А	0020	0014	188	02	02	17600	Α	059	02	05921	AMARILLO SYSTEM	16	20	25	30	27	0 source per TWDB request. % from Deaf Smith County/Red/Ogallala via CRMWA system set to ~0.22%	Updated 12/01/00		AMARILLO	MUN	POTTER	RED
AddRel Li Viscol V	AMARILLO		А	0020	0014				17600	Α	188	01			695	856	1,047	1,272		0 source per TWDB request. % from Potter County/Canadian/Ogallala via CRMWA system set to ~9.21%	-			MUN		
MARLED MORE MOR MOR MOR MOR MOR MOR MOR MORE	AMARILLO	010020000	А	0020 0	0014	188	02	02	17600	А	188	02	18821	AMARILLO SYSTEM	152	188	230	279	249	0 source per TWDB request. % from Potter County/Red/Ogallala via CRMWA system set to ~2.02%	Updated 12/01/00		AMARILLO	MUN	POTTER	RED
Image: state	AMARILLO	010020000	А	0020	0014	188	02	02	17600	Α	191	02	19121	AMARILLO SYSTEM	82	101	123	150	134	0 source per TWDB request. % from Randall County/Red/Ogallal	a Updated 12/01/00	1. DWDC A listed forb-	AMARILLO	MUN	POTTER	RED
MARLED MOM MO	AMARILLO	010020000	А	0020	0014	188	01	01		А	188	01	18821	OGALLALA	0	0	0	0	0	0 Maximum use scenario - from storage, revised per Dutton Ogallala supply correction	revised 11/25/00	K: Supply county added.		MUN	POTTER	CANADIAN
OUNDER-OFFICE 0109918 A. 096 075 188 01 0. A. 182 01 1825 DOCKIM 056 506	AMARILLO	010020000	А	0020	0014	188	02	01		Α	188	02	18821	OGALLALA	0	0	0	0	0	0 calculated separately	updated 3/30/00	instead of "-"		MUN	POTTER	RED
Aligned biol Aligned biol<	COUNTY-OTHER			0996											506	506	506	506	506			J: RWPG A listed for supply.				CANADIAN
Image: Note of the state o	COUNTY-OTHER									A					1,172	07	1,142	1,200		Maximum use scenario - from storage, revised per Dutton		J: RWPG A listed for supply. T: Value format changed to show "0" instead of "-"				CANADIAN
REGATION Integration	COUNTY-OTHER	010996188	А	0996 (0757	188	02	01		А	188	02	18821	OGALLALA	250	247	247	256	0	Maximum use scenario - from storage, revised per Dutton	revised 11/25/00	K: Supply county added. Q-T: Value format changed to show "0" instead of "-"		MUN	POTTER	RED
REGATION 0109418 A 104 108 118 02 01 118 02 01 138 02 01 138 02 01 138 02 1182 02 11825 DOCKUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IRRIGATION	011004188	А	1004 1	1004	188	01	01		A	188	01	18826	DOCKUM	0	0	0	0	0	0 125% HISTORICAL MAX	Updated 4/1/00	J: RWPG A listed for supply. K: Supply County added O-T: Value format changed to show "0"		IRR	POTTER	CANADIAN
	IRRIGATION	011004188	А	1004 1	1004	188	02	01		А	188	02	18826	DOCKUM	0	0	0	0	0	0 125% HISTORICAL MAX	Updated 4/1/00	K: Supply County added O-T: Value format changed to show "0"		IRR	POTTER	RED
	IRRIGATION	011004188	Α	1004 1	1004	188	01	00		А	188	01	188996	IRRIGATION LOCAL SUPPLY1 - 188 - 2	328	327	326	325	324	322 All irrigation supply to IRR and STK unless otherwise specified.	Updated 2/14/00	J: RWPG A listed for supply.		IRR	POTTER	CANADIAN

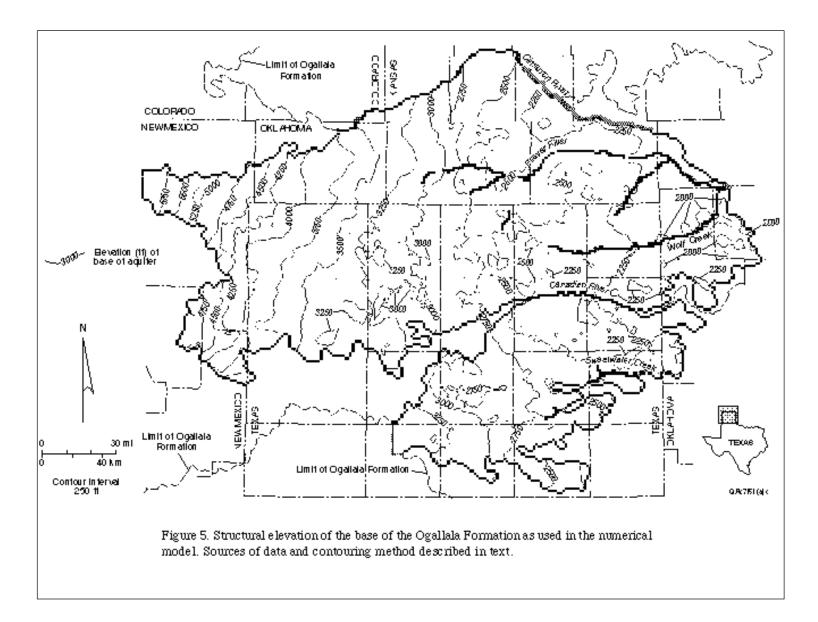
IRRIGATION	011004188	Δ	1004 1	1004	188	02	00			188	02	188996	IRRIGATION LOCAL SUPPLY2 - 188 - 1	1.359	1.359	1 359	1.358	1.358	1 357	All irrigation supply to IRR and STK unless otherwise specified.		K: Supply County added		IRR	POTTER	RED
Autor to a	011004100	~	1004	1004	100	01	00		~	100	01	100770	REGATION LOCAL JOIT LT2 - 100 - 1	1,007	1,007	1,000	1,000	1,000	1,007			J: RWPG A listed for supply.		inter i	OTTER	- ALD
IRRIGATION	011004188	Α	1004 1	1004	188	01	01		Α	188	01	18821	OGALLALA	8,951	8,680	8,344	7,911	1,053	0	Maximum use scenario - from storage, revised per Dutton Ogallala supply correction	revised 11/25/00	T: Value format changed to show "0" instead of "." K: Supply county added.		IRR	POTTER	CANADIAN
IRRIGATION	011004188	А	1004 1	1004	188	02	01		Α	188	02	18821	OGALLALA	8,539	8,336	8,085	2,374	0	0	Maximum use scenario - from storage, revised per Dutton Ogallala supply correction	revised 11/25/00	Q-T: Value format changed to show "0" instead of "-"		IRR	POTTER	RED
IRRIGATION	011004188	А	1004 1		188	01	00		А	188	02	36030	REUSE: BaZoCou 02-01-188	0	0	0	323	671	1,120	Allocation from reuse source with remaining supply	Added 12/5/00	K: Supply county added.		IRR I		CANADIAN
IRRIGATION IRRIGATION	011004188	A	1004 1 1004 1		188	02	00		A A	188	02	36030 36031	REUSE: BaZoCou 02-01-188 REUSE: BaZoCou 02-01-191	2,935	0 3,207	0 3,544	244 3,655	506 2,434	845 1,254	Allocation from reuse source with remaining supply Remaining reuse supply in Potter and Randall county after PWR	Added 12/5/00 Updated 11/29/00			IRR I	POTTER	RED CANADIAN
IRRIGATION	011004188	A			188	02	00		A	191	02	36031	REUSE: BaZoCou 02-01-191	2,191	2,394	2,645	2,728	4,148	5,527	allocation Remaining reuse supply in Potter and Randall county after PWR	Updated 11/29/00			IRR I	POTTER	RED
LIVESTOCK	011005188	A			188	01	01		A	188	01	18826	DOCKUM	13	12	12,040	12	12		allocation HISTORICAL MAX	Updated 4/1/00	J: RWPG A listed for supply. K: Supply County added			POTTER	CANADIAN
LIVESTOCK	011005188	A	1005 1		188	02	01		A	188	01	18826	DOCKUM	13	13	13	13	13		HISTORICAL MAX	Updated 4/1/00	K: Supply County added		STK I		RED
LIVESTOCK	011005188	А	1005 1	1005	188	01	00		Α	188	01	188996	IRRIGATION LOCAL SUPPLY1 - 188 - 2	12	13	14	15	16	18	All irrigation supply to IRR and STK unless otherwise specified.	Updated 2/14/00	J: RWPG A listed for supply. K: Supply County added		STK I	POTTER	CANADIAN
LIVESTOCK	011005188	А	1005 1	1005	188	02	00		Α	188	02	188996	IRRIGATION LOCAL SUPPLY2 - 188 - 1	4	4	4	5	5	6	All irrigation supply to IRR and STK unless otherwise specified.		K: Supply County added		STK I	POTTER	RED
LIVESTOCK	011005188	А	1005 1	1005	188	01	00		A	188	01	01997	local supply - stock ponds	736	736	736	736	736	736	HISTORICAL MAXIMUM USE		Table 4 updated to include stock pond supply information B-G, K:Info added. M: ID added.		STK I	POTTER	CANADIAN
LIVESTOCK	011005188	А	1005 1	1005	188	02	00		Α	188	02	02997	local supply - stock ponds	56	56	56	56	56	56	HISTORICAL MAXIMUM USE		Table 4 updated to include stock pond supply information B-G, K:Info added. M: ID added.		STK I	POTTER	RED
LIVESTOCK	011005188	А	1005 1	1005	188	01	01		A	188	01	18821	OGALLALA	0	0	0	0	0	0	Maximum use scenario - from storage, revised per Dutton Ogallala supply correction	revised 11/25/00	J: RWPG A listed for supply. O-T: Value format changed to show "0" instead of "." K: Supply county added.		STK I	POTTER	CANADIAN
LIVESTOCK	011005188	А	1005 1	1005	188	02	01		А	188	02	18821	OGALLALA	0	0	0	0	0	0	used demands until supply exhausted	updated 3/30/00	O-T: Value format changed to show "0" instead of "-" K: Supply county added.		STK I	POTTER	RED
MANUFACTURING	011001188	А	1001 1	1001	188	01	02	17600	Α	117	01	010A0	AMARILLO SYSTEM	423	419	397	388	398	580	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Lake Meredith via CRMWA system set to ~48.55%. Table 3 demands.	Updated 12/01/00	k. supply county accea.	AMARILLO	MFG	POTTER	CANADIAN
MANUFACTURING	011001188	А	1001 1	1001	188	01	02	17600	А	191	01	19721	AMARILLO SYSTEM	147	146	138	135	138	201	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Roberts County/Canadian/Ogallala via CRMWA system set to ~24.56%. Table 3 demands.	Updated 12/01/00		AMARILLO	MFG	POTTER	CANADIAN
MANUFACTURING	011001188	А	1001 1	1001	188	01	02	17600	А	191	02	19721	AMARILLO SYSTEM	6	6	6	5	6	8	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Roberts County/Red/Ogallala via CRMWA system set to ~1.00%. Table 3 demands. Supply from Amarillo System arbitrarily segregated by original	Updated 12/01/00		AMARILLO	MFG	POTTER	CANADIAN
MANUFACTURING	011001188	А	1001 1	1001	188	01	02	17600	А	033	01	03321	AMARILLO SYSTEM	32	41	49	59	56	0	source per TWDB request. % from Carson County/Canadian/Ogallala via CRMWA system set to ~6.42%. Table 3 demands.	Updated 12/01/00		AMARILLO	MFG	POTTER	CANADIAN
MANUFACTURING	011001188	А	1001 1	1001	188	01	02	17600	А	033	02	03321	AMARILLO SYSTEM	35	45	53	64	60	0	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Carson County/Red/Ogallala via CRMWA system set to ~16.95%. Table 3 demands.	Updated 12/01/00		AMARILLO	MFG	POTTER	CANADIAN
MANUFACTURING	011001188	А	1001 1	1001	188	01	02	17600	А	059	02	05921	AMARILLO SYSTEM	1	1	2	2	2	0	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Deaf Smith County/Red/Qallala via CRMWA system set to ~0.22%. Table : demands.	Updated 12/01/00		AMARILLO	MFG	POTTER	CANADIAN
MANUFACTURING	011001188	А	1001 1	1001	188	01	02	17600	А	188	01	18821	AMARILLO SYSTEM	47	59	69	85	80	0	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Potter County(Canadian/Ogallala via CRMWA system set to -9.21%. Table 3 demands.	Updated 12/01/00		AMARILLO	MFG	POTTER	CANADIAN
MANUFACTURING	011001188	А	1001 1	1001	188	01	02	17600	A	188	02	18821	AMARILLO SYSTEM	10	13	15	19	18	0	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Potter County/Red/Ogallala via CRMWA system set to ~2.02%. Table 3 demands.	Updated 12/01/00		AMARILLO	MFG	POTTER	CANADIAN
MANUFACTURING	011001188	А			188	01	02	17600	A	191	02	19121	AMARILLO SYSTEM	5	7	8	10	9	0	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Randall County/Red/Ogallala via CRMWA system set to ~1.09%. Table 3 demands. Supply from Amarillo System arbitrarily segregated by original	Updated 12/01/00				POTTER	CANADIAN
MANUFACTURING	011001188	А	1001 1	1001	188	02	02	17600	Α	117	01	010A0	AMARILLO SYSTEM	3,012	2,866	2,714	2,555	2,615	3,808	source per TWDB request. % from Lake Meredith via CRMWA system set to ~48.55%. Contract with IBP.	Updated 12/01/00		AMARILLO	MFG 1	POTTER	RED
MANUFACTURING	011001188	А	1001 1	1001	188	02	02	17600	A	191	01	19721	AMARILLO SYSTEM	1,047	997	944	888	909	1,324	Supply from Amarillo System arbitrarily segregated by original	Updated 12/01/00		AMARILLO	MFG 1	POTTER	RED
MANUFACTURING	011001188	А	1001 1	1001	188	02	02	17600	A	191	02	19721	AMARILLO SYSTEM	42	40	38	36	37	54	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Roberts County/Red/Ogallala via CRMWA system set to ~1.00%. Contract with IBP.	Updated 12/01/00		AMARILLO	MFG	POTTER	RED
MANUFACTURING	011001188	А	1001 1	1001	188	02	02	17600	А	033	01	03321	AMARILLO SYSTEM	232	282	333	387	367	0	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Carson County(Canadian/Ogallala via CRMWA system set to ~6.42%. Contract with IBP.	Updated 12/01/00		AMARILLO	MFG	POTTER	RED
MANUFACTURING	011001188	А	1001 1	1001	188	02	02	17600	А	033	02	03321	AMARILLO SYSTEM	252	305	361	419	397	0	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Carson County/Red/Ogallal via CRMWA system set to ~16.95%. Contract with IBP. Supply from Amarillo System arbitrarily segregated by original	Updated 12/01/00		AMARILLO	MFG	POTTER	RED
MANUFACTURING	011001188	А	1001 1	1001	188	02	02	17600	А	059	02	05921	AMARILLO SYSTEM	8	9	11	13	12	0	source per TWDB request. % from Deaf Smith County/Red/Ogallala via CRMWA system set to ~0.22%. Contract with IBP.	Updated 12/01/00		AMARILLO	MFG I	POTTER	RED
MANUFACTURING	011001188	А	1001 1	1001	188	02	02	17600	А	188	01	18821	AMARILLO SYSTEM	333	404	477	555	526	0	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Potter Contry(Candain/Ogallala via CRMWA system set to ~9.21%. Contract with IBP.	Updated 12/01/00		AMARILLO	MFG 1	POTTER	RED
MANUFACTURING	011001188	A	1001 1	1001	188	02	02	17600	А	188	02	18821	AMARILLO SYSTEM	73	89	105	122	115	0	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Potter County/Red/Ogallala via CRMWA system set to ~2.02%. Contract with IBP.	Updated 12/01/00		AMARILLO	MFG	POTTER	RED
MANUFACTURING	011001188	А	1001 1	1001	188	02	02	17600	А	191	02	19121	AMARILLO SYSTEM	39	48	56	65	62	0	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Randall County/Red/Ogallala via CRMWA system set to ~1.09%. Contract with IBP.	Updated 12/01/00	J: RWPG A listed for supply.	AMARILLO	MFG 1	POTTER	RED
MANUFACTURING	011001188	А			188	01	01		Α	188	01	18821	OGALLALA	418	489	563	610	99	0	Maximum use scenario - from storage, revised per Dutton Ogallala supply correction	revised 11/25/00	O-T: Value format changed to show "0" instead of "-" K: Supply county added. O-T: Value format changed to show "0"			POTTER	CANADIAN
MANUFACTURING	011001188	A			188	02	01		А	188	02	18821	OGALLALA	0	0	0	0	0	(used demands until supply exhausted Maximum use scenario - from storage, revised per Dutton	updated 3/30/00	instead of "-" K: Supply county added. J: RWPG A listed for supply. T: Value format changed to show "0"		MFG 1		RED
MINING	011003188	A			188	01	01		A .	188	01	18821	OGALLALA	276	222	223	224	32		Ogallala supply correction	revised 11/25/00	Value format changed to show "0" instead of "." K: Supply county added. Q-T: Value format changed to show "0" instead of "."		MIN I		CANADIAN
MINING	511003188	Α	1003 1	1003	188	02	01		Α	188	02	18821	OGALLALA	154	159	104	109	0		Ogallala supply correction	revised 11/25/00	instead of "-" K: Supply county added.		MIN	POTTER	KED

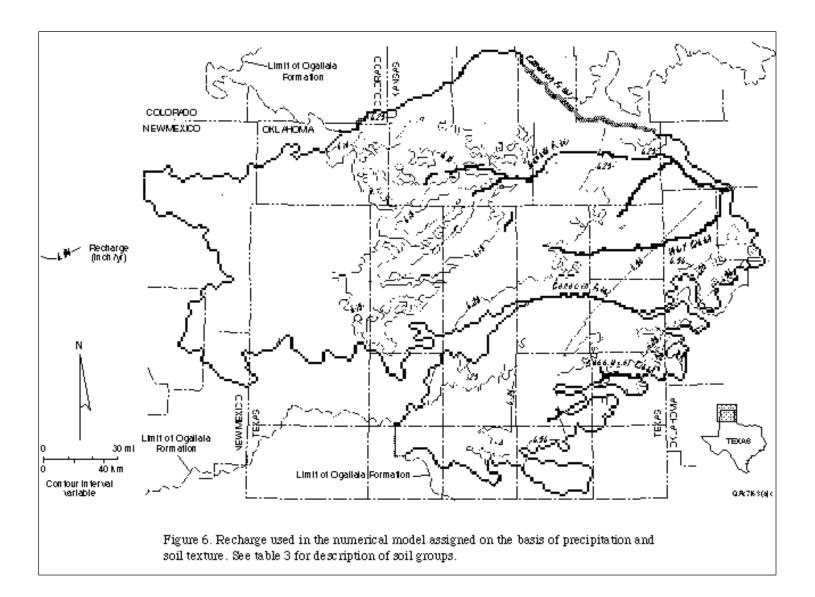

STEAM ELECTRIC	1 1			1	-	1							1				1	1		r	Corrected supply source to CRMWA		T T	1
POWER STEAM ELECTRIC	011002188	A 10		188		02			Α	117	01	010A0	CRMWA SYSTEM 48	5 593	670	708			1 Table 3 demands - SPS	Updated 2/14/00	from Amarillo System Corrected supply source to CRMWA	CRMWA	PWR POTTER	CANADIAN
POWER	011002188	A 10		188		02		10	Α	191	01	19721	CRMWA SYSTEM 24	5 300	339	358		379 40	0 Table 3 demands - SPS	Updated 2/14/00	from Amarillo System	CRMWA	PWR POTTER	CANADIAN
STEAM ELECTRIC POWER	011002188	A 10	1002	188	01	02		10	А	191	02	19721	CRMWA SYSTEM	0 12	14	15		15 1	6 Table 3 demands - SPS	Updated 2/14/00	Corrected supply source to CRMWA from Amarillo System	CRMWA	PWR POTTER	CANADIAN
STEAM ELECTRIC POWER	011002188	A 10	02 1002	188	01	01			А	188	01	18821	OGALLALA 4,61	6 8,583	11,420	12,779	2	,026	0 Maximum use scenario - from storage, revised per Dutton Ogallala supply correction	revised 11/25/00	J: RWPG A listed for supply. T: Value format changed to show "0" instead of "." K: Supply County added		PWR POTTER	CANADIAN
STEAM ELECTRIC POWER	011002188	A 10	02 1002	188	02	01			А	188	02	18821	OGALLALA	0 0	0	0			0 used demands until supply exhausted	updated 3/30/00	O-T: Value format changed to show "0" instead of "." K: Supply county added.		PWR POTTER	RED
STEAM ELECTRIC POWER	011002188	A 10	02 1002	188	01	00			Α	188	01	36014	REUSE: BaZoCou 01-02-188 7,04	6 7,155	7,401	7,736	8	,086 8,53	7 Represents SPS reuse, allocating Potter reuse first, followed by Randall reuse supply.	Updated 11/29/00			PWR POTTER	CANADIAN
STEAM ELECTRIC POWER	011002188	A 10	02 1002	188	01	00			А	188	02	36030	REUSE: BaZoCou 02-01-188 5,25	9 5,341	5,524	5,208	4	,858 4,40		Updated 11/29/00			PWR POTTER	CANADIAN
STEAM ELECTRIC POWER	011002188	A 10	02 1002	188	02	00			А	188	02	36030	REUSE: BaZoCou 02-01-188	0 0	0	0		0	0 ALL DEMANDS IN CANADIAN BASIN	Updated 11/29/00			PWR POTTER	RED
STEAM ELECTRIC P	011002188	A 10	02 1002	188	02	00			А	191	02	36031	REUSE: BaZoCou 02-01-191 63	9 448	19	0		0	All demands are in Potter county. Reuse allocated only to Potter	Updated 11/29/00			PWR POTTER	CANADIAN
							-									-		-	County, Canadian basin Supply from Amarillo System arbitrarily segregated by original					
AMARILLO	010020000	A 00	20 0014	191	02	02	1	17600	Α	117	01	010A0	AMARILLO SYSTEM 11,81	4 12,473	12,830	13,323	13,	,685 12,98	9 source per TWDB request. % from Lake Meredith via CRMWA system set to ~48.55%	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
AMARILLO	010020000	A 00	20 0014	191	02	02	1	17600	Α	191	01	19721	AMARILLO SYSTEM 4,10	7 4,336	4,460	4,632	4	,757 4,51	County/Canadian/Ogallala via CRMWA system set to ~24.56%	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
AMARILLO	010020000	A 00	20 0014	191	02	02	1	17600	А	191	02	19721	AMARILLO SYSTEM 16	7 176	181	188		193 18	via CRMWA system set to ~1.00%	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
AMARILLO	010020000	A 00	0014	191	02	02	1	17600	А	033	01	03321	AMARILLO SYSTEM 91	1 1,225	1,574	2,018	1,	,919	Supply from Amarillo System arbitrarily segregated by original 0 source per TWDB request. % from Carson County/Canadian/Ogallala via CRMWA system set to ~6.42%	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
AMARILLO	010020000	A 00	20 0014	191	02	02	1	17600	А	033	02	03321	AMARILLO SYSTEM 98	6 1,327	1,705	2,187	2	,079	Supply from Amarillo System arbitrarily segregated by original 0 source per TWDB request: % from Carson County/Red/Ogallala via CRMWA system set to ~16.95%	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
AMARILLO	010020000	A 00	0014	191	02	02	1	17600	А	059	02	05921	AMARILLO SYSTEM 3	1 41	53	68		64	Supply from Amarillo System arbitrarily segregated by original 0 source per TWDB request. % from Deaf Smith County/Red/Ogallala via CRMWA system set to ~0.22%	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
AMARILLO	010020000	A 00	20 0014	191	02	02	1	17600	А	188	01	18821	AMARILLO SYSTEM 1,30	6 1,757	2,258	2,895	2	,752	Supply from Amarillo System arbitrarily segregated by original 0 source per TWDB request. % from Potter County/Canadian/Ogallala via CRMWA system set to ~9.21%	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
AMARILLO	010020000	A 00	20 0014	191	02	02	1	17600	А	188	02	18821	AMARILLO SYSTEM 28	7 386	495	635		604	Supply from Amarillo System arbitrarily segregated by original 0 source per TWDB request. % from Potter County/Red/Ogallala via CRMWA system set to ~2.02%	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
AMARILLO	010020000	A 00	20 0014	191	02	02	1	17600	А	191	02	19121	AMARILLO SYSTEM 15	4 207	266	341		324	Supply from Amarillo System arbitrarily segregated by original 0 source per TWDB request. % from Randall County/Red/Ogallala	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
																			via CRMWA system set to ~1.09% Supply from Amarillo System arbitrarily segregated by original					
CANYON	010145000	A 01-	15 0096	191	02	02	1	17600	А	117	01	010A0	AMARILLO SYSTEM 1,38	8 1,384	1,508	1,419	1,	,453 2,11	source per TWDB request. % from Lake Meredith via CRMWA 6 system set to -48.55%. 5 mgd (5,628 aty) contract limitation. Assume average day = 2.5 mgd. Increased supply to meet demands as Ogallala use becomes limited. B&V 1996 report.	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
CANYON	010145000	A 01-	15 0096	191	02	02	1	17600	А	191	01	19721	AMARILLO SYSTEM 48	3 482	524	493		505 73	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Roberts CountylCanadianiOgallal avia (CRMWA system set to ~24.56%, mgd (5.628 afy) contract limitation. Assume average day ~2.5 mgd. Increased supply to meet demands as Ogallala use becomes limited. B&V 1996 report.	5 Updated 12/01/00		AMARILLO	MUN RANDALL	RED
CANYON	010145000	A 01-	15 0096	191	02	02	1	17600	А	191	02	19721	AMARILLO SYSTEM 2	0 20	21	20		20 3	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Roberts County/Red Ogallala via CR&WA system set to -100%. 5 mgl (5,28 afy) contract limitation. Assume average day = 2.5 mgd. Increased supply to meet demands as Ogallala use becomes limited. B&V 1996 report.	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
CANYON	010145000	A 01-	15 0096	191	02	02	1	17600	А	033	01	03321	AMARILLO SYSTEM IC	7 136	212	277		115	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Carson (County/Candidue Qallala via (CRWA System set to ~6.42%. 5 mgd (5.628 afr) contract limitation. Assume average day = 2.5 mgd. Increased supply to meet demands as Ogallala use becomes limited. B&V 1996 report.	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
CANYON	010145000	A 01-	15 0096	191	02	02	1	17600	А	033	02	03321	AMARILLO SYSTEM 11	6 147	230	300		125	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Carson County/Red/Ogallala ivia (CRWM system set to -16.9%. 5 mgd (5.26 afy) contract- limitation. Assume average day = 2.5 mgd. Increased supply to meet demands as Ogallala use becomes limited. B&V 1996 report.	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
CANYON	010145000	A 01-	15 0096	191	02	02	1	17600	0	059	02	05921	AMARILLO SYSTEM	4 5	7	9		4	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Deal Smith (5.00mt);RedOgallala via CRMWA system set to -0.22%. 5 mgd (5.028 afy) contract limitation. Assume average day = 2.5 mgd. Increased supply to meet demands as Ogallala use becomes limited. B&V 1996 report.	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
CANYON	010145000	A 01	15 0096	191	02	02	1	17600	А	188	01	18821	AMARILLO SYSTEM 15	3 195	304	397		166	Supply from Amarillo System arbitrarily segregated by original source per TWDB request: % from Potter (County/Canadam/Ogallala via (CRMW A system set to ~9.21%. 5 mgd (5,628 afr) contract limitation. Assume average day ~ 2.5 mgd. Increased supply to meet demands as Ogallala use becomes limited. B&V 1996 report.	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
CANYON	010145000	A 01	15 0096	191	02	02	1	17600	А	188	02	18821	AMARILLO SYSTEM 3	4 43	66	87		37	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Potter County/Red/Ogallal in GRMWA system set to - 2025, 5 mgl (5,628 kg/) contract imitation. Assume average day = 2.5 mgd. Increased supply to meet demands as Ogallala use becomes limited. B&V 1996 report.	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
CANYON	010145000	A 01	15 0096	191	02	02	1	17600	А	191	02	19121	AMARILLO SYSTEM	8 23	35	46		20	Sapply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Rahall County/Red/Ogallala (wia CR&WA system set to -1.09%, 5 mgd (5,628 dr)) contract limitation. Assume average day = 2.5 mgd. Increased supply to meet demands as Ogallala use becomes limited. B&V 1996 report.	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
CANYON	010145000	A 01	15 0096	191	02	01			А	191	02	19121	OGALLALA 40	0 400	0	0		0	0 used demands until supply exhausted	Updated 3/30/00	O-T: Value format changed to show "0" instead of "-" K: Supply county added.		MUN RANDALL	RED
COUNTY-OTHER	11004188	A 10	04 1001	188	01	02	1	17600	А	117	01	010A0	AMARILLO SYSTEM	9 18	17	16		16 2	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Lake Meredith via CRMWA system set to ~48.55%. Represents TPWD Palo Duro Canyon 3 SP, contract limitation.	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
COUNTY-OTHER	11004188	A 10	04 1001	188	01	02	1	17600	А	191	01	19721	AMARILLO SYSTEM	6 6	6	5		6	Supply from Amarillo System arbitrarily segregated by original 8 source per TWDB request. % from Roberts County/Canadian/Ogallala via CRMWA system set to ~24.56%. Represents TPWD Palo Duro Canyon SP, contract limitation.	Updated 12/01/00		AMARILLO	MUN RANDALL	RED
COUNTY-OTHER	11004188	A 10	04 1001	188	01	02	1	17600	А	191	02	19721	AMARILLO SYSTEM	0 0	0	0		0	Supply from Amarillo System arbitrarily segregated by original 0 source per TWDB request. % from Roberts County/Red/Ogallala via CRMWA system set to ~1.00%. Represents TPWD Palo Duro Canyon SP, contract limitation.	Updated 12/01/00		AMARILLO	MUN RANDALL	RED


COUNTY-OTHER	11004188	А	1004 1001	188	01	02 176	00 A	033	01	03321	AMARILLO SYSTEM	2	2	2	2	2	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Carson County/Canadian/Ogallala via CRMWA system set to ~6.42%. Represents TPWD Palo Duro Canyon SP, contract limitation.	Updated 12/01/00		AMARILLO	MUN	RANDALL	RED
COUNTY-OTHER	11004188	А	1004 1001	188	01	02 176	00 A	033	02	03321	AMARILLO SYSTEM	2	2	2	3	2	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Carson County/Red/Ogallala via CRMWA system set to ~16.95%. Represents TPWD Palo Duro Carwo SP, contract limitation.	Updated 12/01/00		AMARILLO	MUN	RANDALL	RED
COUNTY-OTHER	11004188	А	1004 1001	188	01	02 176	00 A	059	02	05921	AMARILLO SYSTEM	0	0	0	0	0	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Deaf Smith County/Red/Ogallala via CRMWA system set to ~0.22%. Represents TPWD Palo Duro Canyon SP, contract limitation.	Updated 12/01/00		AMARILLO	MUN	RANDALL	RED
COUNTY-OTHER	11004188	А	1004 1001	188	01	02 176	00 A	188	01	18821	AMARILLO SYSTEM	2	2	3	4	3	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Potter County/Canadian/Ogallala via CRMWA system set to ~9.21%. Represents TPWD Palo Duro Canyon SP, contract limitation.	Updated 12/01/00		AMARILLO	MUN	RANDALL	RED
COUNTY-OTHER	11004188	А	1004 1001	188	01	02 176	00 A	188	02	18821	AMARILLO SYSTEM	0	1	1	1	1	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Potter County/Red/Ogallala via CRMWA system set to ~2.02%. Represents TPWD Palo Duro Canyon SP, contract limitation.	Updated 12/01/00		AMARILLO	MUN	RANDALL	RED
COUNTY-OTHER	11004188	А	1004 1001	188	01	02 176	60 A	191	02	19121	AMARILLO SYSTEM	0	0	0	0	0	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Randall County/Red/Ogallal via CRMWA system set to ~1.09%. Represents TPWD Palo Duro Canyon SP, contract limitation.	a Updated 12/01/00		AMARILLO	MUN	RANDALL	RED
COUNTY-OTHER	010996191	Α	0996 0757	191	02	01	Α	191	02	19126	DOCKUM	9	11	12	14	16	18 Supply divided among categories with historical use	Updated 2/14/00	K: Supply County added		MUN	RANDALL	RED
COUNTY-OTHER	010996191	А	0996 0757	191	01	01	۸	191	01	19121	OGALLALA	326	372	417	480	0	used demands until supply exhausted. Note: there is no Canadian basin in Randall County	Updated 3/30/00	G: Basin # corrected to 1. S-T: Value format changed to show "0" instead of "." K: Supply county added. T: Value format changed to show "0"		MUN	RANDALL	CANADIA
COUNTY-OTHER	010996191	А	0996 0757	191	02	01	Α	191	02	19121	OGALLALA	2,511	2,921	3,311	3,839	710	0 used demands until supply exhausted	Updated 3/30/00	instead of "-"		MUN	RANDALL	RED
HAPPY	010378000	А	0378 0877	191	02	01	Α	191	02	19122	OTHER U-DIF (Santa Rosa)	57	40	40	37	35	35 used approx. 1/2 demands - remaining from Swisher Co.	Updated 8/7/00	K: Supply county added. K: Supply County added		MUN	RANDALL	RED
IRRIGATION	011004191	А	1004 1004	191	02	01	Α	191	02	19126	DOCKUM	0	0	0	0	0	0 no historical use last 4 years	Updated 2/14/00	O-T: Value format changed to show "0"		IRR	RANDALL	RED
IRRIGATION	011004191	А	1004 1004	191	02	00	Α	191	02	191996	IRRIGATION LOCAL SUPPLY2 + 191 + 1	637	634	630	627	624	621 All irrigation supply to IRR and STK unless otherwise specified.	Undated 2/14/00	K: Supply County added		IDD	RANDALL	RED
IRRIGATION	011004191	А	1004 1004	191	02	00	^	191	02	191996	IRRIGATION LOCAL SUPPLY2 - 191 - 1	637	634	630	627	624	621 All irrigation supply to IKK and STK unless otherwise specified.	. Updated 2/14/00	K: Supply County added		IKK	KANDALL	RED
IRRIGATION	011004191	А	1004 1004	191	01	01	۸	191	01	19121	OGALLALA	553	549	546	415	0	0 used demands until supply exhausted	Updated 3/30/00	G: Basin # corrected to 1. S-T: Value format changed to show "0" instead of "." K: Supply county added.		IRR	RANDALL	CANADIAN
IRRIGATION	011004191	А	1004 1004	191	02	01	٨	191	02	19121	OGALLALA	52,169	51,374	50,589	49,534	7,819	0 used demands until supply exhausted	Updated 3/30/00	T: Value format changed to show "0" instead of "-" K: Supply county added.		IRR	RANDALL	RED
IRRIGATION	011004191	Α	1004 1004	191	01	00	Α	191	01	36015	REUSE: BaZoCou 01-02-191	16	20	23	26	30	35 Remaining reuse supply in Potter and Randall county after PWR allocation	opulled 11/20/00			IRR	RANDALL	CANADIA
IRRIGATION	011004191	Α	1004 1004	191	02	00	Α	191	02	36031	REUSE: BaZoCou 02-01-191	4,116	4,914	5,703	6,761	8,027	9,621 Remaining reuse supply in Potter and Randall county after PWR allocation	Updated 11/29/00			IRR	RANDALL	RED
LAKE TANGLEWOOD	010500000	А	0500 0895	191	02	01	А		02	19121	OGALLALA	292	289	0	0	0	0 used demands until supply exhausted	Updated 3/30/00	Q-T: Value format changed to show "0" instead of "-" K: Supply county added.		MUN		RED
LIVESTOCK	011005191	А	1005 1005	191	02	01	Α	191	02	19126	DOCKUM	180	180		180	180	180 used demands until supply exhausted	Updated 3/30/00	K: Supply County added			RANDALL	Red
LIVESTOCK	011005191	Α	1005 1005	191	02	00	Α	191	02	191996	IRRIGATION LOCAL SUPPLY2 - 191 - 1	34	37	41	44	46	50 All irrigation supply to IRR and STK unless otherwise specified.	Updated 2/14/00	K: Supply County added		STK	RANDALL	RED
LIVESTOCK	011005191	А	1005 1005	191	01	00	А	191	01	01997	local supply - stock ponds	10	10	10	10	10	10 HISTORICAL MAX USE		G: Basin # corrected to 1. J: RWPG A listed for supply. Not identified by TWDB. Needs to be added to Table 4 B-H, K: Info added.		STK	RANDALL	CANADIAN
LIVESTOCK	011005191	А	1005 1005	191	02	00	А	191	02	02997	local supply - stock ponds	972	972	972	972	972	972 HISTORICAL MAX USE	Updated 4/1/00	Table 4 updated to include stock pond supply information K: Supply County added M: ID corrected, was 19126.		STK	RANDALL	RED
LIVESTOCK	011005191	Α	1005 1005	191	01	01	Α	191	01	19121	OGALLALA	21	24	28	30	2	2		G: Basin # corrected to 1. K: Supply County added		STK	RANDALL	CANADIAN
LIVESTOCK	011005191	А	1005 1005	191	02	01	А	191	02	19121	OGALLALA	1,850	2,164	2,521	2,783	497	0 used demands until supply exhausted	Updated 3/30/00	T: Value format changed to show "0" instead of "-" K: Supply county added.		STK	RANDALL	RED
MANUFACTURING	011001191	А	1001 1001	191	02	02 176	60 A	117	01	010A0	AMARILLO SYSTEM	179	171	162	152	156	Supply from Amarillo System arbitrarily segregated by original 227 source per TWDB request. % from Lake Meredith via CRMWA system set to ~48.55%. Estimated supply for Owens-Corning.	Updated 12/01/00		AMARILLO	MFG	RANDALL	RED
MANUFACTURING	011001191	А	1001 1001	191	02	02 176	00 A	191	01	19721	AMARILLO SYSTEM	62	59	56	53	54	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Roberts County/Canadian/Ogallala via CRAWA system set to ~24.56%. Estimated supply for Owens-Corning.			AMARILLO	MFG	RANDALL	RED
MANUFACTURING	011001191	А	1001 1001	191	02	02 176	600 A	191	02	19721	AMARILLO SYSTEM	3	2	2	2	2	Supply from Amarillo System arbitrarily segregated by original tource per TWDB request. % from Roberts County/Red/Ogallal via CRMWA system set to ~1.00%. Estimated supply for Owen Corning.	a Updated 12/01/00		AMARILLO	MFG	RANDALL	RED
MANUFACTURING	011001191	А	1001 1001	191	02	02 176	60 A	033	01	03321	AMARILLO SYSTEM	14	17	20	23	22	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Carson County/Canadinn/Ogallaha via CRMWA system set to ~6.42%. Estimated supply for Owens-Corning.	Updated 12/01/00		AMARILLO	MFG	RANDALL	RED
MANUFACTURING	011001191	А	1001 1001	191	02	02 176	60 A	033	02	03321	AMARILLO SYSTEM	15	18	21	25	24	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Carson County/Red/Ogallala via CRMWA system set to ~16.95%. Estimated supply for Owe Corning.	Updated 12/01/00		AMARILLO	MFG	RANDALL	RED
MANUFACTURING	011001191	А	1001 1001	191	02	02 176	60 A	059	02	05921	AMARILLO SYSTEM	1	1	1	1	1	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Deaf Smith County/Red/Qallala via CRMWA system set to ~0.22%. Estimated supply for Owens-Corning.	Updated 12/01/00		AMARILLO	MFG	RANDALL	RED
MANUFACTURING	011001191	А	1001 1001	191	02	02 176	60 A	188	01	18821	AMARILLO SYSTEM	20	24	28	33	31	Supply from Amarillo System arbitrarily segregated by original tource per TWDB request. % from Potter County/Canadian/Ogallala via CRNWA system set to ~9.21%. Estimated supply for Owens-Corning.	Updated 12/01/00		AMARILLO	MFG	RANDALL	RED
MANUFACTURING	011001191	А	1001 1001	191	02	02 176	60 A	188	02	18821	AMARILLO SYSTEM	4	5	6	7	7	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Potter County/Red/Ogallala via CRMWA system set to ~2.02%. Estimated supply for Owen Corning.	5- Updated 12/01/00		AMARILLO	MFG	RANDALL	RED
	I T	А	1001 1001	191	02	02 176	60 A	191	02	19121	AMARILLO SYSTEM	2	3	4	4	4	Supply from Amarillo System arbitrarily segregated by original source per TWDB request. % from Randall County/Red/Ogallal via CRMWA system set to ~1.09%. Estimated supply for Owen Corning.	a 5- Updated 12/01/00		AMARILLO	MFG	RANDALL	RED
MANUFACTURING	011001191				02	01	Λ	191	02	19121	OGALLALA	257	217	172	175	29	0 used demands until supply exhausted	Updated 3/30/00	T: Value format changed to show "0" instead of "-" K: Supply county added.		MFG	RANDALL	RED
MANUFACTURING	011001191 011001191	А	1001 1001	191	02													1	B-G: Info added.				
MANUFACTURING	011001191 011003191	А	1003 1003	191	01	01	٨		01	19121	OGALLALA	2	2	2	2	2	2		J: RWPG A listed for supply. K: Supply county added.		MIN		CANADIA
MANUFACTURING	011001191						A		01	19121	OGALLALA	2	2	2	2	2	2 0 used demands until supply exhausted	Updated 3/30/00	J: RWPG A listed for supply. K: Supply county added. T: Value format changed to show "0" instead of "."		MIN MIN		CANADIA) RED
MANUFACTURING MINING COUNTY-OTHER	011001191 011003191 011003191 010096197	A A A	1003 1003 1003 1003 0996 0757	191	01 02 01	01 01 01	A	191	02	19121	OGALLALA OGALLALA	2 7 38	2 5 38	2 4 34	3	2 0 26	19 used demands, historical pumpage 42 ac/ft	Updated 2/11/00	J: RWPG A listed for supply. K: Supply county added. T: Value format changed to show "0" instead of "." K: Supply county added.		MIN	RANDALL	RED
MANUFACTURING MINING MINING	011001191 011003191	A A A	1003 1003	191	01	01	٨	191	02		OGALLALA	2 7 38 2 6,210	2 5 38 2 6,210	2 4 34 6,210	2 3 30 6,210	2 0 26 1 6,210	19 used demands, historical pumpage 42 ac/ft 1 used demands, historical pumpage 2 ac/ft 6,210 1996 historical pumpage = 6210 ac/ft	Updated 3/30/00 Updated 2/11/00 Updated 2/11/00 Updated 4/1/00	J: RWPG A listed for supply. K: Supply county added. T: Value format changed to show "0" instead of "."		MIN MUN MUN		RED
MANUFACTURING MINING COUNTY-OTHER COUNTY-OTHER	011001191 011003191 011003191 010096197	A A A A	1003 1003 1003 1003 0996 0757 0996 0757	191	01 02 01	01 01 01	A	191 197 197 197	02	19121	OGALLALA OGALLALA OGALLALA	2 7 38 2 6,210 5,755	2 5 38 2 6,210 5,755	2 4 34 2 6,210 5,755	2 30 1 6,210 5,755	2 0 26 1 6,210 5,755	19 used demands, historical pumpage 42 ac/ft	Updated 2/11/00 Updated 2/11/00 Updated 4/1/00	J: RWPG A listed for supply. K: Supply county added. T: Value format changed to show "0" instead of "." K: Supply county added.		MIN MUN MUN IRR	RANDALL ROBERTS ROBERTS	RED


LIVESTOCK	011005197	А	1005 100	5 197	01	00	А	197	01	01997	local supply - stock ponds	529	529	529	529	529	525	historical use =90% of demands, max use = 529	Updated 2/11/00	Table 4 updated to include stock pond supply information. M: ID added.		STK ROBERTS	CANADIAN
LIVESTOCK	011005197	А	1005 100	5 197	02	00	А	197	02	02997	local supply - stock ponds	16	18	19	20	22	24	used demands	Updated 2/11/00	Not identified by TWDB. Needs to be added to Table 4 G: Corrected to 2 for Red Basin M: ID added.		STK ROBERTS	RED
LIVESTOCK	011005197	Α	1005 100	5 197	01	01	A	197	01	19721	OGALLALA	0	27	70	119	171	225	remainder of demands	Updated 2/11/00			STK ROBERTS	CANADIAN
MIAMI	010594000	А	0594 040		01	01	Α	197	01	19721	OGALLALA	208	209	203	203	203	203	HISTORICAL MAXIMUM USE, increased slightly in 2000/2010 to meet demands	Updated 3/20/00			MUN ROBERTS	CANADIAN
MINING	011003197	А	1003 100	3 197	01	01	Α	197	01	19721	OGALLALA	2	1	1	1	1		used demands	Updated 2/11/00			MIN ROBERTS	CANADIAN
MINING	011003197	Α	1003 100	3 197	02	01	٨	197	02	19721	OGALLALA	11	11	11	п	11	1	1		J: RWPG A listed for supply. Identifying info added.		MIN ROBERTS	RED
COUNTY-OTHER	010996211	Α	0996 075	7 211	01	01	Α	211	01	21121	OGALLALA	180	165	145	127	117	10	used demands, values updated per Dutton Ogallala corrections	Updated 11/25/00	T: Value format changed to show "0" instead of "-"		MUN SHERMAN	CANADIAN
IRRIGATION	011004211	А	1004 100	4 211	01	00	٨	211	01	211996	IRRIGATION LOCAL SUPPLY1 - 211 - 1	410	406	405	404	402	400	All irrigation supply to IRR and STK unless otherwise specified	Updated 2/14/00			IRR SHERMAN	CANADIAN
IRRIGATION	011004211	А	1004 100	4 211	01	01	Λ	211	01	21121	OGALLALA	194,787	194,791	194,792	194,793	194,795	194,793	used demands, values updated per Dutton Ogallala corrections	Updated 11/25/00	T: Value format changed to show "0" instead of "-"		IRR SHERMAN	CANADIAN
LIVESTOCK	011005211	А	1005 100	5 211	01	00	٨	211	01	211996	IRRIGATION LOCAL SUPPLY1 - 211 - 1	8	12	13	14	16	18	All irrigation supply to IRR and STK unless otherwise specified	Updated 2/14/00			STK SHERMAN	CANADIAN
LIVESTOCK	011005211	А	1005 100	5 211	01	00	А	211	01	01997	local supply - stock ponds	846	846	846	846	846	846	HISTORICAL MAX USE	Updated 4/1/00	Table 4 updated to include stock pond supply information M: Source ID corrected, was 21121.		STK SHERMAN	CANADIAN
LIVESTOCK	011005211	Α	1005 100	5 211	01	01	А	211	01	21121	OGALLALA	2,959	4,718	5,420	6,085	6,833	7,679	used demands, values updated per Dutton Ogallala corrections	Updated 11/25/00	T: Value format changed to show "0" instead of "-"		STK SHERMAN	CANADIAN
MINING	011003211	А	1003 100	3 211	01	01	٨	211	01	21121	OGALLALA	26	26	27	28	29	31	used demands, values updated per Dutton Ogallala corrections	Updated 11/25/00	T: Value format changed to show "0" instead of "-"		MIN SHERMAN	CANADIAN
STRATFORD	010864000	А	0864 058	4 211	01	01	Α	211	01	21121	OGALLALA	565	574	570	543	514	490	s used demands, values updated per Dutton Ogallala corrections	Updated 11/25/00	T: Value format changed to show "0" instead of "-"		MUN SHERMAN	CANADIAN
HAPPY	150378000	0	0378 087	7 219	02	01	0	219	02	21922	OTHER U-DIF (Santa Rosa)	40	48	40	37	36	34	used approx. 1/2 demands - remaining from Randall Co. (record added for reference. Supply and portion of source are in Region O).	Updated 8/7/00	J: RWPG A listed for supply.		MUN SWISHER	RED
COUNTY-OTHER	010996242	А	0996 075	7 242	02	01	٨	242	02	24206	BLAINE	14	14	14	14	14	14	HISTORICAL MAXIMUM USE	Updated 4/1/00	M: Source ID changed from 09606 to 24206		MUN WHEELER	RED
COUNTY-OTHER	010996242	А	0996 075		02	01	Λ	242	02	24221	OGALLALA	541		541	541	541		HISTORICAL MAXIMUM USE	Updated 4/1/00			MUN WHEELER	RED
COUNTY-OTHER	010996242	А	0996 075		02	01	Α	242	02	24222	OTHER U-DIF (Whitehorse)	11		9	9	8		Ratioed among CATs w/ hist pumpage.				MUN WHEELER	RED
COUNTY-OTHER	010996242	А	0996 075		02	01	 Α	242	02	24204	SEYMOUR	21	21	21	21	21	2	HISTORICAL MAXIMUM USE	Updated 4/1/00			MUN WHEELER	RED
IRRIGATION	011004242	Α	1004 100		02	01	Α	242	02	24206	BLAINE	15	15	15	15	15		125% OF HISTORICAL MAXIMUM USE	Updated 4/1/00	M: Source ID changed from 09606 to 24206		IRR WHEELER	RED
IRRIGATION IRRIGATION	011004242 011004242	A	1004 100 1004 100		02	01	 A	242 242	02	24221 24222	OGALLALA OTHER U-DIF (Whitehorse)	5,336 295			5,336	5,336		increased to MEET DEMANDS 125% OF HISTORICAL MAXIMUM USE	Updated 4/1/00 Updated 4/1/00			IRR WHEELER IRR WHEELER	RED
IRRIGATION	011004242	A	1004 100		02	00	 A .	242 242	02	36034	REUSE: BaZoCou 02-01-242	295		293	295	295		All reuse assumed to IRR unless otherwise specified.	Get w/ TLS re: reuse allocations			IRR WHEELER	RED
IRRIGATION	011004242	A			02	01	 A	242	02	24204	SEYMOUR	38		13	15	28		125% OF HISTORICAL MAXIMUM USE	Undated 4/1/00			IRR WHEELER	RED
LIVESTOCK	011005242	A	1005 100		02	01	A	242	02	24206	BLAINE	19	19	19	19	19		HISTORICAL MAXIMUM USE	Updated 4/1/00	M: Source ID changed from 09606 to 24206		STK WHEELER	RED
LIVESTOCK	011005242	А	1005 100		02	00	А	242	02	02997	local supply - stock ponds	2,236		,		2,236	, .	HISTORICAL MAXIMUM USE		Table 4 updated to include stock pond supply information B-G, K:Info added. M: ID added.		STK WHEELER	RED
	011005242	А	1005 100		02	01	Λ	242	02	24221	OGALLALA	240				240		HISTORICAL MAXIMUM USE	Updated 4/1/00		-	STK WHEELER	RED
	011005242	A	1005 100		02	01	٨	242	02	24222	OTHER U-DIF (Whitehorse)	29	29	29	29	29		HISTORICAL MAXIMUM USE HISTORICAL MAXIMUM USE	Updated 4/1/00			STK WHEELER	RED
LIVESTOCK MINING	011005242 011003242	A	1005 100 1003 100		02	01	A	242 242	02	24204 24221	SEYMOUR OGALLALA	29	29	29	29	29		HISTORICAL MAXIMUM USE HISTORICAL MAXIMUM USE	Updated 4/1/00 Updated 4/1/00			STK WHEELER MIN WHEELER	RED
MINING	011003242	A	1003 100		02	01	A	242	02	24221 24222	OTHER U-DIF (Whitehorse)	157	0	157	0	0	15.	HISTORICAL MAXIMUM USE	Updated 4/1/00 Updated 4/1/00	O-T: Value format changed to show "0" instead of "-"		MIN WHEELER	RED
MINING	011003242	А	1003 100	3 242	02	01	A	242	02	24204	SEYMOUR	0	0	0	0	0	(HISTORICAL MAX	Updated 4/1/00	O-T: Value format changed to show "0" instead of "-"		MIN WHEELER	RED
SHAMROCK	010822000	А	0822 055	4 242	02	01	A	242	02	24221	OGALLALA	370	354	338	332	70	(From PGWCD3-Cities.xls. Allocated to meet demands until supply exhausted.	Updated 3/20/00	T: Value format changed to show "0" instead of "."		MUN WHEELER	RED
WHEELER	010961000	А	0961 064	6 242	02	01	А	242	02	24221	OGALLALA	300	266	0	0	0	(From PGWCD3-Cities xIs. Allocated to meet demands until samply exhausted.	Updated 3/20/00	Q-T: Value format changed to show "0" instead of "-"		MUN WHEELER	RED


Table 6: Current Water Supplies Available by Major Water Provider


Major Water Provider Name		Type of Water Supply Source	Location of Supply Source (RWPG Letter)	Location of Groundwater Supply Source (County Number)	Location of Supply Source (Basin Number)	Specific Source Indentifier	Specific Source Name	11 2	Available Supply for the Year 2010 (Ac-Ft)	Available Supply for the Year 2020 (Ac-Ft)	Available Supply for the Year 2030 (Ac-Ft)		11 5	Comments
Amarillo	17600	02	А	117	01	010A0	Amarillo System	31,549	31,549	31,552	31,548	31,552	31,551	
Amarillo	17600	02	А	033	01	03321	Amarillo System	2,432	3,099	3,898	4,841	4,336	0	
Amarillo	17600	02	А	033	02	03321	Amarillo System	2,634	3,356	4,223	5,246	4,696	0	
Amarillo	17600	02	А	188	01	18821	Amarillo System	3,487	4,443	5,589	6,945	6,218	0	
Amarillo	17600	02	А	188	02	18821	Amarillo System	764	977	1,226	1,524	1,365	0	
Amarillo	17600	02	А	059	02	05921	Amarillo System	83	104	132	163	146	0	
Amarillo	17600	02	А	191	02	19121	Amarillo System	410	524	657	817	733	0	
Amarillo	17600	02	А	191	01	19721	Amarillo System	10,967	10,967	10,967	10,967	10,967	10,967	
Amarillo	17600	02	В	191	02	19721	Amarillo System	446	445	444	445	445	444	
CRMWA	10	02	А	117	01	010A0	CRMWA System	33,036	33,036	33,036	33,036	33,036	33,036	
CRMWA	10	02	A	191	01	19121	CRMWA System	24,011	24,011	24,011	24,011	24,011	24,011	
CRMWA	10	02	A	191	02	19121	CRMWA System	974	974	974	974	974	974	
Greenbelt M&IWA	20	00	В		02	02050	Greenbelt Reservoir	7,699	7,548	7,396	7,245	7,093	6,942	



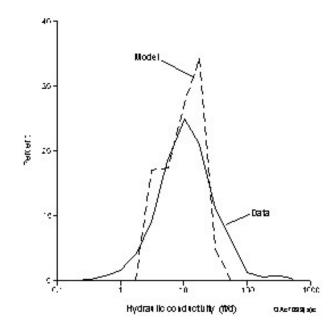
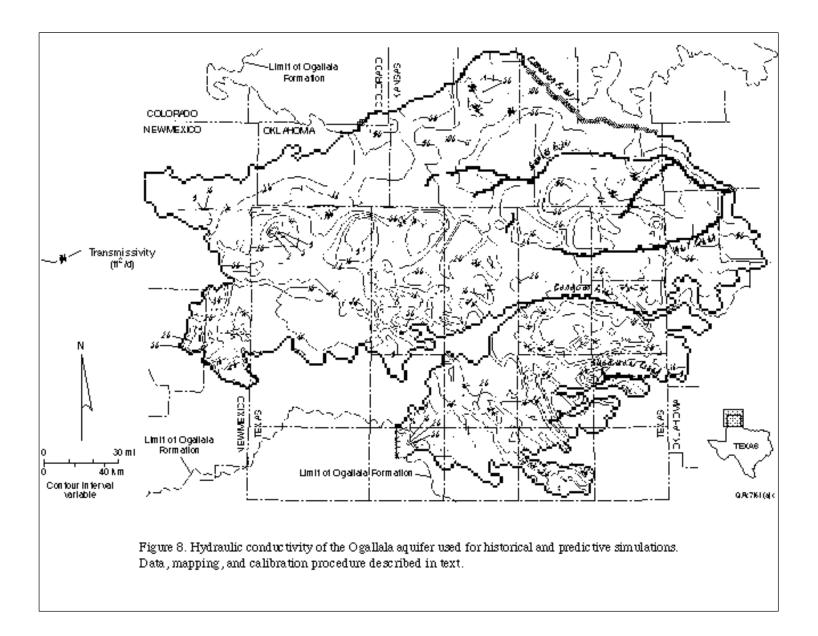
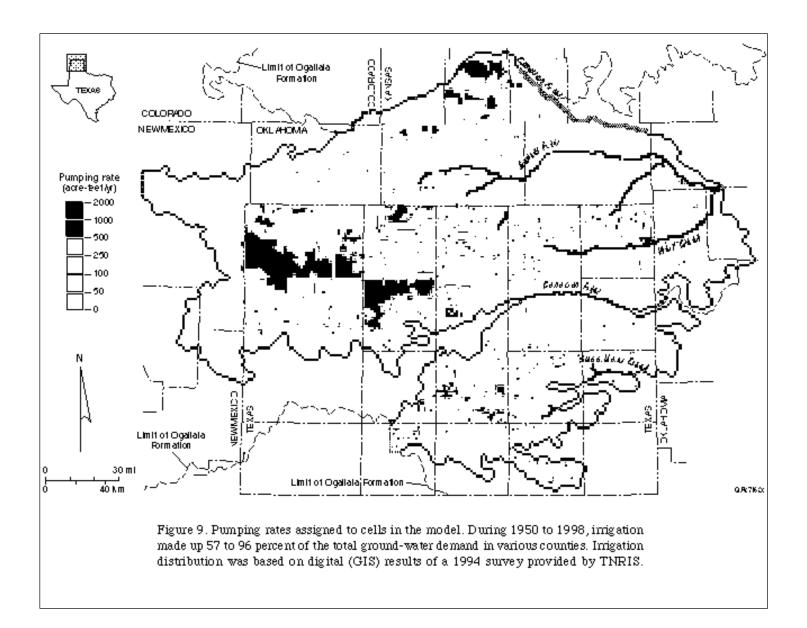




Figure 7. Comparison of measured and calibrated values of hydraulic conductivity used in the Texas part of the model.

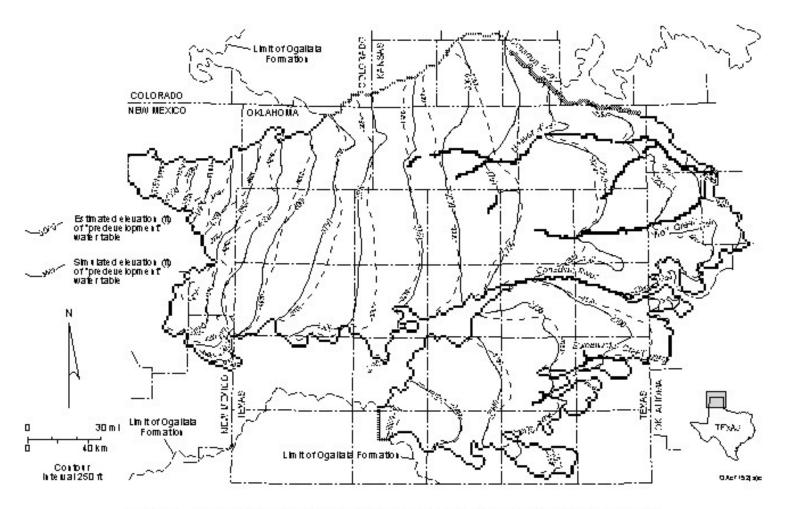
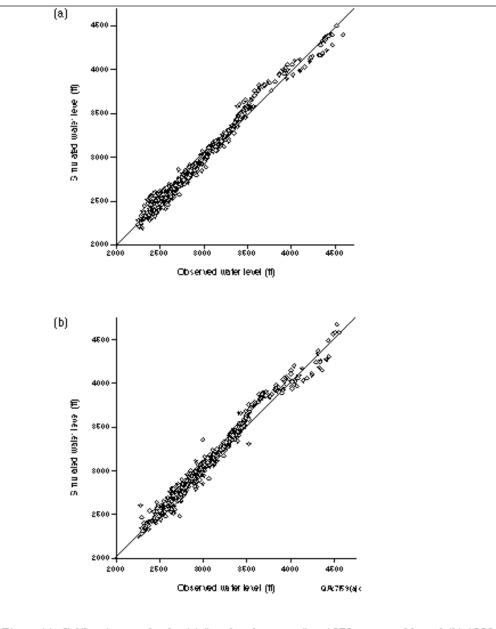
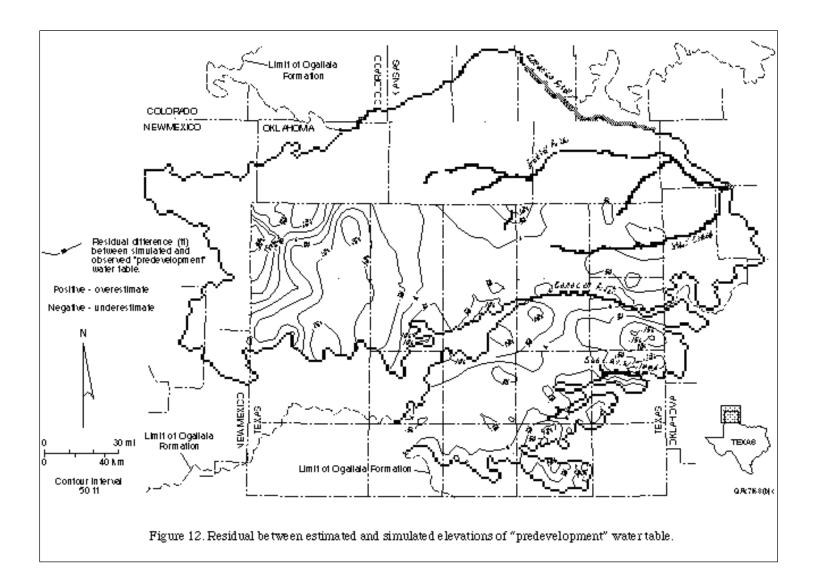
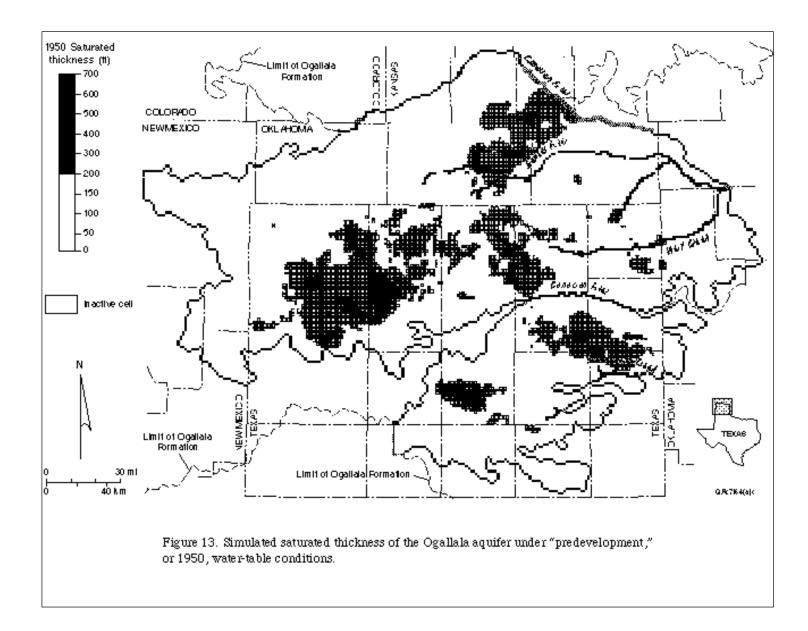
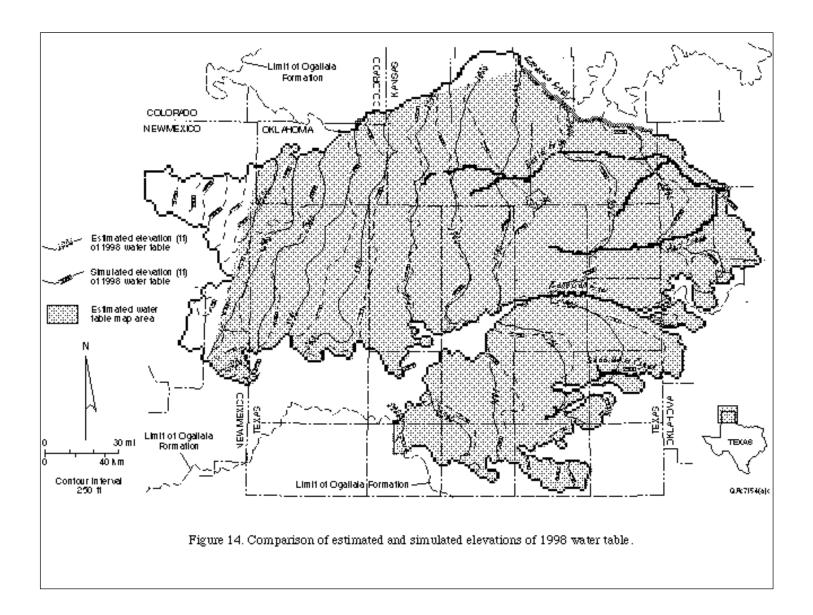
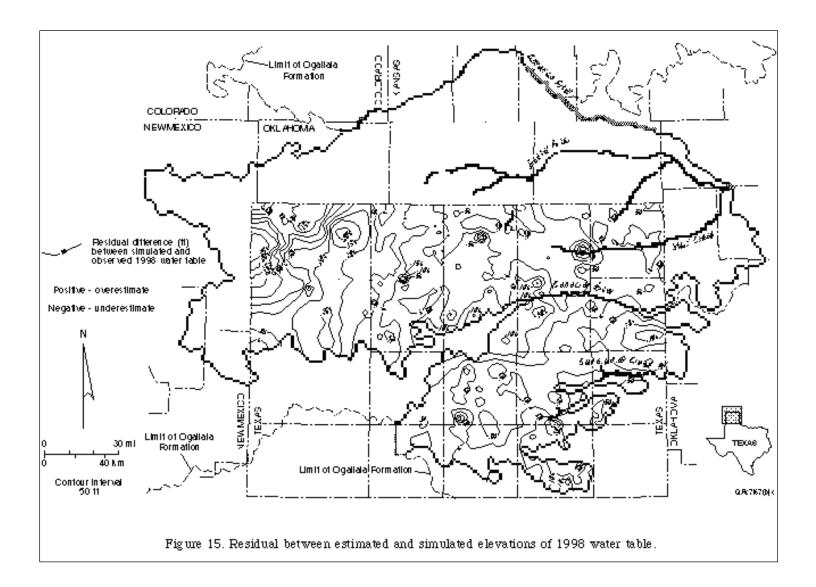
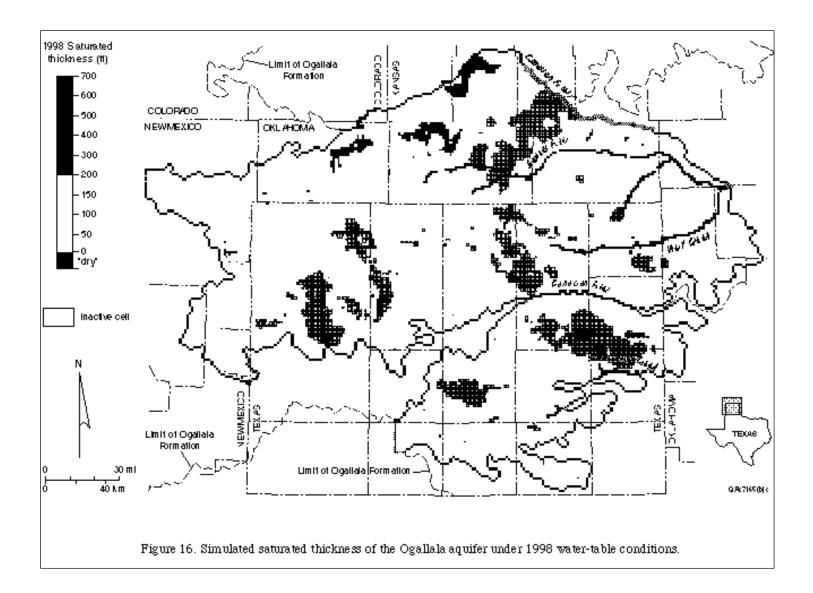
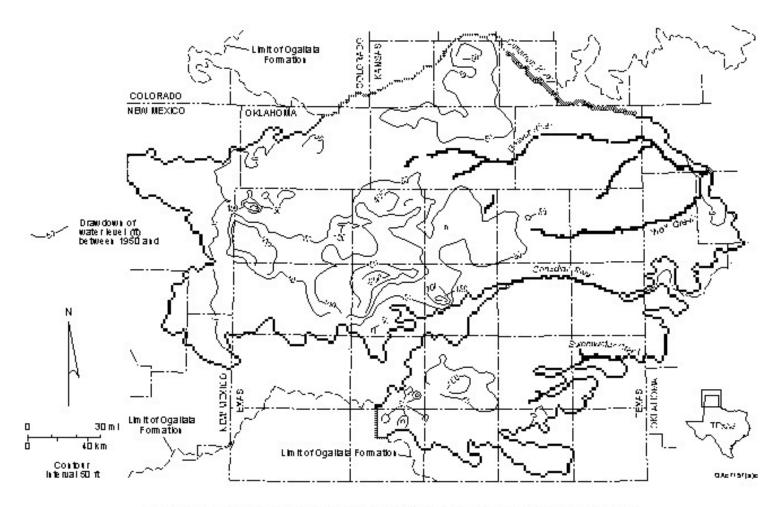
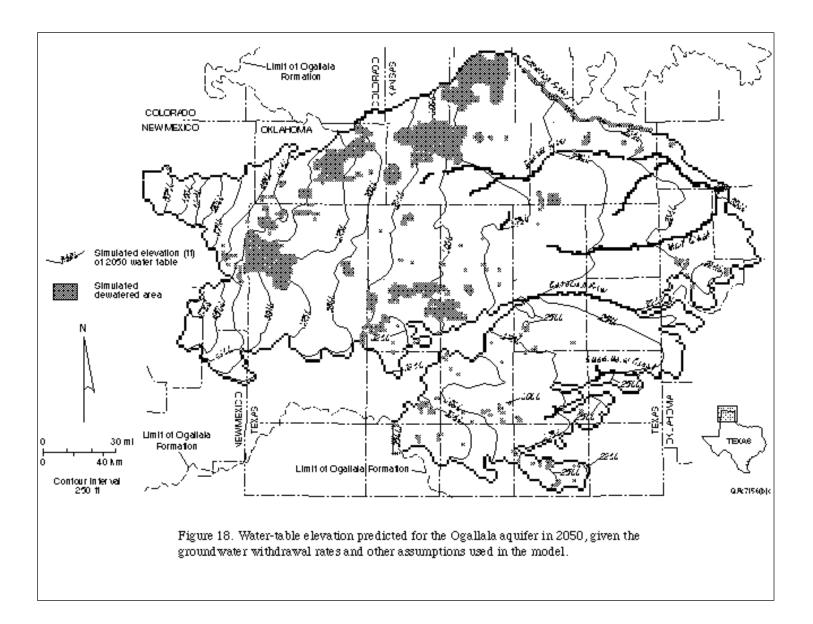
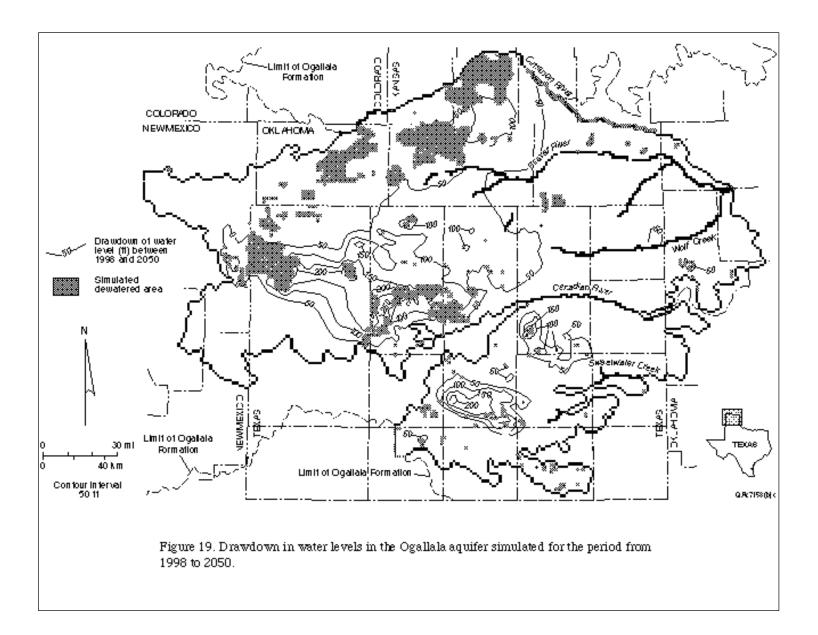
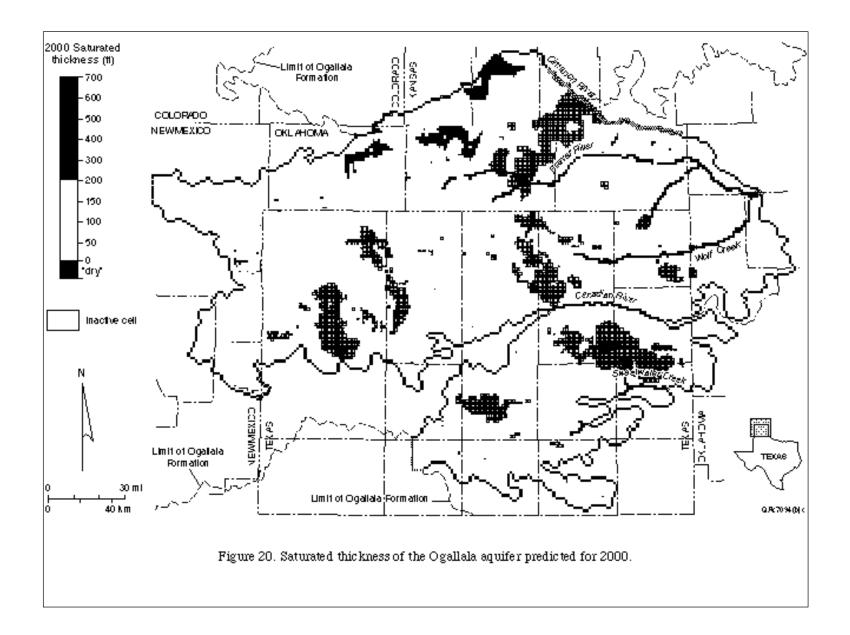
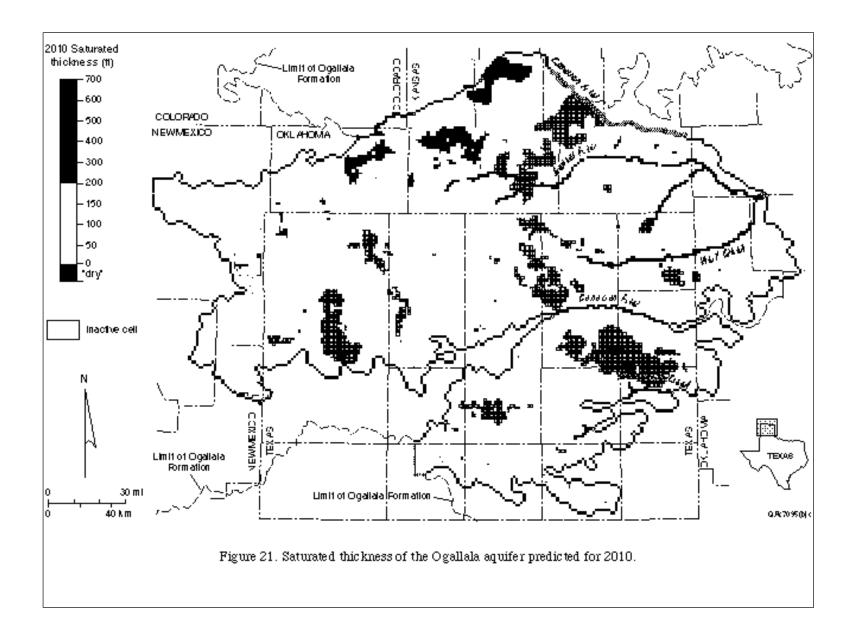
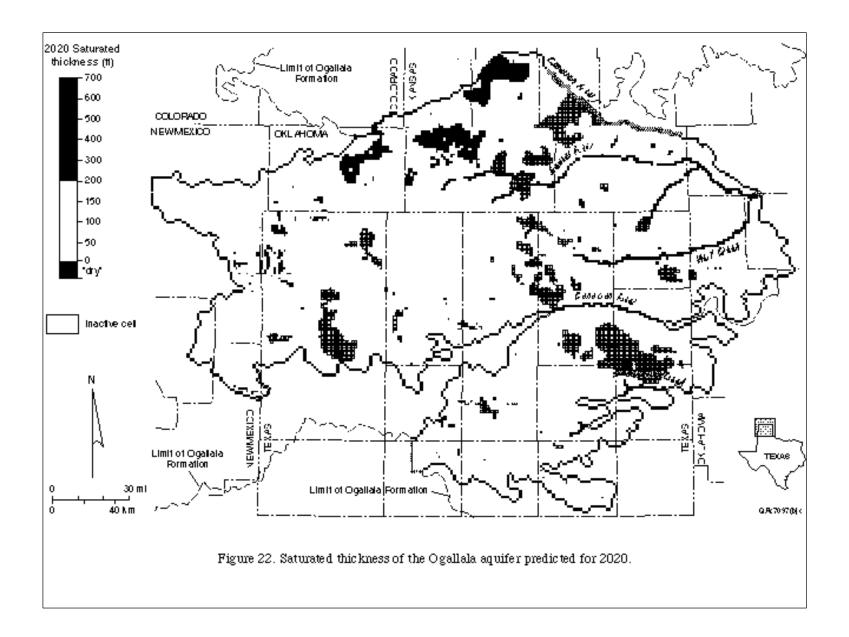


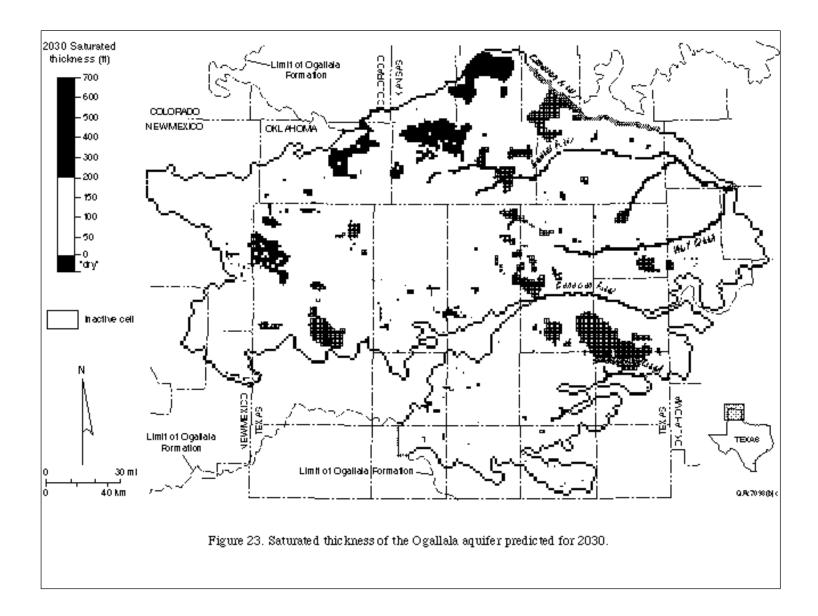
Figure 10. Comparison of estimated and simulated elevations of "predevelopment" water table.

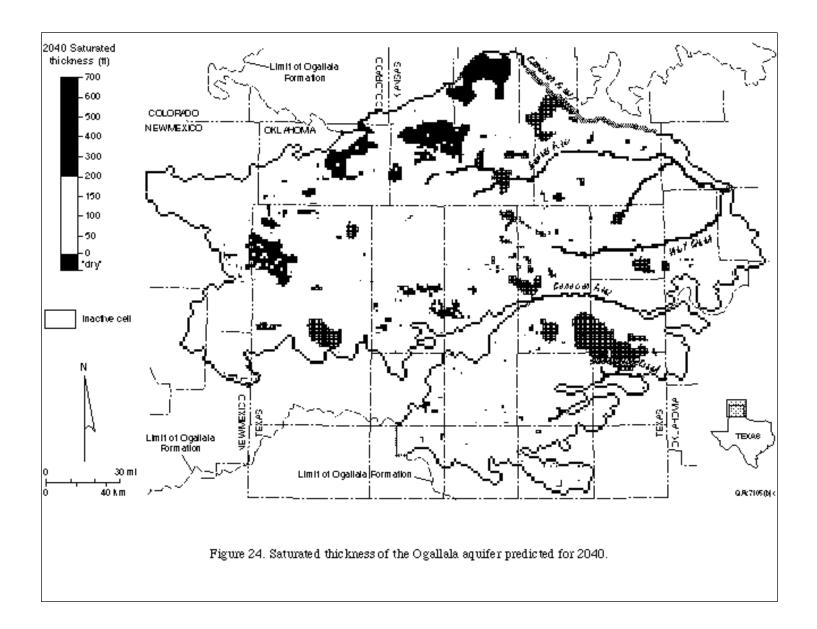






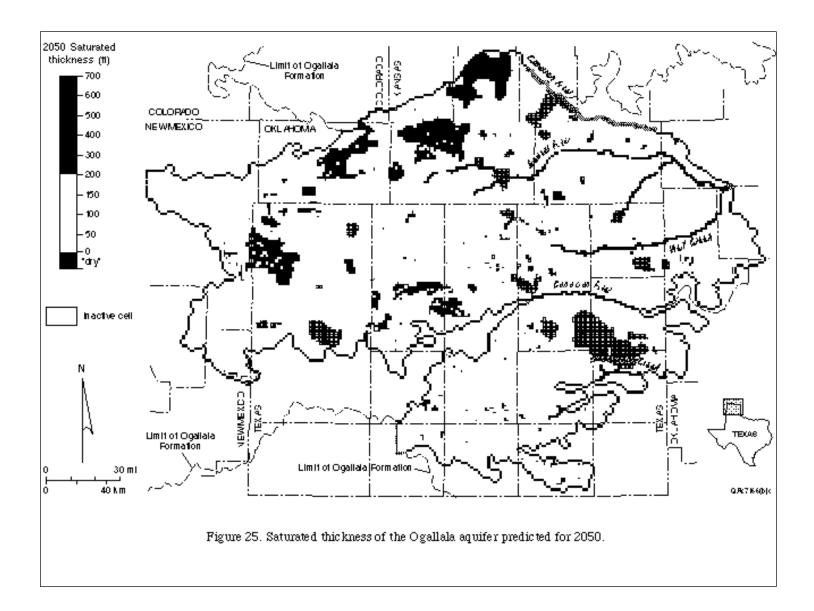

Figure 11. Calibration results for (a) "predevelopment," or 1950, water table and (b) 1998 water table. The calibration (mean-square) error for the "predevelopment" water table was 64 feet and for the 1998 water table was 74 feet.


Figure 17. Drawdown in water levels in the Ogallala aquifer simulated for the period from 1950 to 1998.







	Area ¹	Average specific yield ²	Volum (millio		Average satura	ited thick	ness ⁴ (feet)	
<u>County</u>	<u>(1,000 acres)</u>	(%)	Predevelopment	<u>1998</u>	Depletion (%)	Predevelopment	1998	Decline (feet)
Armstrong	369	14.1	4.48	3.95	11.2	78	72	6
Carson	605	17	19.17	14.85	22.6	184	146	38
Dallam	951	17.1	26.15	20.26	22.5	158	126	32
Donley	360	16.2	7.21	7.25	-0.6	99	94	5
Gray	570	18	14.85	14.12	4.9	141	133	8
Hansford	576	17.4	28.42	21.17	25.5	282	209	73
Hartley	910	17.9	35.19	28.10	20.1	211	169	42
Hemphill	584	17.2	16.99	16.60	2.3	171	169	2
Hutchinson	456	16.8	15.41	12.09	21.5	197	156	41
Lipscomb	576	14.9	20.02	16.94	15.4	228	195	33
Moore	534	14.7	18.87	13.36	29.2	232	169	63
Ochiltree	580	15.5	22.61	17.60	22.2	247	195	52
Oldham	383	13.7	3.26	2.84	12.9	20	21	-1
Potter	251	14.9	3.11	2.75	11.6	76	75	1
Randall	543	15	6.39	4.88	23.6	86	64	22
Roberts	573	17.7	27.97	26.92	3.8	278	267	11
Sherman	597	17.5	28.73	19.17	33.3	276	186	90
Wheeler	363	17.2	8.28	7.09	14.4	130	106	24
Total*/Average	9,781*	16.3	307.11*	249.94*	16.4	172	142	30

Table 1. Tally of water in storage in the Ogallala aquifer in the PWPA estimated using the water-budget method. Numbers determined from calculations in geographic information system (GIS). From Dutton and Reedy (2000).

Footnotes:

¹Aquifer area was determined in GIS from assigning model grid cells within counties. ²Specific yield is an average of all cells in a county; the average cannot be used to consistently convert between volume and saturated thickness. ³Volume is weighted value determined in GIS by multiplying saturated thickness by specific yield for each cell, multiplying by the 1-square-mile area of each cell, and summing for all cells in each county. Different numbers will be obtained by multiplying average saturated thickness by average specific yield for each county. ⁴Saturated thickness was determined directly in GIS as the difference in elevations of the water table and the base of aquifer.

Table 2. Stratigraphic nomenclature of Permian and younger strata, including the Ogallala Formation, in the study area. Modified from Gustavson and Simpkins (1989).

AGE	GEOLOG	IC UNIT					
Quatemary	BlackwaterDiaw Formatton	Talioka Formation Double Lakes Formation The Formation					
Tertiary	Blanco Formatbn	Cita Canyon lake beds					
ieroary	Ogalala Formatbi						
Cretaceous	Edwards (3roip					
Tiassic	Dock I m C						
Permian	Octoan S Gradakplar Leonardian	Serbs					
5.7	LeoiadBi	Se nes					

Table 3. Weighting factors for recharge rates. Recharge rates were assigned in the model on the basis of long-term average precipitation and locally adjusted on the basis of weighting factors derived from soil textures. Soil data compiled from USDA-NRCS.

Soil group	Soil textures	Area in model (square miles)	Soil permeability (inches per hour)	Weighting factor
1	Loam–Silt loam	6,933	1.0	1.0
2	Loamy sand–Sandy loam	8,280	14.6	1.0
3	Sandy loam-Clayey loam-Silty clay loam	2,255	4.4	1.0
4	Silty clay loam–Silty clay	5,311	0.1	0.67
5	Silt loam–Clayey loam	517	0.5	0.67
6	Clay loam-Clay	341	0.3	0.67
7	Sandy loam-Loam-Clay loam	124	4.4	0.67
8	Sand	957	29.7	2.77

Table 4. River conductance values assigned in the "River" module of MODFLOW. Conductance varies with the tortuosity and length of the river segment in each cell of the model.

	River conductance (square feet per da						
River	Maximum	Minimum	Average				
Cimarron River	8,057	258	5,446				
Beaver River	5,351	7	604				
Wolf Creek	5,351	33	3,176				
Canadian River	3,726	43	2,665				
Sweetwater Creek	1,121	41	551				

Table 5. Rates of groundwater withdrawal (thousand acre-feet) applied in the model. Note negative signs for well discharge removed for convenience of presentation.

	1950– 1959	1950– 1969	1970– 1979	1980– 1989	1990– 1999	2000	2001– 2010	2011– 2021	2021– 2030	2031– 2040	2041– 2050
Irrigation Armstrong Carson Dallam Donley Gray Hansford Hartley Hemphill Hutchinson Lipscomb Moore Ochiltree Oldham Potter Randall Roberts Sherman Wheeler	79 295 449 23 35 231 152 1 174 402 91 0 31 110 17 395 9	$152 \\ 803 \\ 1,114 \\ 77 \\ 125 \\ 1,202 \\ 873 \\ 5 \\ 490 \\ 42 \\ 1,447 \\ 524 \\ 0 \\ 60 \\ 184 \\ 57 \\ 2,095 \\ 22 \\ 1,205 \\ 22 \\ 1,100 \\ 10$	$\begin{array}{c} 117\\ 1,043\\ 1,860\\ 116\\ 151\\ 1,924\\ 1,977\\ 6\\ 707\\ 124\\ 2,237\\ 993\\ 0\\ 62\\ 142\\ 73\\ 3,419\\ 35 \end{array}$	81 979 2,910 158 101 1,423 2,278 2 622 170 2,140 843 0 37 97 50 2,829 24	$\begin{array}{r} 43\\ 744\\ 3,095\\ 154\\ 123\\ 1,217\\ 1,703\\ 18\\ 324\\ 222\\ 1,665\\ 440\\ 0\\ 60\\ 76\\ 460\\ 1,881\\ 22\end{array}$	5 93 369 17 22 121 186 4 42 35 183 47 0 15 12 6 195 3	$\begin{array}{r} 46\\ 927\\ 3,692\\ 170\\ 222\\ 1,215\\ 1,862\\ 44\\ 417\\ 351\\ 1,851\\ 473\\ 0\\ 149\\ 116\\ 58\\ 1,952\\ 34\\ \end{array}$	46 927 3,692 1,215 1,862 44 417 351 1,831 473 0 149 116 58 1,952 34	$\begin{array}{r} 46\\ 927\\ 3,692\\ 170\\ 222\\ 1,215\\ 1,862\\ 44\\ 417\\ 351\\ 1,831\\ 473\\ 0\\ 149\\ 116\\ 58\\ 1,952\\ 34\\ \end{array}$	$\begin{array}{r} 46\\ 927\\ 3,692\\ 170\\ 222\\ 1,215\\ 1,862\\ 44\\ 417\\ 351\\ 1,831\\ 473\\ 0\\ 149\\ 116\\ 58\\ 1,952\\ 34\\ \end{array}$	$\begin{array}{r} 46\\ 927\\ 3,692\\ 170\\ 222\\ 1,215\\ 1,862\\ 44\\ 417\\ 351\\ 1,831\\ 473\\ 0\\ 149\\ 116\\ 58\\ 1,952\\ 34\\ \end{array}$
Municipal and F Armstrong Carson Dallam Donley Gray Hansford Hartley Hemphill Hutchinson Lipscomb Moore Ochiltree Oldham Potter Randall Roberts Sherman Wheeler	0 6 23 4 31 6 1 2 23 3 15 10 0 55 1 3 12	1 10 7 4 39 12 1 3 29 4 21 13 0 81 1 3 11	1 17 9 4 19 13 2 10 28 6 34 13 0 1 43 2 6 11	2 22 10 4 24 14 33 8 54 20 0 4 75 2 7 11	2 84 9 2 34 12 4 7 30 8 58 21 0 6 76 2 7 8	0 23 1 0 3 1 1 3 1 4 3 0 1 3 0 1 1	2 233 11 0 29 14 12 8 25 8 44 27 0 10 28 467 7 8	2 246 11 0 29 14 13 8 24 8 47 27 0 10 31 657 7 8	2 261 11 0 26 14 12 8 23 8 50 27 0 10 33 757 7 8	2 279 10 0 24 13 12 8 22 8 53 26 0 11 37 802 6 7	2 300 10 0 23 13 12 7 21 7 21 7 57 25 0 11 41 802 6 7
Industrial and N Armstrong Carson Dallam Donley Gray Hansford Hartley Hemphill Hutchinson Lipscomb Moore Ochiltree Oldham Potter Randall Roberts Sherman Wheeler	Janufactu 0 68 0 18 3 0 0 0 113 0 65 0 0 8 0 0 8 0 0 1	ring 0 103 0 50 7 0 0 199 0 147 0 0 147 0 0 16 0 0 2	0 88 2 52 11 0 5 0 144 0 126 0 18 0 0 2	$\begin{array}{c} 0\\ 63\\ 0\\ 32\\ 0\\ 0\\ 0\\ 1\\ 160\\ 0\\ 57\\ 0\\ 0\\ 5\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0 26 0 37 0 0 0 149 0 43 0 43 0 0 0 0 0 0 0 0 0	0 6 0 4 0 0 0 15 0 7 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 65 \\ 2 \\ 40 \\ 0 \\ 0 \\ 0 \\ 155 \\ 2 \\ 75 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0 71 2 42 1 0 0 0 167 2 79 0 0 1 0 0 1 0 0 0	$\begin{array}{c} 0\\ 76\\ 2\\ 43\\ 1\\ 0\\ 0\\ 0\\ 177\\ 2\\ 82\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0 83 2 45 1 0 0 0 190 2 86 0 0 0 1 0 0 0	$\begin{array}{c} 0\\ 92\\ 2\\ 48\\ 1\\ 0\\ 0\\ 207\\ 2\\ 92\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
Power Generat Potter	ion 0	1	2	14	12	1	11	11	11	11	11

Table 5 (cont.)

	1950– 1959	1950– 1969	1970– 1979	1980– 1989	1990– 1999	2000	2001– 2010	2011– 2021	2021– 2030	2031– 2040	2041– 2050
Domestic and	Stock										
Armstrong	1	1	2	4	5	0	5	5	6	6	7
Carson	2	2	2	9	13	1	11	12	13	13	14
Dallam	2	3	4	16	31	7	89	114	129	146	165
Donley	1	2	1	0	1	1	6	7	7	7	8
Gray	2	3	4	4	5	2	22	26	29	32	35
Hansford	1	4	6	26	26	5	73	96	108	120	134
Hartley	1	1	4	17	20	3	30	33	36	38	41
Hemphill	1	2	3	3	9	1	15	16	18	19	21
Hutchinson	1	2	2	1	1	0	5	5	6	6	7
Lipscomb	0	0	1	1	3	1	18	25	28	32	37
Moore	2	3	6	26	38	4	55	77	86	97	108
Ochiltree	2	3	4	10	12	7	70	78	88	100	113
Oldham	0	0	0	0	0	0	1	1	1	1	1
Potter	2	3	3	1	1	0	3	3	3	3	4
Randall	0	1	1	4	6	1	6	6	7	8	8
Roberts	0	1	1	1	1	1	6	6	6	7	8
Sherman	1	2	4	22	29	4	48	60	66	74	82
Wheeler	1	2	1	2	3	1	10	11	12	12	13

Table 6. Summary of groundwater discharge (cubic feet per second) to major rivers included in the
model. Note that discharge from the aquifer to rivers is represented here as a positive value.

	Steady state	1960	1970	1980	1990	2000	2010	2020	2030	2040	2050
Cimarron River	52	50	45	38	31	25	19	13	8	5	1
Beaver River	94	93	91	87	83	78	73	68	63	59	54
Wolf Creek	59	58	56	52	47	40	33	27	22	18	14
Canadian River	66	66	65	65	64	63	62	61	59	57	55
Sweetwater Creek	13	13	13	13	13	13	13	13	13	13	12

Table 7. Average simulated saturated thickness (feet) in the modeled part of the
Ogallala aquifer.

County	1950	1998	2000	2010	2020	2030	2040	2050
Armstrong	93	86	85	84	83	82	80	79
Carson	217	176	174	159	145	130	116	102
Dallam	215	163	158	137	118	104	92	81
Donley	76	69	69	67	65	63	62	61
Gray	155	146	145	141	136	131	127	122
Hansford	279	222	219	206	192	178	164	150
Hartley	275	234	232	220	209	198	186	176
Hemphill	208	207	207	206	205	204	203	202
Hutchinson	146	108	106	97	87	79	71	65
Lipscomb	199	193	193	189	186	183	180	177
Moore	249	157	153	130	107	84	65	49
Ochiltree	238	210	209	203	197	190	184	177
Oldham*	80	80	80	80	79	79	79	78
Potter	93	82	80	76	73	71	69	67
Randall*	121	94	94	90	88	86	84	81
Roberts	258	254	254	246	235	227	222	218
Sherman	303	208	204	186	167	147	128	109
Wheeler	177	175	175	174	173	172	171	170

*Includes only that part of county in model area (fig. 2).

					1950			1998	
			Aquifer area	Estimated	Simulated		Estimated	Simulated	
•	County Area	in model	in model	volume	volume	Difference	volume	volume	Difference
County	(mi ²)	(mi ²)	(mi²)	(maf)	(maf)	(%)	(maf)	(maf)	(%)
Armstrong	915	927	513	4.48	4.60	-0.4	3.95	4.20	-2.0
Carson	922	930	915	19.17	21.70	5.0	14.85	17.66	4.8
Dallam	1,505	1,509	1,494	26.15	36.28	-5.0	20.26	27.04	10.4
Donley	936	930	539	7.21	4.42	3.9	7.25	4.01	11.4
Gray	929	939	893	14.85	28.06	-5.4	14.12	22.29	-3.9
Hansford	921	900	897	28.42	28.82	-5.8	21.17	24.41	-13.2
Hartley	1,463	1,470	1,411	35.19	45.33	10.3	28.10	38.39	13.3
Hemphill	912	923	910	16.99	20.47	-10.4	16.60	20.40	-12.6
Hutchinson	895	900	665	15.41	11.02	-14.1	12.09	8.04	-20.5
Lipscomb	933	927	927	20.02	17.80	-3.9	16.94	17.33	-19.8
Moore	909	930	852	18.87	20.84	-8.4	13.36	13.01	4.7
Ochiltree	919	900	897	22.61	21.47	-8.5	17.60	18.85	-24.4
Oldham	1,508	1,486	80	3.26	0.44	na	2.84	0.44	na
Potter	922	954	374	3.11	3.33	-19.0	2.75	2.92	-17.1
Randall	922	907	195	6.39	2.37	na	4.88	1.82	na
Roberts	924	904	899	27.97	25.62	-9.9	26.92	25.21	-12.5
Sherman	923	913	913	28.73	30.88	0.2	19.17	21.18	3.2
Wheeler	916	900	520	8.28	9.92	7.6	7.09	9.81	-5.9
Total	18,274	18,249	13,894	307.11	333.37	-4.0	249.94	277.00	-5.3**

Table 8. Comparison of estimated and simulated volumes of water in storage for 1950 and 1998.

Million acre feet maf

na

Not applicable calculation Includes only that part of county in model area (fig. 2) Average of differences *

**

County	1950	1998	2000	2010	2020	2030	2040	2050
Armstrong	19.1	21.2	21.2	21.4	22.0	22.4	23.4	23.8
Carson	2.3	3.0	3.0	3.5	4.3	6.3	9.8	14.6
Dallam	4.3	9.8	10.8	20.7	32.4	37.3	42.6	49.2
Donley	53.8	63.6	63.8	65.1	66.8	66.6	67.2	67.2
Gray	10.8	11.9	11.9	12.2	12.8	13.7	14.2	15.3
Hansford	0.1	0.6	0.7	1.1	1.8	2.8	5.1	7.1
Hartley	4.3	4.6	4.6	4.8	5.7	6.4	6.7	9.4
Hemphill	3.0	3.0	3.0	3.0	3.2	3.2	3.2	3.5
Hutchinson	15.3	23.9	24.1	29.3	33.5	38.0	43.9	47.4
Lipscomb	0.3	0.3	0.3	0.3	0.3	0.4	0.5	0.6
Moore	11.4	13.6	14.2	16.8	24.1	36.9	50.8	60.8
Ochiltree	1.3	1.9	1.9	2.3	2.9	3.2	4.0	5.0
Oldham*	47.5	47.5	47.5	47.5	47.5	47.5	47.5	47.5
Potter	35.0	39.8	41.2	44.4	45.7	46.8	47.9	48.4
Randall*	7.7	12.8	13.8	17.9	19.5	19.5	23.1	24.6
Roberts	0.3	0.3	0.3	0.3	0.7	1.4	1.8	1.8
Sherman	0.0	0.0	0.0	0.0	0.5	1.3	5.4	12.4
Wheeler	21.0	21.2	21.2	21.3	21.5	21.9	22.5	22.7

Table 9. Percentage of county having saturated thickness of 50 feet or less in the modeled part of the Ogallala aquifer.

*Includes only that part of county in model area (fig. 2).

Table 10. Percentage of aquifer in modeled part of county having less than 50 percent of 1998 saturated thickness.

County	2000	2010	2020	2030	2040	2050
Armstrong	0.0	0.0	0.0	0.2	0.2	0.8
Carson	0.0	0.0	1.2	6.7	15.8	31.7
Dallam	0.2	10.2	24.2	33.5	44.4	51.7
Donley	0.0	0.6	3.2	4.8	5.9	7.1
Gray	0.0	0.1	0.4	0.8	1.9	2.8
Hansford	0.0	0.0	0.4	2.1	6.7	15.6
Hartley	0.0	0.0	1.4	3.4	11.3	19.7
Hemphill	0.0	0.0	0.0	0.0	0.0	0.0
Hutchinson	0.2	3.3	9.5	17.1	23.2	30.7
Lipscomb	0.0	0.0	0.0	0.0	0.0	0.0
Moore	0.0	1.4	13.7	37.6	55.3	68.3
Ochiltree	0.0	0.1	0.2	0.3	0.3	0.7
Oldham*	0.0	0.0	0.0	0.0	0.0	0.0
Potter	0.8	4.3	5.6	6.4	6.4	7.2
Randall*	0.0	1.5	2.6	3.1	4.6	5.6
Roberts	0.0	0.0	1.4	2.2	2.8	3.2
Sherman	0.0	0.0	0.5	4.9	20.6	43.4
Wheeler	0.0	0.2	0.2	0.2	0.2	0.2

*Includes only that part of county in model area (fig. 2).

Table 11. Volume of water in storage (million acre feet) projected for 2000 to 2050 in the Ogallala aquifer using TAES irrigation estimates. Projections should not be relied upon for anything other than their intended use in identifying areas with surpluses and deficits between supply and demand for groundwater in the PWPA, as discussed in the text.

County	2000	2010	2020	2030	2040	2050	1998 volume remaining in 2050 (%)
Armstrong	4.19	4.13	4.07	4.01	3.95	3.89	93
Carson	17.40	15.99	14.56	13.12	11.71	10.31	58
Dallam	26.33	22.65	19.25	16.76	14.69	12.81	47
Donley	3.98	3.87	3.76	3.68	3.60	3.55	89
Gray	22.03	20.70	19.31	17.91	16.51	15.11	68
Hansford	24.17	22.93	21.71	20.49	19.29	18.13	74
Hartley	38.02	36.08	34.15	32.23	30.35	28.52	74
Hemphill	20.38	20.29	20.18	20.07	19.96	19.85	97
Hutchinson	7.90	7.19	6.50	5.86	5.30	4.80	60
Lipscomb	17.27	16.96	16.66	16.37	16.09	15.83	91
Moore	12.65	10.73	8.79	6.90	5.23	3.94	30
Ochiltree	18.74	18.18	17.61	17.02	16.42	15.80	84
Oldham*	0.44	0.44	0.43	0.43	0.43	0.43	98
Potter	2.86	2.71	2.61	2.53	2.46	2.39	82
Randall*	1.80	1.74	1.69	1.65	1.61	1.56	86
Roberts	25.18	24.43	23.39	22.62	22.14	21.70	86
Sherman	20.83	18.94	16.96	14.97	13.00	11.06	52
Wheeler	9.80	9.75	9.70	9.65	9.60	9.55	97
Total	273.99	257.70	241.33	226.27	212.32	199.21	72

*Includes only that part of county in model area (fig. 2)

Table 12. Volume of water in storage (million acre feet) projected for 2000 to 2050 in the Ogallala aquifer using TWDB irrigation estimates and the specified-transmissivity model (Dutton and others, 2000). Projections should not be relied upon for anything other than their intended use in identifying areas with surpluses and deficits between supply and demand for groundwater in the PWPA, as discussed in the text. Volume projections on the basis of TWDB irrigation estimates may provide a "worst-case" scenario as TWDB rates generally are greater than TAES rates (see table 11) and the specified-transmissivity model predicts greater drawdown than the calculated-transmissivity model.

County Armstrong Carson Dallam Donley Gray Hansford Hartley	2000 4.01 13.87 17.44 6.39 14.59 23.71 23.97	2010 3.92 12.42 13.72 6.23 14.13 22.32 21.89	2020 3.82 10.95 10.41 6.06 13.61 20.90 19.89	2030 3.72 9.49 7.90 5.90 13.04 19.48 18.22	2040 3.60 8.08 6.01 5.75 12.44 18.03 16.72	2050 3.47 6.71 4.57 5.60 11.81 16.58 15.38	2000 volume remaining in 2050 86.5 48.4 26.2 87.6 80.9 69.9 64.2
Hemphill	18.67	18.58	18.48	18.36	18.23	18.09	96.9
Hutchinson	14.43	13.65	12.84	12.01	11.14	10.23	70.9
Lipscomb	20.23	19.88	19.54	19.20	18.87	18.53	91.6
Moore	12.37	10.53	8.71	7.05	5.50	4.10	33.2
Ochiltree	21.78	21.21	20.64	20.05	19.46	18.85	86.5
Oldham*	0.73	0.71	0.69	0.67	0.64	0.62	84.6
Potter	3.15	2.82	2.58	2.35	2.15	1.96	62.1
Randall*	1.84	1.78	1.72	1.66	1.60	1.53	83.1
Roberts	30.24	29.47	28.41	27.27	26.11	25.03	82.7
Sherman	18.17	16.17	14.14	12.14	10.20	8.32	45.8
Wheeler	7.50	7.44	7.38	7.32	7.27	7.21	96.2
Total	253.10	236.86	220.78	205.83	191.79	178.59	70.6

*Includes only that part of county in model area (fig. 2)

Final Topical Report

Saturated Thickness in the Ogallala Aquifer in the Panhandle Water Planning Area— Simulation of 2000 through 2050 Withdrawal Projections

by

Alan R. Dutton Robert C. Reedy Robert E. Mace*

*Currently at Texas Water Development Board

Prepared for

Panhandle Water Planning Group Panhandle Regional Planning Commission (contract number UTA99-0230)

> Bureau of Economic Geology Scott W. Tinker, Director The University of Texas at Austin University Station, Box X Austin, Texas 78713-8924

> > December 2000

CONTENTS

Figures

- 1. Location of the study area in the northern Texas Panhandle and parts of northwestern New Mexico, western Oklahoma, and southwestern Kansas
- 2. Map of modeled area and selection of boundary conditions
- 3. Change in total annual rate of groundwater withdrawal for irrigation, municipal, and other uses in Texas
- 4. Ground-surface elevation across the study area
- 5. Structural elevation of the base of the Ogallala Formation as used in the numerical model
- 6. Recharge used in the numerical model assigned on the basis of precipitation and soil texture
- 7. Comparison of measured and calibrated values of hydraulic conductivity used in the Texas part of the model
- 8. Hydraulic conductivity of the Ogallala aquifer used for historical and predictive simulations
- 9. Pumping rates assigned to cells in the model
- 10. Comparison of estimated and simulated elevations of "predevelopment" water table
- 11. Calibration results for "predevelopment" and 1998 water table
- 12. Residual between estimated and simulated elevations of "predevelopment" water table
- 13. Simulated saturated thickness of the Ogallala aquifer under "predevelopment," or 1950, water-table conditions
- 14. Comparison of estimated and simulated elevations of 1998 water table
- 15. Residual between estimated and simulated elevations of 1998 water table
- Simulated saturated thickness of the Ogallala aquifer under 1998 water-table conditions
- Drawdown in water levels in the Ogallala aquifer simulated for the period from 1950 to 1998
- 18. Water-table elevation predicted for the Ogallala aquifer in 2050, given the groundwater withdrawal rates and other assumptions used in the model
- Drawdown in water levels in the Ogallala aquifer simulated for the period from 1998 to 2050
- 20. Saturated thickness of the Ogallala aquifer predicted for 2000

- 21. Saturated thickness of the Ogallala aquifer predicted for 2010
- 22. Saturated thickness of the Ogallala aquifer predicted for 2020
- 23. Saturated thickness of the Ogallala aquifer predicted for 2030
- 24. Saturated thickness of the Ogallala aquifer predicted for 2040
- 25. Saturated thickness of the Ogallala aquifer predicted for 2050

Tables

- 1. Tally of water in storage in the Ogallala aquifer in the PWPA estimated using the water-budget method
- 2. Stratigraphic nomenclature of Permian and younger strata, including the Ogallala Formation, in the study area
- 3. Weighting factors for recharge rates
- 4. River conductance values assigned in the "River" module of MODFLOW
- 5. Rates of groundwater withdrawal applied in the model
- 6. Summary of groundwater discharge to major rivers included in the model
- 7. Average simulated saturated thickness in the modeled part of the Ogallala aquifer
- Comparison of estimated and simulated volumes of water in storage for 1950 and 1998
- 9. Percentage of county having saturated thickness of 50 feet or less in the modeled part of the Ogallala aquifer
- 10. Percentage of aquifer in modeled part of county having less than 50 percent of 1998 saturated thickness
- 11. Volume of water in storage projected for 2000 to 2050 in the Ogallala aquifer using TAES irrigation estimates
- 12. Volume of water in storage projected for 2000 to 2050 in the Ogallala aquifer using TWDB irrigation estimates and the specified-transmissivity model

EXECUTIVE SUMMARY

The Ogallala aquifer is one of Texas' major aquifer systems. This study focused on the part of the Ogallala aquifer that underlies 18 of the 21 counties of the Panhandle Water Planning Area (PWPA). In the past 50 years, water-level drawdown in parts of the unconfined aquifer has been as much as 190 feet, or about 4 feet per year. Pumping rates for the next 50 years to 2050 have been projected to be greater than previous rates, and additional drawdown is possible.

A numerical, or computer, model of the occurrence and movement of groundwater in the Ogallala aquifer was developed to predict future water-level changes. Model development was part of a state-wide process of developing water-resource management plans under Senate Bill 1, 75th Texas Legislative Session. This model improved on previous models by (1) covering the Ogallala aquifer within most of each county in the PWPA with detailed resolution, (2) using as much as possible spatially controlled geologic and hydrologic data, and (3) placing of the model edges to minimize their effects on the area of interest in Texas. The model is intended to be used as a tool to assess surpluses and deficits in aquifer resources and to evaluate water management strategies that might address resource deficits.

The model was calibrated under two sets of conditions: "predevelopment" without appreciable rates of pumping, and "current" conditions, representing 1950 and 1998, respectively. The model (root mean square) error for the predevelopment calibration was about 64 feet and includes uncertainties due to the inherent model simplifications and approximations of recharge, transmissivity, base-flow discharge to rivers and springs, and model geometry. The model error for the 1998 calibration was about 74 feet. The somewhat larger model error for 1998 includes uncertainties associated with the predevelopment calibration and approximation of specific yield, historical pumping rates, and return flow. These model errors represent less than 5 percent of the change in hydraulic head across the Texas part of the model. In much of the Texas part of the model, the residual difference in hydraulic head is less than ± 50 feet.

Using groundwater demands projected by the Panhandle Water Planning Group (PWPG) and the Texas Water Development Board (TWDB), the model predicts that by 2050 major areas of the aquifer will have less than 50 feet of remaining saturated thickness and that parts of the aquifer in Dallam, Sherman, Hartley, Moore, Potter, and Carson Counties may be dry. Details of this prediction may not be realized because of the following:

- a goal of the PWPG in the area is that at least half the 1998 saturated thickness of the aquifer will remain by 2050;
- pumping rates were not decreased as water levels fell in this version of the model;
- the model is not well calibrated for the extreme event of aquifer dewatering, so predicting saturated thickness where the water table is near the base of the aquifer may have an error greater than 74 feet.

The model can be used, however, to identify areas where there may be surpluses and deficits in groundwater resources, to evaluate water-management alternatives, and to estimate what rates of groundwater pumping in various parts of the PWPA would ensure the goal of groundwater conservation districts is met. The model also may be used as an aquifer management tool to evaluate or compare proposed scenarios of groundwater development.

INTRODUCTION

Purpose and Objectives

The Ogallala aquifer, which makes up the main part of the High Plains aquifer along with adjacent and hydraulically interconnected older and younger formations, is the main source of agricultural and public-water supply in much of the Texas Panhandle (fig. 1). Prediction of the amount of remaining groundwater in the Ogallala aquifer over the course of the next 50 years is an important part of managing the aquifer's resource and of developing regional plans to meet future water needs. This report focuses on groundwater in the Ogallala aquifer in the Panhandle Water Planning Area (PWPA) (figs. 1, 2). Under Senate Bill 1, 75th Texas Legislative Session, the

Panhandle Water Planning Group (PWPG) is charged with developing a regional water plan for the PWPA. The regional plan will be used by the Texas Water Development Board (TWDB) in developing a state-wide water-resource management plan.

Preliminary estimates of water remaining in storage in the Ogallala aquifer in the PWPA during 2000 to 2050 were made using a water-budget method, in which original water in place was estimated using data in a geographic information system (GIS) and water inflow and outflow were added and subtracted in a spreadsheet (Dutton and Reedy, 2000). That preliminary analysis predicted that saturated thickness in the Ogallala aquifer in Dallam, Moore, Oldham, Potter, and Randall Counties will decline to less than 50 feet by 2050. A numerical model of the occurrence and movement of groundwater in the Ogallala aquifer was developed to

- predict with more accuracy and precision the remaining Ogallala groundwater within each county of the PWPA, given specific groundwater demands, and
- assess surpluses and deficits in Ogallala aquifer resources to meet demands.

Goals for developing this model were to provide a water-management tool that would cover the PWPA area, set model boundaries having minimal impact on results in the area of interest, and use measured hydrologic properties and other data to constrain model parameters and ensure results are representative of aquifer conditions.

A preliminary version of the numerical model was reported in August 2000 (Dutton and others, 2000). That version of the model assumed a constant transmissivity, recharge that varied with soil type, and no return flow. The model predicted that by 2050, appreciable parts of Dallam, Sherman, Hartley, Moore, Potter, and Carson Counties would have run out of groundwater in the Ogallala aquifer or have less than 50 feet of saturated section. Dutton and others (2000) stated that the accuracy of this prediction was limited because pumping rates were not decreased as water level fell and the model was not well calibrated for dewatering conditions since transmissivity was held constant. It was also pointed out that groundwater conservation districts in the area have the goal of limiting drawdown so that at least half the 1998 column of water in the aquifer will remain by 2050.

Between May and October 2000 additional work focused on revising the model to improve accuracy of the prediction of 2050 water levels. The changes included (a) specifying hydraulic conductivity and varying transmissivity with water level, (b) varying recharge with precipitation rate as well as soil type, and (c) including estimates of return flow. This report documents the final revised model. This report documents model construction and calibration and use of the model to predict saturated thickness from 2000 to 2050, given consensus-based estimates of future demand for groundwater.

CONCEPTUAL HYDROGEOLOGIC MODEL

Few regional aquifers have been as extensively studied as the Ogallala aquifer. Computer, or numerical, models of groundwater flow have been important tools for managing the groundwater resource and evaluating future changes in water level and saturated thickness. At least 15 numerical groundwater flow models have been developed for different parts of the Ogallala aquifer in Texas (Mace and Dutton, 1998). Numerical models integrate much of the known information on an aquifer, allow consideration of how the water-level response to pumping is influenced by aquifer properties, and help identify what information and conceptual understanding needs additional development. Each of the previous Ogallala models has had a specific purpose and carried associated strengths and weaknesses.

On the basis of this previous work, a conceptual model was developed for the occurrence and movement of water in the Ogallala aquifer in the study area. This conceptual model was used as a starting point for constructing the numerical model.

Water Resources and Water Demand

More water is pumped from the Ogallala aquifer than any other aquifer in Texas. The volume of water in the aquifer in the PWPA as of 1950 was estimated by the water-budget method as approximately 307 million acre-feet of water (table 1). Estimates of average saturated

thickness of groundwater originally in place in the Ogallala aquifer range from 20 feet in Oldham County to 282 feet in Hansford County. Saturated thickness is less than 50 feet in parts of several counties, for example, in much of Oldham County and in southwestern Randall County (Knowles and others, 1984, v. 3, p. 433).

The rate of groundwater withdrawal for irrigation markedly increased after 1950 (Texas Water Development Board, 1996; fig. 3). Historically, withdrawal for irrigation has made up from 57 to 96 percent of the total groundwater demand (Dutton and Reedy, 2000). Average total annual withdrawal was greatest during the 1980s. During the 1990s the total rate of withdrawal appears to have decreased to about 1.24 million acre-feet per year. Future demand, on the basis of consensus-based projections and assuming water availability (Freese and Nichols, Inc., 2000), is expected to continue to increase but after 2000 at lower rates than in the past (fig. 3). This assumes no future growth in demand for irrigation.

Hydrostratigraphy

The Ogallala Formation in the study area consists of Tertiary-age alluvial fan, fluvial, lacustrine, and eolian deposits derived from erosion of the Rocky Mountains (Seni, 1980; Gustavson and Winkler, 1988). The Ogallala Formation in the study area unconformably overlies Permian, Triassic, and other Mesozoic formations (Gutentag and others, 1984) and in turn may be covered by Quaternary fluvial, lacustrine, and eolian deposits (table 2). Ogallala sediments filled paleovalleys eroded into the pre-Ogallala surface (Seni, 1980; Gustavson and Winkler, 1988). Deposition of the Ogallala Formation in some areas was contemporaneous with dissolution of underlying Permian salt beds, resulting in additional ground-surface subsidence and increased accumulation of Ogallala sediment (Gustavson and Finley, 1985). At the northwestern limit of the study area in northeastern New Mexico, the Ogallala Formation is also interbedded and locally covered with Tertiary-age volcanic deposits (fig. 1).

This depositional framework of the Ogallala aquifer has resulted in lateral and vertical heterogeneity. Aquifer heterogeneity is the spatial variability in properties that control the occurrence and movement of groundwater, such as hydraulic conductivity and specific yield, and is largely related to geologic features. Areas of the aquifer with a greater amount of sand and gravel have greater hydraulic conductivity. The lower part of the formation tends to have more coarse-grained sediment and greater hydraulic conductivity than the upper part. Within any section, sediment bedding may slightly impede the vertical circulation of groundwater.

Gutentag and others (1984) advocated referring to the groundwater system in the study area as the High Plains aquifer, for two main reasons. First, groundwater can move between the Ogallala Formation and adjacent Permian, Mesozoic, and Quaternary formations, so the term Ogallala aquifer is inadequate to refer to the whole aquifer system. Second, it also may be noted that not all of the Ogallala Formation is saturated. The term "High Plains aquifer" addresses these issues and avoids using a formational name also as an aquifer name. Because the focus of this study is on groundwater in the Ogallala Formation, however, the term "Ogallala aquifer" is used in this report, following local usage.

The Ogallala aquifer is an unconfined aquifer; that is, volume of water in storage changes by the filling and draining of pore or void space in the material that makes up the aquifer. The regional water table marks the top of the saturated zone within the Ogallala aquifer.

The Ogallala Formation and overlying Blackwater Draw Formation underlie the High Plains. Retreat of the edge of the High Plains surface has left a steep escarpment in most areas, which is held up in part by an erosion-resistant caprock, a calicified soil layer that separates the Ogallala from the Blackwater Draw Formations (Gustavson and Simpkins, 1989; Gustavson, 1996). The other main physiographic feature in the study area is the Canadian River Breaks, consisting of the dissected erosional drainage bordering the Canadian River.

Flow Paths

The conceptual model of flow paths in the Ogallala aquifer includes the following understandings, hypotheses, and assumptions:

- Under historical conditions, groundwater moved generally eastward in directions parallel to the slope of ground surface. South of the Prairie Dog Town Fork of the Red River (figs. 1, 2), flow is generally directed to the southeast (Knowles and others, 1984). In the area between the Canadian River and Prairie Dog Town Fork, flow is generally toward the northeast but follows an arcuate path curving toward either river valley. North of the Canadian River, flow is generally to the east.
- The drawdown of water levels in well fields such as the Amarillo well field in Carson County locally changes the direction of regional flow paths.
- The volume of flow within the Ogallala aquifer is large relative to the volume of crossformational flow at the base of the aquifer. The Ogallala aquifer is thought to be the source of groundwater in the Triassic-age Dockum Group (Santa Rosa) that underlies the Ogallala Formation beneath much of the High Plains (Dutton, 1995). Over geologic time, downward movement of water out of the Ogallala around the perimeter of the High Plains drives dissolution of Permian salt beds (Simpkins and Fogg, 1982; Dutton, 1990); however, the rate of downward flow is low (Simpkins and Fogg, 1982; Senger and Fogg, 1987; Dutton and Simpkins, 1989; Dutton, 1995). There is evidence of upward movement of water from underlying formations where chlorinity of groundwater is more than 50 milligrams per liter in northern Carson and Gray Counties (Mehta and others, in press).
- Water levels in the aquifer in the northern part of the Texas Panhandle declined an average of about 5.5 feet per year during 1960–80 (Knowles and others, 1984), although there also was comparable water-level recovery in parts of the aquifer south of the Canadian River.

Flow rates in the Ogallala aquifer between the Canadian River and Prairie Dog Town Fork are estimated to be roughly 80 to 100 feet per year (Mullican and others, 1997). Carbon-14 activity of six Ogallala groundwater samples in Texas ranges from 20.8 to 61 percent of Modern carbon, suggesting an average age of less than several thousand years (Dutton, 1995). Local presence of naturally occurring tritium indicates that in places some Ogallala groundwater is less than 50 years old (Nativ, 1988; Dutton, 1995).

Recharge and Discharge

The conceptual model of recharge and discharge is based on the following information and assumptions:

- The study-area climate is dry continental with moderate precipitation, low humidity, and high evaporation. Precipitation decreases from east to west across the Texas Panhandle from more than 22 inches per year to less than 16 inches per year, whereas potential evapotranspiration increases (Larkin and Bomar, 1983).
- Groundwater in the Ogallala aquifer is recharged from downward percolation of water from the surface of the High Plains.
- The distribution of recharge is poorly known; estimates range from 0.01 to 6 inches per year (Mullican and others, 1997).
- In much of the study area, runoff of surface water is not well integrated in streams, and much of the runoff collects in playa basins. Playas can focus recharge to the aquifer (Mullican and others, 1997).
- Estimates of regional recharge rates are averages of the higher rates beneath playas and lower rates beneath interplaya settings (Mullican and others, 1997).
- Regional and local recharge rates may vary with the characteristics of the soils that underlie playa and interplaya areas.

- Return flow is the recharge to the aquifer owing to deep percolation of excess irrigation
 water. An unknown proportion of irrigation water passes below root depth and out of the
 reach of evapotranspiration. Luckey and Becker (1999) assumed that return flow
 decreased from 24 percent during the 1940s and 1950s to less than 4 percent by the 1980s.
 Efficiency of irrigation application has continued to increase during the past decades.
- The time of travel between ground surface and the water table is unknown
- River bottomlands can be groundwater-discharge areas. Notable springs and seeps in river valleys and along the High Plains Escarpment discharged at rates of 1 to 2 cubic feet per second (cfs) (Brune, 1975).
- Since water levels have fallen during the past several decades, the amount of spring flow has decreased; some historical springs have ceased to flow.
- Groundwater discharge continues to provide varying amounts of base flow to the Cimarron, Beaver, and Canadian Rivers and to Wolf and Sweetwater Creeks (fig. 1). The Cimarron River does not have perennial flow across the western side of the High Plains (fig. 1; Luckey and Becker, 1999).

MODEL DESIGN AND APPROACH

Models are simplifications of groundwater flow and give only an approximate representation of actual aquifer conditions. The accuracy and applicability of model results depend on the selection of data and the assumptions made in building the model. A given model result may be obtained from various nonunique combinations of input data. Model design and calibration, therefore, attempt to constrain possible results.

Five general categories of information and decision making are involved in model construction: (1) model architecture, (2) aquifer geometry, (3) boundary conditions, (4) aquifer parameters, and (5) aquifer stresses such as pumping. ArcInfo/ArcView, a geographic

information system (GIS), was used to collect, organize, and map model data and assign values to the model grid.

Model Architecture

Model architecture refers to the code, size of blocks, and the number of layers used in the model. The choice of code is important to ensure that important processes in the aquifer are represented accurately.

The governing equation for regional flow of groundwater derives from a water-balance equation:

$$inflow - outflow = -div q - R^* = S_s \partial h / \partial t,$$
(1)

where div q represents any difference between the rates of specific discharge of water (q, volumetric flow of fluid per unit time per unit volume) flowing into and out of a unit volume of an aquifer, R^* represents the volumetric flux of various sources and sinks of water such as recharge (source) and extraction wells (sinks) per unit volume of an aquifer, S_s is specific storage, and $\partial h/\partial t$ expresses the rate of change of hydraulic head (h). Hydraulic head is an expression of potential energy per unit weight of water. In this report the datum for hydraulic head is mean sea level. Any imbalance in the left-hand side of equation 1 results in a change of hydraulic head (h). The sources and sink of water as summed up in the R^{*}-term are expressed in the model as boundary conditions and aquifer stresses, as described in following sections.

Specific storage is a proportionality factor between the divergence or difference of water inflow and outflow rates and the rate of change of hydraulic head. It measures the volume of water released as a result of expansion of water and compression of the porous media per unit volume and unit decline in hydraulic head. For an unconfined aquifer such as the Ogallala aquifer, storage changes mainly by filling or draining of pore space. Flow rates (q) are generally not directly measured in aquifers. Equation 1 is typically solved by factoring in the expression of Darcy's law describing the flow of groundwater:

$$q = -K \text{ grad } h, \tag{2}$$

where K is hydraulic conductivity, which expresses the ease with which water moves through a unit volume of the aquifer, and grad h is the gradient of hydraulic head in horizontal and vertical directions. The negative sign indicates that groundwater movement is in the direction of decreasing hydraulic head.

Combining equations 1 and 2 yields the general form of the governing equation for groundwater flow:

$$-\operatorname{div}(-K \operatorname{grad} h) - R^* = S_s \partial h \partial t$$

$$\frac{\partial}{\partial x} \left(K_x \frac{\partial h}{\partial x} \right)_+ \frac{\partial}{\partial y} \left(K_y \frac{\partial h}{\partial y} \right)_+ \frac{\partial}{\partial z} \left(K_z \frac{\partial h}{\partial z} \right)$$

$$- R^* = S_s \frac{\partial h}{\partial t}$$
(3a)
(3b)

where x, y, and z are Cartesian coordinates of the system and K_x , K_y , and K_z are the directional components of hydraulic conductivity. This model of the Ogallala aquifer assumes only horizontal flow and ignores the third term on the left-hand side of equation 3b. Multiplying both sides of equation (3b) by saturated thickness (b) expresses the governing equation in terms of transmissivity (T) and storativity (S). Transmissivity, which is the ease with which water moves through a unit width of a column of an aquifer, is equal to the saturated thickness times hydraulic conductivity:

$$\mathbf{K} \times \mathbf{b} = \mathbf{T} \tag{4a}$$

Similarly, storativity, which is equal to the volume of water released from a vertical column of the aquifer per unit surface area of the aquifer and unit decline in hydraulic head, is equal to the saturated thickness of the aquifer times specific storage:

$$\mathbf{S}_{\mathbf{s}} \times \mathbf{b} = \mathbf{S} \tag{4b}$$

Solving equation 3b for the distribution of hydraulic head in time and space also requires specified values of initial and lateral boundary conditions. A numerical model represents an approximate solution to the flow equation, given a particular set of boundary conditions. Constructing a numerical model involves specifying all of the parameters in equations 1 to 4 and in the initial and boundary conditions. This study used MODFLOW (Harbaugh and McDonald, 1996) to solve the flow equation according to the finite-difference method (Anderson and Woessner, 1992). MODFLOW is a tested and widely used groundwater modeling program. Processing MODFLOW (version 4.00.5000; Chiang and others, 1998) was used as the modeling interface to help load and package data into the formats needed for running simulations in MODFLOW and for looking at simulation results.

MODFLOW simulates some sources and sinks of water using variations on a headdependent flux equation (Harbaugh and McDonald, 1996). Movement into and out of the aquifer at model cells, for example, those representing rivers and springs, depends on (a) the relative difference in elevation between simulated hydraulic head and the hydraulic head prescribed for the boundary condition, and (b) a conductance term that is a combination of hydraulic conductivity at the boundary and the dimensions of the boundary feature (Harbaugh and McDonald, 1996). MODFLOW modules such as "river" and "drain" allow for prescribed changes in flux as water level changes. A MODFLOW module known as a "general head boundary (GHB)," in which flux is always a linear function of the head difference, also was used.

The model grid for the finite-difference model was defined by 256 columns and 188 rows. Rows were aligned west-to-east, and columns were aligned north-to-south. Cells or blocks of the model were square and 1 mile long on each side (1-square-mile area). The model grid was projected in ArcView using the Albers equal-area projection. The Ogallala aquifer was simulated as one layer; no vertical heterogeneity within the Ogallala aquifer was modeled. There were 24,207 active cells representing the aquifer in the model.

Aquifer Geometry

Geometry of the model consists of the physical dimensions of the aquifer: the perimeter of the modeled part of the aquifer and the topography of the top and bottom (figs. 4, 5) of the modeled layer. To move lateral boundary conditions away from the area of interest in Texas, lateral boundaries to the west and east were set at the limit of the Ogallala Formation in New Mexico and Oklahoma. The boundary to the north was set at the Cimarron River in Oklahoma and Kansas. The boundary to the south crosses between the Canadian River and the Prairie Dog Town Fork of the Red River (figs. 1, 2). Only those parts of Oldham and Randall Counties that lie within this area were included in the model.

Aquifer geometry is probably the best characterized of all the input data. Ground-surface topography (fig. 4) was defined by a 1:250,000-scale digital elevation model (DEM) downloaded from a U.S. Geological Survey Internet site (ftp://edcftp.cr.usgs.gov/pub/data/DEM). Structure of the bottom of the aquifer is defined by numerous wells. The elevation of the water-table surface was based on measured water levels. Nonetheless, the water table and base of the aquifer are not perfectly known, and data input to the model still required some simplification and approximation.

The base of the Ogallala aquifer was contoured using mapping tools in ArcView. This involved creating triangulated irregular networks (TINs), gridding the TIN surfaces, and assigning values to the model grid. The resulting contoured map is a reasonable representation of regional trends but might not accurately depict local features, especially where data are sparse. Where well data on the base of the aquifer in Texas were sparse, contoured maps presented in Knowles and others (1984, v. 2 and 3) for each county were digitized and used as breaklines in the GIS triangulation process. Possible error is greatest where data on the base of Ogallala aquifer are sparse, for example, in Hartley and Dallam Counties. Locally the elevation of the base was lowered to ensure model cells representing the predevelopment water level did not dewater. This adjustment was mainly in eastern Union County, New Mexico, and western Dallam County.

Reported measurements of depth to water in wells in Texas were downloaded from the TWDB Internet site (http://www.twdb.state.tx.us/Newwell/well_info.html). Information on water levels and hydrogeologic properties of the Ogallala aquifer outside of Texas included digital data used in a numerical model by Luckey and Becker (1999) and hydrogeologic data for Quay and Union Counties, New Mexico (Berkstresser and Mourant, 1966; Cooper and Davis, 1967). The map of the "predevelopment" water table is based on the earliest reported measurements within all areas. For example, in one area the first reported water-level data may be for 1940, in another for 1960, and in another for 1970. This composite surface was assumed to represent the "predevelopment" water table as of 1950. The map of the "predevelopment" water table was contoured by hand; earliest data were given precedence and the initial water level was assumed to be higher than later measurements. Uncertainty in depicting the 1950 "predevelopment" surface is assumed to be at least commensurate with other simplifications in the model. The water table for 1998 is based on water-level measurements taken in 1997 and 1998.

Data control for both the water-table elevation and base of the Ogallala aquifer (fig. 5) were generally good except as follows:

- Water-level data were sparse in parts of several counties (including but not limited to Lipscomb, Ochiltree, Oldham, Potter, and Randall Counties). Control points and break lines were added in GIS to adjust the mapped water-table surface and calculated saturated thicknesses to resemble those shown in Knowles and others (1984).
- The base of the aquifer in the Ogallala Formation is not consistently mapped throughout Dallam, Moore, and Randall Counties (Knowles and others, 1984, v. 2 and 3). For part of these counties the mapped base includes formations underlying the Ogallala aquifer. This overestimates the volume of water in storage in the Ogallala in these counties. In areas where well control was sparse, maps of the base of the Ogallala presented in Knowles and others (1984) were used to constrain the structure drawn in GIS.

Boundary Conditions

Numerical models solve the general equation of groundwater flow (equation 3b) with spatial boundary conditions and initial conditions (a boundary condition in time). Initial conditions used in the model assumed that recharge and discharge for the Ogallala aquifer were near equilibrium (pseudo-steady state) prior to 1950, after which rates of pumping increased throughout the region.

Spatial boundary conditions involve specifying inflow and outflow fluxes (R*, equations 1 and 3) across the top, bottom, and perimeter of the modeled aquifer. Boundaries may be approximations of (1) physical conditions, such as the limit or pinch-out of the Ogallala aquifer, or (2) hydraulic conditions, such as groundwater divides and streamlines. Boundaries may also be set at artificial positions, determined by neither physical nor hydrological features. Of the three types, physical and hydraulic boundaries are preferable because they more accurately represent actual boundaries in the natural system. Artificial boundaries are generally used to limit the upstream or downstream extent of a model to the area of interest and are most appropriate for steady-state models. They are appropriate in transient models if the variation of water levels at the boundary is minimal over time and the area of interest is a sufficient distance away from the boundary. Several previous models of the Ogallala aquifer included significant artificial boundaries (Mace and Dutton, 1998).

This model of the Ogallala aquifer uses a combination of physical, hydrological, and artificial boundaries, minimizing the extent of the last:

- The limited amount of water that flows across the base of the Ogallala aquifer (a physical boundary) was assumed to be negligible in comparison with the overall water budget. The lower boundary of the aquifer, therefore, was defined as a no-flow boundary.
- The top of the model was assigned a constant rate of recharge (a hydraulic boundary) for each stress period.

- Recharge rates (fig. 6) were set as a function of precipitation and soil types (table 3). Data on long-term average (1950 to 1990) precipitation were compiled from the National Weather Service Internet site. These data were contoured and interpolated for the cells in the model area. Initially recharge was assumed to vary linearly from 0.1 to 0.5 inches per year where precipitation ranged from 16.5 to 22.5 inches per year, respectively. During calibration the straight-line relationship between recharge and precipitation was changed. The final version of the model has (1) a greater percentage of precipitation becoming recharge on the wetter, eastern side of the study area than to the west, and (2) minimum recharge set at 19 inches per year of precipitation. Further research on the relation of recharge to precipitation is needed.
- Recharge was also varied with soil type. GIS polygons of soil types were downloaded from http://www.ftw.nrcs.usda.gov/stat_data:html, the U.S. Department of Agriculture Natural Resources Conservation Service (USDA-NRCS) Internet database. The numerous soil types were joined into eight groups (table 3). Groups 1 to 3 mainly have loamy surface and subsurface soils, whereas Groups 4 to 7 have loamy surface but clayey subsurface soils (Gustavson, 1996). Groups 1 and 2 roughly correspond to the extent of the Ogallala Formation outcrop, especially south of the Canadian River. Group 8 is made up of windblown sands (Eifler and Barnes, 1969) that are younger deposits than the Blackwater Draw Formation (table 2). Recharge estimated from precipitation was not changed (weighting factor of 1.0) for "Ogallala" soils. Recharge was decreased for "Blackwater Draw" soils and increased for sandy Group 8 soils (table 3).
- Groundwater recharge as calibrated in the revised model was less than 1 percent of
 precipitation across about 72 percent of the model area. The other 99 percent is assumed
 to have returned to the atmosphere by evapotranspiration or run off as surface water.
 Groundwater recharge was set at less than 2 percent of precipitation across 92 percent of
 the model area but was between 5 to 6 percent of precipitation in 3 percent of the area.

The higher recharge rates were on sandy soils on the eastern, wetter side of the High Plains.

- Return flow was not included in the earlier version of the model (Dutton and others, 2000) since pumpage, return flow, and specific-yield calibration are interrelated and the latter two are poorly known. Irrigation loss probably was large during the 1940s and 1950s (Luckey and Becker, 1999) but may have gone to increasing moisture content of the unsaturated zone. During the past few decades irrigation losses have decreased. Luckey and Becker (1999) assumed return flow is most likely to be less than 5 percent of irrigation in the future.
- Return flow was assigned in the revised model and varied with irrigation rate, loss rate or • inefficiency, soil type, depth to water, and velocity or rate of downward movement of water from the root zone to the water table. Loss rate was initially taken from Luckey and Becker (1999) and set equal to 24 percent for the 1950s and decreased to 2 percent since the 1990s. To evaluate the sensitivity of model results to return flow, simulations also were made with twice these loss rates. The same soil-weighting factors were applied to return flow as to recharge from precipitation (table 3); less return flow was predicted from irrigation on Blackwater Draw soils than on Ogallala soils. Depth to water was approximated using preliminary model results without return flow. Depth to water increases through time at most model cells, increasing the travel time for water to move from the root zone to the water table. Accordingly, return flow may recharge the water table later than the year in which irrigation was applied, and the delay or lag may increase through time as depth to water increases. Finally, velocity of water through the unsaturated zone was assumed to lie between 5 and 40 feet per year. Several simulations were made to evaluate the sensitivity of model results to assumed velocities.
- The perimeter was defined by physical and hydraulic boundaries. Most of the perimeter of the Ogallala aquifer coincides with the limit of the Ogallala Formation where groundwater is discharged in small springs and seeps, or as evapotranspiration where the

water table is close to ground surface. This part of the boundary was simulated using the "drain" package of MODFLOW (fig. 2). Luckey and Becker (1999) used 10,000 square feet per day for drain conductance for grid-cell areas of 36×10^6 square feet. This model proportionally decreased drain conductance to 7,744 square feet per day for its 27.8×10^6 square foot (1-square-mile) grid-cell area. Drain elevation was set to 75 percent of saturated thickness, about 35 to 40 feet above the base of the aquifer.

- Part of the northern boundary of the model follows the Cimarron River and included a no-flow boundary and a river boundary (fig. 2). Along about the half of its course across the study area, the Cimarron River has little or no perennial flow and is assumed to coincide with a groundwater flow line (Luckey and Becker, 1999). This reach, therefore, was treated as a no-flow boundary for all stress periods (fig. 2). On the northeast side of the model, the Cimarron River in Kansas and Oklahoma was treated as a river boundary.
- MODFLOW's "river" module was also used to represent the interaction of surface and groundwater along segments of the Cimarron, Beaver, and Canadian Rivers and Wolf and Sweetwater Creeks (fig. 2). The "river" module includes three parameters: river stage, river-bottom elevation, and riverbed hydraulic conductance (table 4). Initial values of river stage were set to 20 feet beneath the "predevelopment" water table to ensure river segments were simulated as gaining streams for the predevelopment model. This adjustment was needed because ground-surface elevation in each 1-square-mile cell is averaged and does not represent surface elevation at the river. River-bottom elevation was set 20 feet beneath the river stage. Riverbed conductance was initially set as a function of how much the river channel meanders in the model cell, then adjusted as part of model calibration to match reported regional rates of groundwater contribution to base flow (table 4).
- MODFLOW's "general-head boundary" module was used to close the southwest side of the model between the Canadian River and Prairie Dog Town Fork of the Red River (fig.

2). Boundary head was set to the predevelopment surface, and conductance was set equal to the average hydraulic conductivity times cell width and divided by saturated thickness.

Aquifer Parameters

This model of the unconfined aquifer used a combination of measured and interpolated values for aquifer parameters. Data for transmissivity, hydraulic conductivity, and specific yield are typically sparse for model calibration. Parameter values for large areas of the models are estimated or extrapolated. Hydraulic conductivity was assumed to be locally isotropic, that is, the same in x and y directions within each cell. It was also assumed that the Ogallala aquifer is made up of consolidated materials and that no compaction occurs with change in volume of water in storage.

An earlier version of the model (Dutton and others, 2000) was calibrated with a specified transmissivity; that is, transmissivity did not vary with water level. That model predicted parts of the aquifer could dewater, an extreme condition outside of the model calibration. Additional effort, therefore, focused on revising and recalibrating the model with specified hydraulic conductivity. In the revised model, transmissivity varies with water level and decreases as saturated thickness decreases.

To estimate hydraulic properties for the study area in Texas and expand upon previous studies, we (1) compiled available information on aquifer properties or tests from published reports and well records, (2) used specific-capacity information to estimate transmissivity and hydraulic conductivity, (3) used statistics to summarize results, and (4) used geological maps to "condition," or map, values of hydraulic conductivity. A major improvement to hydraulic properties over previous studies is the inclusion of specific-capacity information, which can significantly increase the number of measurement points for an aquifer.

We compiled tests from Mullican and others (1997) and from the groundwater database at the Texas Water Development Board (Texas Water Development Board, 1999). Mullican and

others (1997) had information on 70 aquifer tests, which included high-quality specific-capacity tests. We were able to cull data from an additional 1,271 specific-capacity tests in the TWDB groundwater database. To estimate transmissivity and hydraulic conductivity from specific capacity, we used an analytical technique developed by Theis (1963). Hydraulic conductivity was determined by dividing transmissivity by the saturated thickness exposed to the wellbore (1,130 wells included information that allowed us to calculate saturated thickness).

Based on results from the data compilation and specific-capacity analysis, we found that hydraulic conductivity for all the tests in the Ogallala aquifer appears to be lognormally distributed (fig. 7) with a geometric mean of about 14.8 feet per day and a standard deviation that spans from 5 to 44 feet per day. A lognormal distribution means that the logarithms of the values are normally distributed, and a geometric mean is the antilogarithm of the mean of the logarithms of the values.

Semivariograms (see Clark, 1979; McCuen and Snyder, 1986) show that hydraulic conductivity in the Ogallala aquifer is spatially correlated. Spatial correlation infers that points that are closer together are more similar to each other than points that are further apart. Fitting a spherical theoretical semivariogram to the experimental semivariogram resulted in a nugget of 0.12 [log(ft/day)]², a sill of 0.22 [log(ft/day)]², and a range of 140,000 feet. The range suggests that hydraulic conductivity is spatially correlated within 140,000 feet (26 miles) in the Ogallala aquifer.

Hydraulic conductivity was assigned to the Texas part of the model on the basis of depositional systems of the Ogallala Formation (Seni, 1980). Measured values of hydraulic conductivity were posted and overlain on the depositional-systems maps. Contours and trend lines from the depositional-systems maps were then used as a guide to contour the hydraulic-conductivity data (fig. 8). Figure 7 compares the statistical distribution of the measured and final calibrated distribution of hydraulic conductivity for the Texas part of the model. Hydraulic-conductivity values for Texas and adjacent parts of the model were pooled using kriging. The kriging parameters were based on a semivariogram for the Texas data and the 1-square-mile cell size. Only minor changes to hydraulic conductivity were made during model calibration. Changes

were made in southern Hartley and northern Oldham Counties, Texas, and in eastern Union County, New Mexico, where there were no available hydraulic-conductivity data.

Maps of specific yield were taken from Knowles and others (1984) and merged with cell values used by Luckey and Becker (1999) for the non-Texas part of the model. Grid center values of specific yield were interpolated using ArcView. Only minor adjustments were made, for example, in eastern Union County, New Mexico, since calibration results could not be appreciably improved by adjusting specific yield within reasonable limits.

Pumping

Accurate estimates of water withdrawal by pumping can be crucial to highly accurate modeling of water-level drawdown (Konikow, 1986). Pumping rates affect the calibration of the model and prediction of future water levels. Because there are few direct measures of historical pumping rates, pumping is generally estimated indirectly and may be a major source of calibration error in this and other numerical models. Errors in reconstructing pumping can be attributed to both uncertainty in total amount of pumping in a county and the allocation to specific cells in a county (Mullican and others, 1997).

For 1950 to 1998, approximately 54 million acre-feet of groundwater were simulated as being pumped from the Ogallala aquifer (table 5). This historical withdrawal was reconstructed from several sources. Pumping for municipal, industrial, irrigation, livestock, mining, and power uses during 1958, 1964, 1969, and 1974 was taken from worksheets compiled for the Knowles and others (1984) study. Pumping for 1980 to 1996 was tallied from a groundwater-summary database compiled by the TWDB (Dutton and Reedy, 2000). Decadal estimates of irrigation withdrawal for 1950 to 1997 also were made by the Texas Agricultural Experiment Station (TAES) on the basis of rainfall and irrigation efficiencies (Dutton and Reedy, 2000). Both TWDB and TAES irrigation estimates were run. The TWDB estimates serve as a "worst-case" estimate giving more predicted drawdown. For 1999 to 2050, approximately 82 million acre-feet of groundwater was simulated as being pumped from the Ogallala aquifer (table 5). Projected groundwater withdrawal for 2000 to 2050 (table 5) was derived from the consensus-based estimates of water demand compiled by Freese and Nichols, Inc. (2000). That projection of total water use by county is irrespective of source of water (for example, surface water or groundwater, and Ogallala aquifer versus other groundwater-bearing formations). Revisions to derive a table of projected withdrawals from the Ogallala aquifer included subtracting out surface-water sources and groundwater supplied from sources other than the Ogallala aquifer, and water produced in one county but supplied to meet demand in another (Dutton and Reedy, 2000).

Projections of irrigation withdrawal from the Ogallala aquifer have been developed by TAES for this project (Freese and Nichols, Inc., 2000) and by the TWDB as part of its statewide planning. The TAES estimates are about 15 percent less than the TWDB values in 2000 but only 2 percent different by 2050 (Freese and Nichols, Inc., 2000). As irrigation withdrawal is projected to make up approximately 85 percent of total withdrawal, these differences have the potential to impact model results, as stated in the opening paragraph in this section. Both sets of numbers were run to compare the resulting predictions of saturated thicknesses and volumes of groundwater remaining in the aquifer in 2050. The TWDB irrigation projections may be considered more conservative in that their higher withdrawal rates may overestimate water-level decline through 2050.

Average annual withdrawal for irrigation was greatest during the 1980s at approximately 1.5 million acre-feet per year (fig. 3). During the 1990s the total rate of irrigation withdrawal appears to have decreased to about 1.2 million acre-feet per year. Irrigation water in 1997 made up on average 86 percent of groundwater production from the Ogallala aquifer but ranged from 59 percent for Randall County to 98 percent in Dallam, Hartley, and Sherman Counties. Irrigation withdrawal is projected to average about 84 to 92 percent of total water production from the Ogallala aquifer over the next 50 years. Irrigation rates for Texas as applied in the model ranged about 0.17 to 0.52 acre-foot per year per acre during 1960 to 1998 and were about 0.44 acre-foot

per year per acre for 2000 to 2050. For 1998 to 2050, about 99.5 percent of simulated irrigation rates were less than 1.5 acre-feet per year per acre.

Irrigation withdrawal in the Texas part of the study area was distributed using ArcView on the basis of results of a 1994 survey obtained in GIS format from the Texas Natural Resources Information System (TNRIS). That database identified polygons with irrigated acreage and specified the percentage of the polygon area under irrigation in 1994. We assumed that the same pattern of irrigated acreage applied for the entire modeling period (1950 to 2050). Total county withdrawal of groundwater for irrigation for a given year was proportionately distributed across the model grid to those cells with irrigated acreage.

Withdrawal of groundwater for municipal use was distributed to model cells using a database from the Texas Natural Resource Conservation Commission (TNRCC) Water Utilities Division, which identified the number, location, and drilling date of public water-supply wells in each county. Total municipal water pumping for each county was allocated equally among these public water-supply wells. Groundwater pumping for industrial and stock uses was distributed using data from the TWDB on locations of industrial and stock wells and their drilling date. Groundwater use related to power generation in Potter County was allocated to two cells representing wells used by the Southwest Public Service Company (Gale Henslee, 2000, personal communication).

Total withdrawal assigned to each model cell for each stress period was summed from a database using a Visual Basic program and loaded into the Processing MODFLOW utility. Figure 9 shows the distribution of simulated pumping for 1998. The same footprint of pumping cells was used to simulate pumping for 1998 to 2050; the proportion of withdrawal rates between cells was maintained. Historical and future water use in the study area outside of Texas, undifferentiated by water-use category (fig. 3), was taken from digital files by Luckey and Becker (1999).

Some model cells are predicted to go dry between 2000 and 2050, given these pumping rates, as will be discussed. As the cells go dry, the model cells are made inactive and pumping from those cells stops. The pumping allocated to those cells was not reallocated to remaining

active cells. Thus the final amount of pumping in the predictive model runs was less than the consensus-based demand used as model input.

Model Calibration Approach

Once the model was constructed, the model was calibrated in two stages: steady state and transient. Model calibration was evaluated by

- comparing contours of the simulated and "observed" water tables for "predevelopment" and 1998 periods,
- mapping the residual of differences between simulated and "observed" water levels for individual well locations, and
- calculating the root mean square error of simulated versus observed hydraulic head (Anderson and Woessner, 1992).

First, the calibration of the predevelopment model was based on reproducing the estimated "predevelopment," or 1950, distribution of water levels as follows:

- During this first calibration stage, hydraulic conductivity, recharge rate, and parameter values for drains and rivers were inspected to see whether any changes were needed to improve the goodness-of-fit, or reduce model calibration error, calculated between simulated and observed values of hydraulic head. Only slight changes were made to hydraulic conductivity and recharge as previously discussed. The relation between recharge and precipitation rates was changed from one to three straight-line segments; the three segments may approximate a more complex relation between these two rates. Additional recharge was added to Donley County.
- Drain parameters were adjusted so that simulated discharge around the perimeter of the model would be consistent with historical observations of spring discharge (Brune, 1975).
- River conductances were iteratively adjusted so simulated groundwater discharge would match reported values of base flow (Luckey and others, 1986; Luckey and Becker, 1999).

• The predevelopment model was run as a transient model over a 6,000-year simulation time. Head changes after 6,000 years were found to be less than 0.01 foot. The 6,000-year time was broken up into 60 stress periods with 400 to 600 equal time steps for model convergence.

Second, the model was calibrated against water-level changes between 1950 and 1998. Model input at this stage included (1) simulated steady-state hydraulic-head values, (2) parameter values from the steady-state calibration (hydraulic conductivity, and drain and river packages), (3) estimated pumping rates, and (4) recharge rate modified to include return flow. This period is referred to as a "transient" period in that hydraulic head is changing in response to pumping rates that also are changing: As pumping rates were interpolated to a yearly basis, each stress period was 1 year. A stress period is a time interval in a model when all inflow and outflow are constant. Transient calibration included the following steps:

- After checking model calibration for 1998, model parameters for the predevelopment simulation were readjusted as needed, for example, aquifer-base elevation along the Texas–New Mexico border.
- No changes to storage were made during model calibration. Coefficient of storage in an unconfined aquifer, or specific yield, typically ranges between 0.05 and 0.3, which leaves little room for parameter adjustment to improve model calibration. Uncertainty in prescribing the distribution of pumping rates probably has a much bigger effect on model calibration than error in specific yield, and it would be inappropriate to try to correct for the pumping-rate error by pushing specific yield to unreasonable values.

CALIBRATION

Steady-State Calibration

Steady-state calibration involved adjusting hydraulic properties, recharge rate, and parameter values for drains and rivers to reduce model calibration error. It is considered steady

state because pumping was left out of this version of the model to represent "predevelopment" conditions. It was assumed that before pumping came to make up a significant amount of aquifer discharge, recharge was balanced over the long term (tens to hundreds of years) by discharge to springs and seeps in river valleys and along the escarpment.

There is a direct relation between recharge rate and hydraulic conductivity for the model. If recharge rate were set higher in all or part of the model, hydraulic conductivity would have to be increased to compensate and keep calibration error unchanged. It would take a higher hydraulic conductivity to move the greater volume of water recharging the aquifer and keep simulated water level the same. This pattern was documented in sensitivity analyses by Luckey and Becker (1999, p. 52).

Figure 10 compares the estimated and simulated elevations of the "predevelopment" water table. The picture of the "predevelopment" water table is imperfect because

- data were composited from a wide range of years to include the first recorded measurements in different areas of the model;
- some amount of groundwater was already being withdrawn in each area of the model when the earliest water levels were being reported; and
- some areas have sparse data on water levels, and elevation of the water table is extrapolated partly on the basis of the shape of ground-surface topography.

The major features of the estimated and simulated water table (fig. 10) reproduce those depicted by Knowles and others (1984) and Luckey and others (1986) for the water-table surfaces of the area; each study used a common pool of data. The major features are

- water-level contours generally strike north in the area north of the Canadian River, and northwest in the area between the Canadian River and Prairie Dog Town Fork of the Red River (fig. 10);
- contours bend upstream across the broad valleys of the Canadian and Beaver Rivers, indicating the tendency of groundwater to discharge to springs and seeps along the river bottomlands;

- contours bend upstream along the part of the Cimarron River simulated as a river segment at the northeastern side of the model and are perpendicular to the model boundary along the part farther upstream that was modeled as a no-flow boundary (fig. 2);
- simulated groundwater discharge contributes about 66 cubic feet per second of base flow to the Canadian River (table 6), consistent with historical trends (John Williams, personal communication, 2000) and previous model results (Luckey and Becker, 1999);
- contours bend slightly to the west in the vicinity of the model perimeter, reflecting the influence of the "drain" package used to simulate discharge to springs and seeps.
- groundwater discharge at springs and seeps around the model perimeter amounts to an average of 0.06 cubic foot per second per cell, with 98 percent of "drain" cells having discharge of less than 1 cubic foot per second and maximum simulated discharge of 2.1 cubic feet per second. As previously mentioned, notable springs discharge at rates of 1 to 2 cubic feet per second (Brune, 1975).

Contours of the simulated water table reasonably match the estimated, or "observed," predevelopment water table (fig. 10) across most of the study area. Areas of poor fit include the Canadian River and Beaver River valleys, where uncertainty in the boundary values assigned to riverbed conductance and stage height affect model results, and in New Mexico and along the Texas–New Mexico border data are sparse for mapping the aquifer base and water table in New Mexico, so it is possible that the estimated water table in that area includes appreciable error itself.

Figure 11a compares water levels measured for specific wells to the simulated water levels calculated for corresponding cells. The root mean square error of simulated versus observed hydraulic head (Anderson and Woessner, 1992) is about 64 feet, and there is no evident bias. This error is less than 4 percent of the head drop across the Texas part of the model (1,750 to 2,525 feet), whereas a typical calibration goal is 10 percent for a numerical model.

Figure 12 maps the calculated residual, or difference, between the reported and simulated water levels shown in figure 11a. Considerable effort was made to reduce the residual in northern

Union County, New Mexico, and to reduce its effect on results in western Dallam and Hartley Counties. Additional geologic research on the hydrogeology of the Ogallala aquifer in Union County, New Mexico, and along the Texas–New Mexico border would help improve model results in the northwestern Texas Panhandle.

Saturated thickness of groundwater in the Ogallala aquifer in the study area was as much as 700 feet in southwestern Kansas and the Oklahoma Panhandle, but it was generally less than 300 feet in Texas under predevelopment conditions (table 7, fig. 13). Given that the top of the saturated section is fairly smooth, much of the variation in saturated thickness is due to relief on the base of the Ogallala (fig. 5). In Carson County, the thick accumulation of Ogallala sediments reflects continued Tertiary-age deposition contemporaneous with ground-surface subsidence above salt-dissolution zones (Gustavson and Finley, 1985). A zone of low saturated thickness striking northwest across north-central Carson County reflects the "ridge" on the base of the Ogallala described by Mullican and others (1997). The thinnest saturated sections of the Ogallala were in eastern New Mexico and around the perimeter or limit of the aquifer.

Transient Calibration

Many of the regional features of the predevelopment water table remain for the 1998 water table (fig. 14), including the following:

- Contours on the 1998 water table strike north in the area north of the Canadian River and arc from northwest to south-southeast in the area between the Canadian River and Prairie Dog Town Fork.
- Contours still bend upstream across the broad valleys of the Canadian and Beaver Rivers, as seen in the "predevelopment" water-table surface.
- Contours bend upgradient in the vicinity of the model perimeter, reflecting continued influence of the "drain" package used to simulate discharge to springs and seeps, although about 7 percent of the springs have ceased to flow in the simulation.

There is generally good correspondence between estimated and simulated contours of water level for 1998 (fig. 14). It is hard to discern an overall change in calibration by comparing water-level contours (figs. 10 versus 14) or even calculated residuals (figs. 12 versus 15), perhaps partly because calibrations for both 1950 and 1998 are fairly good. Figure 11b shows that the mean square error of calibration for 1998 is 74 feet. This is larger than the calibration error for the "predevelopment" water table because of additional uncertainties associated with return flow, pumping rates, and specific yield. The mean square errors of calibration of the earlier model (Dutton and others, 2000) were 37 and 54 feet for predevelopment and transient models, respectively. The earlier model's calibration was somewhat forced in that transmissivity had been adjusted to improve model fit. This revised model includes little parameter adjustment and is a more "natural" model. Model error remains less than 5 percent of the head change across the Texas part of the model.

Groundwater discharge to base flow is simulated as decreasing by 15 to 52 percent to the Cimarron and Beaver Rivers and Wolf Creek but not by much to the Canadian River (table 6). Model results suggest simulated base flow to the Canadian River was largely unchanged between 1950 and 1998.

Saturated thickness decreased in the simulation from 1950 to 1998 (table 7; figs. 13, 16) because withdrawal was much greater than recharge rate. The greatest decrease in saturated thickness and greatest simulated drawdown of water levels between 1950 and 1998 in the model area in Texas were in Moore and Sherman Counties (table 7, fig. 17). The model also simulated a more than 100-foot decrease in water level in Amarillo's Carson County well field (fig. 17).

Volume of water in storage was determined for model cells by multiplying saturated thickness times cell area (1 square mile) and specific yield, and summed for all cells in a county. Averaged across all counties, the difference is 3 to 5 percent, but for individual counties the calibration residual translates into a difference in volume of 0 to 24 percent (table 8). The accuracy of the volume estimate for 1950 and 1998 depends on the same factors as did the

accuracy of the water-table elevation (composite and sparse data, drawdown effects), plus accuracy of estimated and model-calibrated values of specific yield.

The magnitude and effect of return flow remain poorly known. The difference between maximum rate of return flow and no return flow accounts for less than 20 feet of drawdown between 1950 and 1998, and not much more than 20 feet by 2050. Other model uncertainties associated with hydraulic properties and pumping rate account for at least this much error. Comparison of observed and simulated hydrographs, therefore, does not suffice to back out the most likely rate of return flow. Return flow may be important to future water budgets in areas that had high irrigation rates and low irrigation efficiency.

MODEL PREDICTIONS

A main purpose of model calibration was to qualify a model for use in predicting the remaining groundwater within each county of the PWPA from 2000 to 2050, given specific groundwater demands. As previously stated, however, uncertainty in projected pumping rates may be the most important factor in determining the accuracy of water-level forecasts (Konikow, 1986). Calibration error related to allocating pumping to too many or too few cells of a model is compounded if the projection of total future pumping does not prove accurate. It is important, therefore, to plan for future audits to see how well model results predicted water levels, and to revise predictions on the basis of revised estimates of future pumping rates.

Average saturated thickness in 2050 is predicted to be more than 100 feet in 10 counties in the model area and more than 200 feet in Hemphill and Roberts Counties (table 7). Given the prescribed rate of pumping for the period from 2000 to 2050 and the other assumptions of the calibrated model, however, water levels are expected to decline during 2000 to 2050 in all counties (figs. 18, 19). Major changes predicted by the model include the following:

- Although average saturated thickness in most counties in the PWPA is simulated to be above 50 feet (table 7), there are areas within each county in which saturated thickness falls to less than 50 feet (table 9, figs. 20 to 25).
- Drawdown from 1998 to 2050 is predicted to be more than 150 feet in some areas (fig. 19), given the forecast amount of pumping.
- By 2020, parts of the model area in Oklahoma and Dallam and Potter Counties, Texas, are predicted to begin to go dry (fig. 22). This finding is consistent with similar model results obtained by Luckey and Becker (1999, p. 53–55).
- By 2050, parts of Dallam, Sherman, Hartley, Moore, Potter, Carson, and Donley Counties are simulated as being dry or having less than 50 feet of saturated section (fig. 25). The results for Donley County may be inaccurate since the predevelopment model underestimated water in storage in the Ogallala aquifer in that county (fig. 13, table 8). Parts of Oldham and Randall Counties, of course, have long had saturated thickness of less than 50 feet. Table 10 tallies the percentage of counties in which saturated thickness is less than half of the 1998 saturated thickness. More than 60 percent of Oldham County had less than 50 feet of saturated thickness in 1998 (table 9). Even so, simulated drawdown will leave at least half of that water through 2050 (zero values in table 10), given forecast pumping rates.

The dewatered areas were determined by MODFLOW where simulated water level reached the aquifer base. Model prediction of dewatered areas might not be accurate for several reasons. Pumping rates were prescribed by consensus of what future demand will be (fig. 3), rather than what the aquifer might sustain, and pumping rates were not decreased as water levels fell in this version of the model. As saturated thickness decreases, it may not be cost effective for irrigators to operate large-capacity wells or multiple small-capacity wells. Also, groundwater conservation districts in the area have the goal of limiting drawdown so that at least half the 1998 column of water in the aquifer will remain by 2050.

The model is better calibrated for simulating dewatering conditions than the earlier model (Dutton and others, 2000). Transmissivity decreases as saturated thickness decreases. On the other hand, the hydraulic conductivity tends to be greater in the basal section of the Ogallala than in the upper section, so the effect of decreasing saturated thickness on transmissivity might be partly compensated for by an increase in average hydraulic conductivity.

The withdrawal of groundwater predicted for 2000 to 2050, which is much greater than the recharge rate, results in a further decrease in volume of water in storage in the Ogallala aquifer (table 11). Volume in storage was calculated from simulated saturated thickness, model-cell area, and calibrated specific yield. Volume of water in the aquifer is projected to decrease from approximately 250 to 277 million acre feet in 1998 (table 8) to about 199 million acre feet by 2050 (table 11). Dallam and Moore Counties are forecast to have on average less than half their 1998 volume of water by 2050, given the TAES irrigation projections and the other consensus-based demands. Sherman County is projected to have on average 52 percent of its 1998 water volume. Total volume of water, however, does not by itself completely describe the availability of groundwater in 2050. Some areas within each county are predicted to have less than half the 1998 saturated thickness (table 10), and there may be a marked deficit in groundwater resources in parts of several counties (for example, Dallam and Moore) by 2050 (fig. 25), given the forecast pumping rates and other model assumptions. Also, as only parts of Oldham and Randall Counties were included in the model, table 11 does not fully characterize whether there is a county-wide surplus or deficit in water availability.

As previously stated, irrigation projections by TWDB are somewhat higher than those of the TAES used in this study. Using the TWDB irrigation projections may give a so-called "worst-case" scenario in which less groundwater would remain by 2050, owing to the greater withdrawal rates. In addition, the earlier model (Dutton and others, 2000) may overestimate future drawdown relative to the results of the revised model. According to the earlier model (Dutton and others, 2000), volume of remaining groundwater is projected to decrease to less than 180 million acre feet by 2050 using the TWDB irrigation values (table 12). In addition to Dallam, Moore, and

Sherman Counties, Carson County is forecast to have less than half of its 1998 groundwater volume remaining by 2050. The results of the earlier model may be taken as a "worst-case" projection with higher pumping rates and greater simulated drawdown.

DISCUSSION

The most appropriate use of these model predictions is to

- identify areas where apparent supply of groundwater is adequate to meet forecast demand through 2050,
- identify areas in each county where supply of groundwater might not meet projected demand, and
- point out areas where saturated thickness is predicted to be less than 50 feet (the model calibration error), where there may be a need for water-supply alternatives, drought contingency plans, and water-management strategies that might address resource deficits.

The predicted drawdown and decrease in saturated thickness shown in figures 18 to 24 assume no decrease in pumping rate as water levels fall, contrary to regulations of the groundwater conservation districts, except where model cells are simulated to go dry. A water-management goal of the groundwater conservation districts is to limit future drawdown so that at least half of the 1998 saturated section will remain in 2050. The regional model of the Ogallala remains not well calibrated for the extreme event of aquifer dewatering. The model was calibrated for average hydrologic properties, which may differ from properties at the base of the aquifer.

There are various uncertainties associated with predicting exactly where the aquifer might go dry if projected pumping rates are sustained. Accordingly, model predictions can be used to identify areas where there may be surpluses and deficits in water resources, but they should not be used to predict to the nearest square mile where the Ogallala aquifer might go dry.

A variety of water-management plans might be evaluated by using the groundwater flow model. Additional research is needed to reevaluate projected demand for groundwater, assess

surpluses and deficits in groundwater resources, and identify water-management alternatives, including various spatial reallocations of water withdrawal. The model also can be used to further research recharge rates and to identify areas where additional data collection would help improve model accuracy.

ACKNOWLEDGMENTS

This study was sponsored by the Panhandle Water Planning Group (PWPG) of the Panhandle Regional Planning Commission under interagency contract number UTA99-0230. A Modeling Committee of the PWPG provided helpful discussion, data for use in the model, and helpful reviews of the draft report. Members of the Modeling Committee included Jarrett Atkinson (Project Manager) for PWPG, Richard Bowers of North Plains Underground Water Conservation District No. 2, Ray Brady of Panhandle Groundwater Conservation District 3, Dan Coffey, Director of City of Amarillo Utilities, Charles Cooke of TCW Supply, Rusty Gilmore of Rita Blanca Well Service, Dale Hallmark of North Plains Underground Water Conservation District No. 2, Gale Henslee of Southwestern Public Service, Mike Page of Phillips Petroleum Company, Grady Skaggs for Oldham County, Frank Simms of Carson County Feeders, Ben Weinheimer of Texas Cattle Feeders Association, C. E. Williams of Panhandle Groundwater Conservation District No. 3 (PWPG Co-chairman), and John Williams (Modeling Committee Chairman) of the Canadian River Municipal Water Authority. Stefan Schuster was PWPA Project Manager for the Texas Water Development Board.

Living Xu assisted in data compilation and digitization. Rebecca Smyth and Richard Luckey provided helpful reviews of the draft manuscript. Report illustrations were prepared by William Bergquist under the direction of Joel Lardon, Graphics Manager. Word processing and typesetting were done by Susan Lloyd, and Susann Doenges edited the report.

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or

implied, of the Panhandle Water Planning Group, Panhandle Regional Planning Commission, or Texas Water Development Board.

REFERENCES

- Anderson, M. P., and Woessner, W. W., 1992, Applied groundwater modeling, simulation of flow and advective transport: New York, Academic Press, 381 p.
- Berkstresser, C. F., Jr., and Mourant, W. A., 1966, Groundwater resources and geology of Quay County, New Mexico: Socorro, New Mexico Institute of Mining and Technology, Bureau of Mines and Mineral Resources, Groundwater Report No. 9, 115 p.
- Brune, G., 1975, Major and historical springs of Texas: Austin, Texas Water Development Board, Report 189, 95 p.
- Chiang, W.-H., Kinzelbach, W., and Rausch, R., 1998, Aquifer simulation model for Windows groundwater flow and transport modeling, an integrated program: Berlin, Stuttgart, Gebrüder Borntraeger, ISBN 3-443-01039-3.
- Clark, Isobel, 1979, Practical geostatistics: London, Applied Science Publishers, Limited, 129 p.
- Cooper, J. B., and Davis, L. V., 1967, General occurrence and quality of groundwater in Union County, New Mexico: Socorro, New Mexico Institute of Mining and Technology, Bureau of Mines and Mineral Resources, Groundwater Report No. 8, 168 p.
- Dutton, A. R., 1990, Hydrochemical processes involved in salt-dissolution zones, Texas Panhandle, U.S.A.: Hydrological Processes, v. 3, p. 75–89.
- Dutton, A. R., 1995, Groundwater isotopic evidence for paleorecharge in U.S. High Plains aquifers: Quaternary Research v. 43, p. 221–231.
- Dutton, A. R., and Reedy, R. C., 2000, Comparison of water in storage in the Ogallala aquifer versus projected amounts of withdrawal from 1998 to 2050 in Planning Region A, Letter

Report (rev. 1): prepared for Panhandle Water Planning Group (PWPG) under contract number UTA99-0230, Bureau of Economic Geology, The University of Texas at Austin, 15 p.

- Dutton, A. R., Reedy, R. C., and Mace, R. E., 2000, Predicted Saturated Thickness in the Ogallala Aquifer in the Panhandle Water Planning Area—Numerical Simulations of 2000 through 2050 Withdrawal Projections: Topical Report prepared for the Region A Panhandle Water Planning Group, Panhandle Regional Planning Commission under Contract number UTA99-0230, August 2000, 75 p.
- Dutton, A. R., and Simpkins, W. W., 1989, Isotopic evidence for paleohydrologic evolution of groundwater flow paths: Geology, v. 17, p. 653–656.
- Eifler, G. K., Jr., and Barnes, V. E., 1969, Amarillo sheet: The University of Texas at Austin, Bureau of Economic Geology, Geologic Atlas of Texas, Scale 1:250,000.
- Freese and Nichols, Inc., 2000, Current and projected population and water demand for the region: Topical Report prepared by Freese and Nichols, Inc., Texas Agricultural Experiment Station, and Texas Agricultural Extension Service for Panhandle Regional Planning Group, Amarillo, Texas, February 7, 2000, 20 p.
- Gustavson, T. C., 1996, Fluvial and eolian depositional systems, paleosols, and paleoclimate of the upper Cenozoic Ogallala and Blackwater Draw Formations, Southern High Plains, Texas and New Mexico: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 239, 62 p.
- Gustavson, T. C., and Finley, R. J., 1985, Late Cenozoic geomorphologic evolution of the Texas Panhandle and northeastern New Mexico—case studies of structural controls on regional drainage development: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 148, 42 p.

- Gustavson, T. C., and Simpkins, W. W., 1989, Geomorphic processes and rates of retreat affecting the Caprock Escarpment: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 180, 49 p.
- Gustavson, T. C., and Winkler, D. A., 1988, Depositional facies of the Miocene-Pliocene Ogallala Formation, northwestern Texas and eastern New Mexico: Geology, v. 16, p. 203–206.
- Gutentag, E. D., Heimes, F. J., Krothe, N. C., Luckey, R. R., and Weeks, J. B., 1984,
 Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New
 Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological Survey
 Professional Paper 1400-B, 57 p.
- Harbaugh, A. W., and McDonald, M. G., 1996, User's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference groundwater flow model: U.S. Geological Survey Open-File Report 96-485.
- Knowles, Tommy, Nordstrom, Phillip, and Klemt, W. B., 1984, Evaluating the groundwater resources of the High Plains of Texas: Austin, Texas, Department of Water Resources Report 288, volumes 1 to 3.
- Konikow, L. F., 1986, Predictive accuracy of a groundwater model—lessons from a postaudit: Groundwater, v. 24, no. 2, p. 173–184.
- Larkin, T. J., and Bomar, G. W., 1983, Climatic atlas of Texas: Austin, Texas, Department of Water Resources, Report LP-192, 151 p.
- Luckey, R. L., and Becker, M. F., 1999, Hydrogeology, water use, and simulation of flow in the High Plains aquifer in northwestern Oklahoma, southeastern Colorado, southwestern Kansas, northeastern New Mexico, and northwestern Texas: U.S. Geological Survey Water-Resources Investigations Report 99-4104, 68 p.

- Luckey, R. L., Gutentag, E. D., Heimes, F. J., and Weeks, J. B., 1986, Digital simulation of groundwater flow in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological Survey Professional Paper 1400-D, 57 p.
- Mace, R. E., and Dutton, A. R., 1998, Numerical modeling of groundwater flow in the Ogallala aquifer in Texas, *in* Castellanos, J. Z., Carrillo, J. J., and Yanez, C. H., eds., Memoria del Simposio Internacional de Aguas Subterraneas: Sociedad Mexicana de la Ciencia del Suelo, p. 98–109.
- McCuen, R. H., and Snyder, W. M., 1986, Hydrologic modeling: statistical methods and applications: Englewood Cliffs, New Jersey, Prentice Hall, 568 p.
- Mehta, S., Fryar, A. F., Brady, R. M., and Morin, R. H., in press, Modeling regional salinization of the Ogallala aquifer, southern High Plains, Texas, U.S.A.: Journal of Hydrology.
- Mullican, W. F., III, Johns, N. D., and Fryar, A. E., 1997, Playas and recharge of the Ogallala aquifer on the southern High Plains of Texas—an examination using numerical techniques: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 242, 72 p.
- Nativ, Ronit, 1988, Hydrogeology and hydrochemistry of the Ogallala aquifer, Southern High Plains, Texas Panhandle and eastern New Mexico: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 177, 64 p.
- Senger, R. K., and Fogg, G. E., 1987, Regional underpressuring in deep brine aquifers, Palo Duro Basin, Texas. 1. Effects of hydrostratigraphy and topography: Water Resources Research v. 23, p. 1481–1493.
- Seni, S. J., 1980, Sand-body geometry and depositional systems, Ogallala Formation, Texas: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 105, 36 p.

- Simpkins, W. W., and Fogg, G. E., 1982, Preliminary modeling of groundwater flow near saltdissolution zones, Texas Panhandle, *in* Gustavson, T. C., and others, Geology and geohydrology of the Palo Duro Basin, Texas: The University of Texas at Austin, Bureau of Economic Geology Geological Circular 82-7, p. 130–137.
- Texas Water Development Board, 1996, Surveys of irrigation in Texas 1958, 1964, 1969, 1974, 1979, 1984, 1989, and 1994: Austin, Texas, Report 347, 59 p.
- Texas Water Development Board, 1999, Ground water database: Texas Water Development Board, located online at www.twdb.state.tx.us.
- Theis, C. V., 1963, Estimating the transmissivity of a water-table aquifer from the specific capacity of a well: U.S. Geological Survey Water-Supply Paper 1536-I, p. 332–336.
- U.S. Geological Survey, 1998, Geologic map of North America: http://ncgmp.cr.usgs.gov/ ncgmp/gmna/gmna.htm.

Seymour Aquifer Freese and Nichols Estimated Ground Water Availability Calculation Methodology

А	В	С	D	Е	F	G
County	Aquifer Outcrop Area in County (acres)	Avg. Annual Precip. in County/Year (ft)	Estimated Recharge Rate (%)	Effective Recharge (ac-ft/yr)	1994-1997 Pumpage (ac-ft/yr)	Estimated Availability (ac-ft/yr)
Childress	52,352	1.767	5%	4,625	215	4,625
Collingsworth	176,901	1.842	5%	16,293	20,595	20,595
Donley	130	1.833	5%	12	0	12
Hall	93,934	1.742	5%	8,182	11,612	11,612
Wheeler	41,472	1.917	5%	3,975	73	3,975
TOTAL	364,789			33,087	32,495	40,819

Reference Sources by Column

B: TWDB 1999. Data used is geospatial analysis of TWDB GIS data.

C: NCDC Station data 1999(www.worldclimate.com)

D: Duffin 1992.

E: Effective Recharge = Aquifer Outcrop Area in County (acres) * Avg. Ann. Precip. In County/Year * Est. Recharge Rate (%)

F: TWDB 1999

G: No significant decreases in aquifer levels have occurred in the Seymour aquifer (TWDB, 1997). The annual availability is therefore estimated to be the greater of either effective recharge or historical pumpage rates.

Blaine Aquifer Freese and Nichols Estimated Ground Water Availability Calculation Methodology

А	В	С	D	Е	F	G
County	Aquifer Outcrop Area in County (acres)	Avg. Annual Precip. in County/Year (ft)	Estimated Recharge Rate (%)	Effective Recharge (ac-ft/yr)	1994-1997 Pumpage (ac-ft/yr)	Estimated Availability (ac-ft/yr)
Childress	329,089	1.767	5%	29,075	5,416	29,075
Collingsworth	525,546	1.842	5%	48,403	6,874	48,403
Hall	35,166	1.742	5%	3,063	0	3063
Wheeler	148,576	1.917	5%	14,241	40	14,241
TOTAL	1,038,377			94,782	12,330	94,782

Reference Sources by Column

B: TWDB 1999. Data used is geospatial analysis of TWDB GIS data.

C: NCDC Station data 1999(www.worldclimate.com)

D: Duffin 1992.

E: Effective Recharge = Aquifer Outcrop Area in County (acres) * Avg. Ann. Precip. In County/Year * Est. Recharge Rate (%)

F: TWDB 1999

G: No significant decreases in aquifer levels have occurred in the Blaine aquifer, and declines that have occurred are due to heavy irrigation use and are quickly recharged after seasonal rainfall (TWDB, 1997). The annual availability is therefore estimated to be the greater of either effective recharge or historical pumpage rates.

Dockum Aquifer Freese and Nichols Estimated Ground Water Availability Calculation Methodology

А	В	С	D	Е	F	G	Н	Ι	J	K
County	Estimated Available Storage (acre-feet) <5,000 mg/l TDS	Estimated Annual Recharge* (ac-ft)	Percent Recoverable (%)	Planning Period (years)	Year 2000 Avail. (ac-ft)	Year 2010 Avail. (ac-ft)	Year 2020 Avail. (ac-ft)	Year 2030 Avail. (ac-ft)	Year 2040 Avail. (ac-ft)	Year 2050 Avail. (ac-ft)
Armstrong	1,700	_	50%	50	17	17	17	17	17	17
Carson	1,200		50%	50	12	12	12	12	12	12
Dallam	20,000		50%	50	200	200	200	200	200	200
Hartley	39,000		50%	50	390	390	390	390	390	390
Moore	300		50%	50	3	3	3	3	3	3
Oldham	491,000	2,800	50%	50	7,710	7,710	7,710	7,710	7,710	7,710
Potter	180,000	300	50%	50	2,100	2,100	2,100	2,100	2,100	2,100
Randall	23,000		50%	50	230	230	230	230	230	230
TOTAL	756,200	3,100	50%	50	10,662	10,662	10,662	10,662	10,662	10,662

Reference Sources by Column

B-C: Bradley 1997 (The Ground-Water Resources of the Dockum Aquifer, Texas.)

D: PWPG determined allowable aquifer reduction over entire planning period.

E: Length of planning period, Year 2000-2050

F-K: Year 20XX Avail. (ac-ft) = [Est. Avail. Storage * 50% (recoverable amount over 50 year planning period) / 50 years] + Est. Ann. Recharge

Example: Potter County (180,000 ac-ft * 50% / 50 years) + 300 ac-ft/yr = 2,100 ac-ft/yr groundwater availability

Rita Blanca Aquifer Freese and Nichols Estimated Ground Water Availability Calculation Methodology

А	В	С	D	E	F	G	Н			
	Average	Estimated Annual Availability (ac-ft/yr)								
County	Pumpage 1994-1997 (ac-ft/yr)	2000	2010	2020	2030	2040	2050			
Dallam	5,250	5,250	5,250	5,250	5,250	5,250	5,250			
Hartley	-	0	0	0	0	0	0			
TOTAL	5,250	5,250	5,250	5,250	5,250	5,250	5,250			

Reference Sources by Column

B: TWDB 1999

C-H: The only data identified to estimate groundwater availability for the Rita Blanca aquifer was historical pumpage (TWDB 1999). No data for saturated thickness, water well levels, recoverable storage or other water availability parameters were identified. Therefore, estimated annual availability was considered to be equal to the average pumpage in TWDB, 1999.

А	В		С	D	E	F	G	Н	
	Average Pumpage	Historical Maximum	Estimated Annual Availability (ac-ft/yr)						
County	1994-1997 (ac-ft/yr)	Pumpage (ac-ft/yr)	2000	2010	2020	2030	2040	2050	
Armstrong	120	144	120	120	120	120	120	120	
Childress	62	82	62	62	62	62	62	62	
Collingsworth	30	32	30	30	30	30	30	30	
Donley	43	71	71	71	71	71	71	71	
Hall	40	46	46	46	46	46	46	46	
Wheeler	271	335	335	335	335	335	335	335	
TOTAL	566	710	664	664	664	664	664	664	

Reference Sources by Column

B: TWDB 1999

C-H: The only data identified to estimate groundwater availability for the Whitehorse aquifer was historical pumpage (TWDB 1999). No data for saturated thickness, water well levels, recoverable storage or other water availability parameters were identified. Therefore, estimated annual availability was considered to be equal to the average pumpage in TWDB, 1999.

TABLE 1. RELATIONSHIP OF WATER NEEDS AND IMPACTS TO PROJECTIONSWITHOUT CONSTRAINTS, PANHANDLE REGION, 2000 - 2050

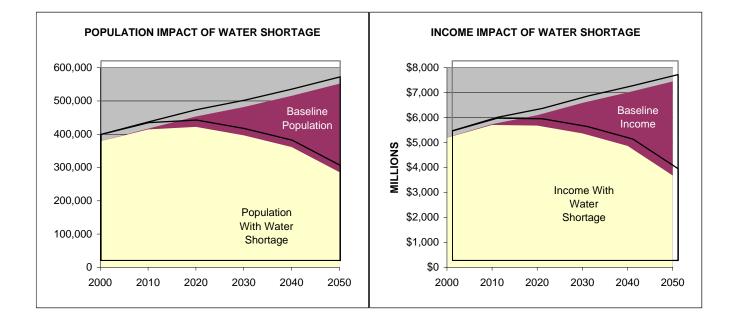
WATER

POPULATION

EMPLOYMENT

Decade	Projected Demand	Projected Water Shortage	Percent Shortage						
(acre-feet)									
2000	1,718,402	49	0.0%						
2010	1,744,732	1,631	0.1%						
2020	1,759,864	342,320	19.5%						
2030	1,773,591	628,813	35.5%						
2040	1,791,838	797,995	44.5%						
2050	1,812,949	985,410	54.4%						

Employment Baseline With Water Percent Employment Shortage Loss Decade (FTE jobs) 2000 0.1% 167,968 167,866 2010 185,393 184,199 0.6% 2020 197,040 181,216 8.0% 2030 212,852 169,795 20.2% 226,382 2040 149,976 33.8% 2050 240,578 108,149 55.0%


INCOME

Decade	Baseline Population	Population With Water Shortage	Percent Loss
2000	379,018	378,810	0.1%
2010	416,870	414,458	0.6%
2020	453,496	421,940	7.0%
2030	481,637	396,691	17.6%
2040	515,393	361,775	29.8%
2050	552,072	285,978	48.2%

	Income With								
	Baseline	Water	Percent						
Decade	Income	Shortage	Loss						
	(millions,	1999 \$)							
2000	5,199	5,195	0.1%						
2010	5,738	5,707	0.5%						
2020	6,098	5,678	6.9%						
2030	6,588	5,363	18.6%						
2040	7,007	4,868	30.5%						
2050	7,446	3,677	50.6%						

DEVELOPED USING TAES IRRIGATION VALUE, AS REQUESTED BY PANHANDLE RWPG TABLE 2. SUMMARY OF IMPACTS BY DECADE AND CATEGORY PANHANDLE REGION, 2000 - 2050

		FAI		•	.000 - 2050			
				Impact of				
				Need on				
				Gross			Impact of	
				Business			Need on	
				Output in		•	Income in	
		Value of	Impact of	1999 US	Impact of	Need on	1999 US	WUGs
		Need (Acre-	Need on	Dollars	Need on	School	Dollars	with
Category	Decade	Feet)	Employment	(Millions)	Population	Enrollment	(Millions)	Needs
Municipal	2000	-1	1	0.1	2	1	0.0	1
Manufacturing	2000	-46	101	16.5	206	69	3.4	2
Steam Elec.	2000	0	0	0.0	0	0	0.0	0
Mining	2000	-2	0	0.0	0	0	0.0	1
Irrigation	2000	0	0	0.0	0	0	0.0	0
Livestock	2000	0	0	0.0	0	0	0.0	0
TOTAL		-49	102	16.6	208	70	3.4	
Municipal	2010	-1,571	1,070	94.5	2,150	548	26.3	4
Manufacturing	2010	-57	125	20.4	262	71	4.2	2
Steam Elec.	2010	0	0	0.0	0	0	0.0	0
Mining	2010	-3	0	0.1	0	0	0.0	1
Irrigation	2010	0	0	0.0	0	0	0.0	0
Livestock	2010	0	0	0.0	0	0	0.0	0
TOTAL		-1,631	1,195	114.9	2,412	619	30.6	
Municipal	2020	-6,312	4,902	416.8	9,581	2,499	122.0	16
Manufacturing	2020	-1,496	3,905	638.9	7,874	1,992	131.8	4
Steam Elec.	2020	-31	16	3.2	31	8	0.8	1
Mining	2020	-4	0	0.1	0	0	0.0	1
Irrigation	2020	-324,676	2,132	226.6	4,285	1,087	41.0	2
Livestock	2020	-9,801	4,868	766.7	9,785	2,483	124.7	2
TOTAL		-342,320	15,824	2,052.2	31,556	8,069	420.3	
Municipal	2030	-12,225	10,602	875.3	21,375	5,646	265.7	19
Manufacturing	2030	-8,570	18,336	2,999.9	35,051	9,048	618.7	4
Steam Elec.	2030	-200	10,330	2,333.5	213	58	5.3	
Mining	2000	-129	18	2.8	37	13	0.6	2
Irrigation	2000	-587,277	3,855	409.8	7,789	1,974	74.2	4
Livestock	2030	-20,412	10,139	1,596.6	20,481	5,172	259.8	3
TOTAL	2000	-628,813	43,057	5,904.9	84,946	21,891	1,224.3	
Municipal	2040	-29,425	34,757	2,674.4	71,341	17,889	885.8	36
Manufacturing	2040	-9,512	20,284	3,318.4	38,774	10,010	684.4	6
Steam Elec.	2040	-3,982	2,107	409.1	4,287	1,077	105.2	2
Mining	2040	-281	39	6.0	91	21	1.4	6
Irrigation	2040	-725,694	4,764	506.4	9,777	2,452	91.7	9
Livestock	2040	-29,101	14,455	2,276.3	29,348	7,373	370.4	5
TOTAL		-797,995	76,407	9,190.6	153,618	38,822	2,138.8	
Municipal	2050	-55,038	74,398	5,579.0	149,000	37,981	1,907.0	36
Manufacturing	2050	-12,451	25,046	4,097.6	50,100	12,780	845.1	8
Steam Elec.	2050	-16,059	23,040	1,649.5	17,252	4,334	424.0	2
Mining	2050	-772	108	1,049.5	230	4,334	3.8	7
Irrigation	2050	-863,421	5,668	602.5	11,528	2,905	109.1	
Livestock	2050	-37,668	18,711	2,946.5	37,984	9,544	479.4	9 5
TOTAL	2000	-985,410	132,429	14,891.7	266,094	67,611	3,768.5	v
· - · · ·		555,110	,	,	,,		-,. 55.5	

Impacts based on water needs identified in Table 7 delivered to TWDB as of 9/11/2001

Table 9.00 - Social and Economic Impacts of Not Meeting Needs by Region, 2000

			Impact of			
			Need on			
			Gross			Impact of
			Business			Need on
			Output in		Impact of	Income in
	Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Need (Acre-	Need on	Dollars	Need on	School	Dollars
RWPG Letter, Water User Group Identifier, Name	Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
A 11003096 MINING	-2	0	0.0	0	0	0.0
A 11001106 MANUFACTURING	-4	6	1.0	12	4	0.2
A 11001148 MANUFACTURING	-42	95	15.5	194	65	3.2
A 10099000 BOOKER	-1	1	0.1	2	1	0.0
Grand Total	-49	102	16.6	208	70	3.4

.

Table 9.10 - Social and Economic Impacts of Not Meeting Needs by Region, 2010

			Impact of			
			Need on			
			Gross			Impact of
			Business			Need on
			Output in		Impact of	Income in
	Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Need (Acre-	Need on	Dollars	Need on	School	Dollars
RWPG Letter, Water User Group Identifier, Name	Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
A 10515000 LEFORS	-19	18	1.4	44	14	0.5
A 10515000 LEFORS A 11003096 MINING	-19 -3	18 0	1.4 0.1	44 0	14 0	0.5 0.0
	-					
A 11003096 MINING	-3		0.1	0	0	0.0
A 11003096 MINING A 11001106 MANUFACTURING	-3 -5	0 7	0.1 1.2	0 17	0 5	0.0 0.2
A 11003096 MINING A 11001106 MANUFACTURING A 11001148 MANUFACTURING	-3 -5 -52	0 7 117	0.1 1.2 19.2	0 17 245	0 5 66	0.0 0.2 4.0
A 11003096 MINING A 11001106 MANUFACTURING A 11001148 MANUFACTURING A 10689000 PERRYTON	-3 -5 -52 -1,518	0 7 117 1,019	0.1 1.2 19.2 90.4	0 17 245 2,028	0 5 66 510	0.0 0.2 4.0 25.1

Table 9.20 - Social and Economic Impacts of Not Meeting Needs by Region, 2020

	-		Impact of			
			Need on			
			Gross			Impact of
			Business			Need on
			Output in		Impact of	Income in
	Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Need (Acre-	Need on	Dollars	Need on	School	Dollars
RWPG Letter, Water User Group Identifier, Name	Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
A 10834000 SKELLYTOWN	-44	42	3.4	81	21	1.0
A 10226000 DALHART	-863	579	51.4	1,112	295	14.3
A 10996056 COUNTY-OTHER	-136	93	8.2	179	47	2.3
A 11001056 MANUFACTURING	-179	1,257	205.7	2,539	641	42.4
A 11004056 IRRIGATION	-293,412	1,926	204.7	3,891	982	37.1
A 11005056 LIVESTOCK	-8,787	4,365	687.3	8,817	2,226	111.8
A 10515000 LEFORS	-95	90	7.2	173	46	2.3
A 10578000 MCLEAN	-246	232	18.8	445	118	5.8
A 11003096 MINING	-4	0	0.1	0	0	0.0
A 10368000 GRUVER	-203	192	15.5	369	98	4.8
A 10226000 DALHART	-612	411	36.5	789	210	10.1
A 10142000 CANADIAN	-199	188	15.2	361	96	4.7
A 11001106 MANUFACTURING	-6	9	1.5	17	5	0.3
A 11001148 MANUFACTURING	-58	131	21.4	252	67	4.4
A 10134000 CACTUS	-80	75	6.1	144	38	1.9
A 10255000 DUMAS	-499	533	41.9	1,023	272	13.5
A 10872000 SUNRAY	-98	93	7.5	179	47	2.3
A 10996171 COUNTY-OTHER	-69	47	4.1	90	24	1.2
A 11001171 MANUFACTURING	-1,253	2,508	410.3	5,066	1,279	84.6
A 11002171 STEAM ELECTRIC POWER	-31	16	3.2	31	8	0.8
A 11004171 IRRIGATION	-31,264	205	21.8	394	105	3.9
A 11005171 LIVESTOCK	-1,014	504	79.3	968	257	12.9
A 10689000 PERRYTON	-2,482	1,667	147.9	3,367	850	41.0
A 10145000 CANYON	-107	114	9.0	219	58	2.9
A 10500000 LAKE TANGLEWOOD	-305	288	23.3	553	147	7.2
A 10961000 WHEELER	-275	259	21.0	497	132	6.5
Grand Total	-342,320	15,824	2,052.2	31,556	8,069	420.3

Table 9.30 - Social and Economic Impacts of Not Meeting Needs by Region, 2030

Table 9.30 - Social and Economic impacts of Not Meeting Needs by Region, 2030						
			Impact of			
			Need on			
			Gross			Impact of
			Business			Need on
			Output in		Impact of	Income in
	Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Need (Acre-	Need on	Dollars	Need on	School	Dollars
RWPG Letter, Water User Group Identifier, Name	Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
A 10173000 CLAUDE	-150	142	11.4	285	78	3.6
A 10834000 SKELLYTOWN	-64	60	4.9	125	41	1.5
A 10226000 DALHART	-1,087	730	64.8	1,467	402	18.0
A 10996056 COUNTY-OTHER	-174	119	10.5	239	65	2.9
A 11001056 MANUFACTURING	-232	1,629	266.6	3,291	831	55.0
A 11004056 IRRIGATION	-380,930	2,501	265.8	5,052	1,276	48.1
A 11005056 LIVESTOCK	-12,951	6,433	1,013.0	12,995	3,281	164.8
A 10515000 LEFORS	-85	80	6.5	166	55	2.0
A 10578000 MCLEAN	-232	219	17.7	440	120	5.5
A 11003096 MINING	-5	1	0.1	2	1	0.0
A 10368000 GRUVER	-361	341	27.5	685	188	8.6
A 10226000 DALHART	-791	531	47.1	1,067	292	13.1
A 10142000 CANADIAN	-641	605	48.9	1,216	333	15.2
A 11001106 MANUFACTURING	-7	10	1.7	21	7	0.3
A 11001148 MANUFACTURING	-62	140	22.9	281	77	4.7
A 10134000 CACTUS	-592	558	45.2	1,122	307	14.1
A 10255000 DUMAS	-3,418	3,654	287.1	7,381	1,864	92.7
A 10872000 SUNRAY	-701	661	53.5	1,329	364	16.7
A 10996171 COUNTY-OTHER	-427	292	25.8	587	161	7.2
A 11001171 MANUFACTURING	-8,269	16,557	2,708.7	31,458	8,113	558.6
A 11002171 STEAM ELECTRIC POWER	-200	106	20.5	213	58	5.3
A 11004171 IRRIGATION	-200,576	1,317	140.0	2,660	672	25.3
A 11005171 LIVESTOCK	-7,459	3,705	583.5	7,484	1,890	94.9
A 10689000 PERRYTON	-2,432	1,633	144.9	3,299	833	40.2
A 10996188 COUNTY-OTHER	-188	129	11.4	259	71	3.2
A 11003188 MINING	-124	17	2.7	35	12	0.6
A 11004188 IRRIGATION	-5,704	37	4.0	77	26	0.7
A 10145000 CANYON	-248	265	20.8	533	146	6.7
A 10500000 LAKE TANGLEWOOD	-303	286	23.1	575	157	7.2
A 10996191 COUNTY-OTHER	-59	40	3.6	83	28	1.0
A 11004191 IRRIGATION	-67	0	0.0	0	0	0.0
A 11005191 LIVESTOCK	-2	1	0.2	2	1	0.0
Impacts based on water needs identified in Table 7 delivered to TWDB as of 9/11/2001						

Impacts based on water needs identified in Table 7 delivered to TWDB as of 9/11/2001

Table 9.30 - Social and Economic Impacts of Not Meeting Needs by Region, 2030

			Impact of			
			Need on			
			Gross			Impact of
			Business			Need on
			Output in		Impact of	Income in
	Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Need (Acre-	Need on	Dollars	Need on	School	Dollars
RWPG Letter, Water User Group Identifier, Name	Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
A 10961000 WHEELER	-272	257	20.7	517	141	6.5
Grand Total	-628,813	43,057	5,904.9	84,946	21,891	1,224.3

.

 Table 9.40 - Social and Economic Impacts of Not Meeting Needs by Region, 2040

Table 9.40 - Social and Economic Impacts of Not M	eeting Needs b	y Region, 2040				
			Impact of			
			Need on			
			Gross			Impact of
			Business			Need on
			Output in		Impact of	Income in
	Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Need (Acre-	Need on	Dollars	Need on	School	Dollars
RWPG Letter, Water User Group Identifier, Name	Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
A 10173000 CLAUDE	-268	253	20.4	536	134	6.4
A 10365000 GROOM	-51	48	3.9	113	26	1.2
A 10675000 PANHANDLE	-738	696	56.3	1,476	369	17.5
A 10834000 SKELLYTOWN	-61	58	4.7	136	32	1.4
A 10962000 WHITE DEER	-48	45	3.7	106	25	1.1
A 10226000 DALHART	-1,037	696	61.8	1,476	369	17.1
A 10996056 COUNTY-OTHER	-173	118	10.4	250	63	2.9
A 11001056 MANUFACTURING	-232	1,629	266.6	3,307	831	55.0
A 11004056 IRRIGATION	-380,971	2,501	265.8	5,077	1,276	48.1
A 11005056 LIVESTOCK	-14,742	7,323	1,153.1	14,866	3,735	187.6
A 10515000 LEFORS	-80	75	6.1	176	41	1.9
A 10578000 MCLEAN	-226	213	17.2	452	113	5.4
A 11003096 MINING	-6	1	0.1	2	1	0.0
A 10368000 GRUVER	-346	326	26.4	691	173	8.2
A 10226000 DALHART	-791	531	47.1	1,126	281	13.1
A 10142000 CANADIAN	-615	580	46.9	1,230	307	14.6
A 11001106 MANUFACTURING	-8	12	1.9	28	7	0.4
A 11001148 MANUFACTURING	-74	167	27.3	354	89	5.6
A 10134000 CACTUS	-703	663	53.6	1,406	351	16.7
A 10255000 DUMAS	-3,603	3,852	302.6	7,820	1,965	97.7
A 10872000 SUNRAY	-750	708	57.2	1,501	375	17.8
A 10996171 COUNTY-OTHER	-419	287	25.3	608	152	7.1
A 11001171 MANUFACTURING	-8,863	17,746	2,903.3	33,540	8,696	598.8
A 11002171 STEAM ELECTRIC POWER	-200	106	20.5	225	56	5.3
A 11004171 IRRIGATION	-200,576	1,317	140.0	2,674	672	25.3
A 11005171 LIVESTOCK	-8,546	4,245	668.5	8,617	2,165	108.8
A 10689000 PERRYTON	-2,370	1,592	141.2	3,232	812	39.2
A 10928000 VEGA	-21	20	1.6	47	11	0.5
A 10996180 COUNTY-OTHER	-194	133	11.7	282	71	3.3
A 11003180 MINING	-25	4	0.5	9	2	0.1
A 11004180 IRRIGATION	-2,188	14	1.5	33	8	0.3
A 10020000 AMARILLO	-5,142	9,320	666.8	18,919	4,753	241.3
Impacts based on water needs identified in Table 7 (delivered to TW	/DB as of 9/11/	/2001			

Table 9.40 - Social and Economic Impacts of Not Meeting Needs by Region, 2040

			-		Impact of			
					Need on			
					Gross			Impact of
					Business			Need on
					Output in		Impact of	Income in
			Value of	Impact of	1999 US	Impact of	Need on	1999 US
			Need (Acre-	Need on	Dollars	Need on	School	Dollars
R	WPG Letter	, Water User Group Identifier, Name	Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
Α	10996188	COUNTY-OTHER	-606	415	36.6	880	220	10.2
Α	11001188	MANUFACTURING	-185	394	64.5	835	209	13.3
Α	11002188	STEAM ELECTRIC POWER	-3,782	2,001	388.5	4,062	1,021	99.9
Α	11003188	MINING	-233	33	5.0	75	17	1.2
Α		IRRIGATION	-9,382	62	6.5	146	34	1.2
Α	10020000	AMARILLO	-5,319	9,642	689.8	19,573	4,917	249.6
Α	10145000	CANYON	-479	512	40.2	1,085	271	13.0
Α	10378000	НАРРҮ	-59	56	4.5	132	31	1.4
Α	10500000	LAKE TANGLEWOOD	-294	277	22.4	587	147	7.0
Α		COUNTY-OTHER	-4,214	2,883	254.3	5,888	1,478	71.0
Α	11001191	MANUFACTURING	-149	335	54.8	710	178	11.3
Α	11003191		-3	0	0.1	0	0	0.0
Α	11004191	IRRIGATION	-40,991	269	28.6	573	143	5.2
Α		LIVESTOCK	-2,601	1,292	203.4	2,625	659	33.1
Α		STRATFORD	-242	228	18.4	483	121	5.7
Α		COUNTY-OTHER	-55	38	3.3	89	21	0.9
Α	11003211		-14	2	0.3	5	1	0.1
Α		IRRIGATION	-91,586	601	63.9	1,274	319	11.6
Α		LIVESTOCK	-3,213	1,596	251.3	3,240	814	40.9
Α		SHAMROCK	-252	238	19.2	505	126	6.0
Α		WHEELER	-268	253	20.4	536	134	6.4
G	rand Total		-797,995	76,407	9,190.6	153,618	38,822	2,138.8

 Table 9.50 - Social and Economic Impacts of Not Meeting Needs by Region, 2050

Table 9.50 - Social and Economic Impacts of Not N	leeting Needs t	by Region, 2050				
			Impact of			
			Need on			
			Gross			Impact of
			Business			Need on
			Output in		•	Income in
	Value of	•	1999 US	Impact of	Need on	1999 US
	Need (Acre-		Dollars	Need on	School	Dollars
RWPG Letter, Water User Group Identifier, Name	Feet)	Employment	(Millions)	Population		(Millions)
A 10173000 CLAUDE	-267	252	20.4	514	129	6.3
A 10365000 GROOM	-121	114	9.2	233	58	2.9
A 10675000 PANHANDLE	-933	880	71.2	1,795	449	22.2
A 10834000 SKELLYTOWN	-59	56	4.5	119	34	1.4
A 10962000 WHITE DEER	-281	265	21.4	542	137	6.7
A 10226000 DALHART	-1,002	673	59.7	1,373	343	16.6
A 10996056 COUNTY-OTHER	-172	118	10.4	241	60	2.9
A 11001056 MANUFACTURING	-232	1,629	266.6	3,307	831	55.0
A 11004056 IRRIGATION	-381,008	2,501	265.9	5,077	1,276	48.1
A 11005056 LIVESTOCK	-16,796	8,343	1,313.8	16,936	4,255	213.8
A 10515000 LEFORS	-78	74	5.9	158	45	1.9
A 10578000 MCLEAN	-220	208	16.8	424	106	5.2
A 11001090 MANUFACTURING	-57	49	8.0	104	30	1.7
A 11003096 MINING	-7	1	0.1	2	1	0.0
A 10368000 GRUVER	-334	315	25.5	643	161	7.9
A 10226000 DALHART	-803	539	47.8	1,100	275	13.3
A 10142000 CANADIAN	-601	567	45.8	1,157	289	14.3
A 11001106 MANUFACTURING	-9	13	2.2	28	8	0.4
A 11001117 MANUFACTURING	-1,657	2,171	355.1	4,407	1,107	73.2
A 11001148 MANUFACTURING	-86	194	31.7	396	99	6.5
A 11003148 MINING	-9	1	0.2	2	1	0.0
A 10134000 CACTUS	-838	563	49.9	1,149	287	13.8
A 10255000 DUMAS	-3,848	4,114	323.2	8,351	2,098	104.3
A 10872000 SUNRAY	-807	761	61.6	1,552	388	19.2
A 10996171 COUNTY-OTHER	-430	294	26.0	600	150	7.2
A 11001171 MANUFACTURING	-9,429	18,879	3,088.7	37,569	9,628	637.0
A 11002171 STEAM ELECTRIC POWER	-200	106	20.5	216	54	5.3
A 11004171 IRRIGATION	-200,576	1,317	140.0	2,674	672	25.3
A 11005171 LIVESTOCK	-9,786	4,861	765.5	9,868	2,479	124.5
A 10689000 PERRYTON	-2,320	1,558	138.2	3,163	795	38.3
A 10928000 VEGA	-245	231	18.7	479	124	5.8
A 10996180 COUNTY-OTHER	-2,295	1,570	138.5	3,189	802	38.7
Impacts based on water needs identified in Table 7	delivered to TV	VDB as of 9/11.	/2001			

Table 9.50 - Social and Economic Impacts of Not Meeting Needs by Region, 2050

					Impact of			
					Need on			
					Gross			Impact of
					Business			Need on
					Output in		Impact of	Income in
			Value of	Impact of	1999 US	Impact of	Need on	1999 US
			Need (Acre-	Need on	Dollars	Need on	School	Dollars
R	WPG Letter,	Water User Group Identifier, Name	Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
Α	11003180	MINING	-311	44	6.7	94	27	1.5
Α	11004180	IRRIGATION	-25,948	170	18.1	354	92	3.3
Α	10020000	AMARILLO	-14,191	25,723	1,840.3	51,189	13,119	666.0
Α	10996188	COUNTY-OTHER	-1,528	1,045	92.2	2,131	533	25.8
Α	11001188	MANUFACTURING	-799	1,702	278.5	3,455	868	57.4
Α	11002188	STEAM ELECTRIC POWER	-15,859	8,392	1,629.0	17,036	4,280	418.8
Α	11003188	MINING	-410	58	8.8	121	35	2.0
Α	11004188	IRRIGATION	-13,877	91	9.7	194	55	1.8
Α	10020000	AMARILLO	-15,612	28,298	2,024.5	56,313	14,432	732.7
Α	10145000	CANYON	-772	825	64.8	1,683	421	20.9
Α	10378000	НАРРҮ	-71	67	5.4	143	41	1.7
Α	10500000	LAKE TANGLEWOOD	-282	266	21.5	543	136	6.7
Α	10996191	COUNTY-OTHER	-5,738	3,926	346.3	7,974	2,002	96.7
Α		MANUFACTURING	-182	409	66.9	834	209	13.8
Α	11003191		-5	1	0.1	2	1	0.0
Α		IRRIGATION	-47,214	310	32.9	633	158	6.0
Α		LIVESTOCK	-3,407	1,692	266.5	3,436	864	43.4
Α		STRATFORD	-496	468	37.8	955	239	11.8
Α		COUNTY-OTHER	-105	72	6.3	153	44	1.8
Α	11003211		-31	4	0.7	9	2	0.2
Α		IRRIGATION	-194,797	1,279	135.9	2,596	652	24.6
Α		LIVESTOCK	-7,679	3,815	600.7	7,744	1,946	97.7
Α		SHAMROCK	-321	303	24.5	618	155	7.6
Α		WHEELER	-268	253	20.4	516	129	6.4
G	rand Total		-985,410	132,429	14,891.7	266,094	67,611	3,768.5

Table 10.00 - Social and Economic Impacts of Not Meeting Needs by Basin, 2000

					2000	Impact of			
						Need on			
						Gross			Impact of
						Business			Need on
		Regional				Output in		Impact of	Income in
	Water User	Water		Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Group	Planning		Need	Need on	Dollars	Need on	School	Dollars
Water User Group Name	Identifier	Group	Basin	(Acre-Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
MINING	11003096	А	2	-2	0	0.0	0	0	0.0
MANUFACTURING	11001106	А	1	-4	6	1.0	12	4	0.2
MANUFACTURING	11001148	А	1	-42	95	15.5	194	65	3.2
BOOKER	10099000	А	1	-1	1	0.1	2	1	0.0

Table 10.10 - Social and Economic Impacts of Not Meeting Needs by Basin, 2010

			.g	.,	•	Impact of Need on			
						Gross			Impact of
						Business			Need on
		Regional				Output in		Impact of	Income in
	Water User	Water		Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Group	Planning		Need	Need on	Dollars	Need on	School	Dollars
Water User Group Name	Identifier	Group	Basin	(Acre-Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
LEFORS	10515000	А	2	-19	18	1.4	44	14	0.5
MINING	11003096	A	2	-3	0	0.1	0	0	0.0
MANUFACTURING	11001106	A	1	-5	7	1.2	17	5	0.2
MANUFACTURING	11001110	А	1	-52	117	19.2	245	66	4.0
	11001148	A	I	-52	117	19.2	240	00	4.0
PERRYTON	10689000	A	1	-1,518	1,019	90.4	2,028	510	25.1
			1				-		-

Table 10.20 - Social and Economic Impacts of Not Meeting Needs by Basin, 2020

						Impact of			
						Need on			
						Gross			Impact of
						Business			Need on
		Regional				Output in		•	Income in
	Water User	Water		Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Group	Planning		Need	Need on	Dollars	Need on	School	Dollars
Water User Group Name	Identifier	Group	Basin	(Acre-Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
SKELLYTOWN	10834000	А	1	-44	42	3.4	81	21	1.0
DALHART	10226000	A	1	-863	579	51.4	1,112	295	14.3
COUNTY-OTHER	10996056	A	1	-136	93	8.2	179	47	2.3
MANUFACTURING	11001056	A	1	-179	1,257	205.7	2,539	641	42.4
IRRIGATION	11004056	A	1	-293,412	1,926	204.7	3,891	982	37.1
LIVESTOCK	11005056	A	1	-8,787	4,365	687.3	8,817	2,226	111.8
LEFORS	10515000	A	2	-95	90	7.2	173	46	2.3
MCLEAN	10578000	A	2	-246	232	18.8	445	118	5.8
MINING	11003096	A	2	-4	0	0.1	0	0	0.0
GRUVER	10368000	A	1	-203	192	15.5	369	98	4.8
DALHART	10226000	A	1	-612	411	36.5	789	210	10.1
CANADIAN	10142000	A	1	-199	188	15.2	361	96	4.7
MANUFACTURING	11001106	A	1	-6	9	1.5	17	5	0.3
MANUFACTURING	11001148	A	1	-58	131	21.4	252	67	4.4
CACTUS	10134000	A	1	-80	75	6.1	144	38	1.9
DUMAS	10255000	A	1	-499	533	41.9	1,023	272	13.5
SUNRAY	10872000	A	1	-98	93	7.5	179	47	2.3
COUNTY-OTHER	10996171	A	1	-69	47	4.1	90	24	1.2
MANUFACTURING	11001171	A	1	-1,253	2,508	410.3	5,066	1,279	84.6
STEAM ELECTRIC POWER	11002171	A	1	-31	16	3.2	31	8	0.8
IRRIGATION	11004171	A	1	-31,264	205	21.8	394	105	3.9
LIVESTOCK	11005171	A	1	-1,014	504	79.3	968	257	12.9
PERRYTON	10689000	A	1	-2,482	1,667	147.9	3,367	850	41.0
CANYON	10145000	A	2	-107	114	9.0	219	58	2.9
LAKE TANGLEWOOD	10500000	A	2	-305	288	23.3	553	147	7.2
WHEELER	10961000	А	2	-275	259	21.0	497	132	6.5

Impact of

Table 10.30 - Social and Economic Impacts of Not Meeting Needs by Basin, 2030

						Impact of			
						Need on			
						Gross			Impact of
						Business			Need on
		Regional				Output in		Impact of	Income in
	Water User	Water		Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Group	Planning		Need	Need on	Dollars	Need on	School	Dollars
Water User Group Name	Identifier	Group	Basin	(Acre-Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
CLAUDE	10173000	А	2	-150	142	11.4	285	78	3.6
SKELLYTOWN	10834000	А	1	-64	60	4.9	125	41	1.5
DALHART	10226000	А	1	-1,087	730	64.8	1,467	402	18.0
COUNTY-OTHER	10996056	А	1	-174	119	10.5	239	65	2.9
MANUFACTURING	11001056	А	1	-232	1,629	266.6	3,291	831	55.0
IRRIGATION	11004056	А	1	-380,930	2,501	265.8	5,052	1,276	48.1
LIVESTOCK	11005056	А	1	-12,951	6,433	1,013.0	12,995	3,281	164.8
LEFORS	10515000	А	2	-85	80	6.5	166	55	2.0
MCLEAN	10578000	А	2	-232	219	17.7	440	120	5.5
MINING	11003096	А	2	-5	1	0.1	2	1	0.0
GRUVER	10368000	А	1	-361	341	27.5	685	188	8.6
DALHART	10226000	А	1	-791	531	47.1	1,067	292	13.1
CANADIAN	10142000	А	1	-641	605	48.9	1,216	333	15.2
MANUFACTURING	11001106	А	1	-7	10	1.7	21	7	0.3
MANUFACTURING	11001148	А	1	-62	140	22.9	281	77	4.7
CACTUS	10134000	А	1	-592	558	45.2	1,122	307	14.1
DUMAS	10255000	А	1	-3,418	3,654	287.1	7,381	1,864	92.7
SUNRAY	10872000	А	1	-701	661	53.5	1,329	364	16.7
COUNTY-OTHER	10996171	А	1	-427	292	25.8	587	161	7.2
MANUFACTURING	11001171	А	1	-8,269	16,557	2,708.7	31,458	8,113	558.6
STEAM ELECTRIC POWER	11002171	А	1	-200	106	20.5	213	58	5.3
IRRIGATION	11004171	А	1	-200,576	1,317	140.0	2,660	672	25.3
LIVESTOCK	11005171	A	1	-7,459	3,705	583.5	7,484	1,890	94.9
PERRYTON	10689000	A	1	-2,432	1,633	144.9	3,299	833	40.2
COUNTY-OTHER	10996188	A	2	-188	129	11.4	259	71	3.2
MINING	11003188	A	2	-124	17	2.7	35	12	0.6
IRRIGATION	11004188	A	2	-5,704	37	4.0	77	26	0.7
CANYON	10145000	A	2	-248	265	20.8	533	146	6.7
LAKE TANGLEWOOD	10500000	A	2	-303	286	23.1	575	157	7.2
COUNTY-OTHER	10996191	A	1	-59	40	3.6	83	28	1.0
IRRIGATION	11004191	A	1	-67	0	0.0	0	0	0.0
LIVESTOCK	11005191	A	1	-2	1	0.2	2	1	0.0
Impacts based on water needs	identified in Ta	able 7 deliver	red to TW	DB as of 9/11	1/2001				

Impact of

Table 10.30 - Social and Economic Impacts of Not Meeting Needs by Basin, 2030

			.g 10000 .	<i>y</i> Baoin, 200	0	Impact of Need on			
						Gross			Impact of
						Business			Need on
		Regional				Output in		Impact of	Income in
	Water User	Water		Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Group	Planning		Need	Need on	Dollars	Need on	School	Dollars
Water User Group Name	Identifier	Group	Basin	(Acre-Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
WHEELER	10961000	А	2	-272	257	20.7	517	141	6.5

Table 10.40 - Social and Economic Impacts of Not Meeting Needs by Basin, 2040

						Impact of			
						Need on			
						Gross			Impact of
						Business			Need on
		Regional				Output in		Impact of	Income in
	Water User	Water		Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Group	Planning		Need	Need on	Dollars	Need on	School	Dollars
Water User Group Name	Identifier	Group	Basin	(Acre-Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
CLAUDE	10173000	А	2	-268	253	20.4	536	134	6.4
GROOM	10365000	А	2	-51	48	3.9	113	26	1.2
PANHANDLE	10675000	А	2	-738	696	56.3	1,476	369	17.5
SKELLYTOWN	10834000	А	1	-61	58	4.7	136	32	1.4
WHITE DEER	10962000	А	1	-45	42	3.4	99	23	1.1
WHITE DEER	10962000	А	2	-3	3	0.2	7	2	0.1
DALHART	10226000	А	1	-1,037	696	61.8	1,476	369	17.1
COUNTY-OTHER	10996056	А	1	-173	118	10.4	250	63	2.9
MANUFACTURING	11001056	А	1	-232	1,629	266.6	3,307	831	55.0
IRRIGATION	11004056	А	1	-380,971	2,501	265.8	5,077	1,276	48.1
LIVESTOCK	11005056	А	1	-14,742	7,323	1,153.1	14,866	3,735	187.6
LEFORS	10515000	А	2	-80	75	6.1	176	41	1.9
MCLEAN	10578000	А	2	-226	213	17.2	452	113	5.4
MINING	11003096	А	2	-6	1	0.1	2	1	0.0
GRUVER	10368000	А	1	-346	326	26.4	691	173	8.2
DALHART	10226000	А	1	-791	531	47.1	1,126	281	13.1
CANADIAN	10142000	А	1	-615	580	46.9	1,230	307	14.6
MANUFACTURING	11001106	А	1	-8	12	1.9	28	7	0.4
MANUFACTURING	11001148	А	1	-74	167	27.3	354	89	5.6
CACTUS	10134000	А	1	-703	663	53.6	1,406	351	16.7
DUMAS	10255000	А	1	-3,603	3,852	302.6	7,820	1,965	97.7
SUNRAY	10872000	А	1	-750	708	57.2	1,501	375	17.8
COUNTY-OTHER	10996171	А	1	-419	287	25.3	608	152	7.1
MANUFACTURING	11001171	А	1	-8,863	17,746	2,903.3	33,540	8,696	598.8
STEAM ELECTRIC POWER	11002171	А	1	-200	106	20.5	225	56	5.3
IRRIGATION	11004171	А	1	-200,576	1,317	140.0	2,674	672	25.3
LIVESTOCK	11005171	А	1	-8,546	4,245	668.5	8,617	2,165	108.8
PERRYTON	10689000	А	1	-2,370	1,592	141.2	3,232	812	39.2
VEGA	10928000	А	1	-5	5	0.4	12	3	0.1
VEGA	10928000	А	2	-16	15	1.2	35	8	0.4
COUNTY-OTHER	10996180	А	1	-193	132	11.6	280	70	3.2
COUNTY-OTHER	10996180	А	2	-2	1	0.1	2	1	0.0
Impacts based on water needs		able 7 delive	red to TW	DB as of 9/11	1/2001				

Impact of

Table 10.40 - Social and Economic Impacts of Not Meeting Needs by Basin, 2040

						Impact of			
						Need on			
						Gross			Impact of
						Business			Need on
		Regional				Output in		Impact of	Income in
	Water User	Water		Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Group	Planning		Need	Need on	Dollars	Need on	School	Dollars
Water User Group Name	Identifier	Group	Basin	(Acre-Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
MINING	11003180	А	2	-25	4	0.5	9	2	0.1
IRRIGATION	11004180	А	1	-649	4	0.5	9	2	0.1
IRRIGATION	11004180	Α	2	-1,539	10	1.1	24	6	0.2
AMARILLO	10020000	Α	1	-2,944	5,337	381.8	10,834	2,722	138.2
AMARILLO	10020000	Α	2	-2,198	3,983	285.0	8,085	2,031	103.1
COUNTY-OTHER	10996188	Α	1	-336	230	20.3	488	122	5.7
COUNTY-OTHER	10996188	Α	2	-270	185	16.3	392	98	4.6
MANUFACTURING	11001188	Α	1	-185	394	64.5	835	209	13.3
STEAM ELECTRIC POWER	11002188	Α	1	-3,782	2,001	388.5	4,062	1,021	99.9
MINING	11003188	А	1	-59	8	1.3	19	4	0.3
MINING	11003188	А	2	-174	24	3.7	56	13	0.9
IRRIGATION	11004188	Α	1	-1,967	13	1.4	31	7	0.2
IRRIGATION	11004188	Α	2	-7,415	49	5.2	115	27	0.9
AMARILLO	10020000	Α	2	-5,319	9,642	689.8	19,573	4,917	249.6
CANYON	10145000	Α	2	-479	512	40.2	1,085	271	13.0
HAPPY	10378000	Α	2	-59	56	4.5	132	31	1.4
LAKE TANGLEWOOD	10500000	Α	2	-294	277	22.4	587	147	7.0
COUNTY-OTHER	10996191	Α	1	-543	372	32.8	789	197	9.2
COUNTY-OTHER	10996191	Α	2	-3,671	2,512	221.6	5,099	1,281	61.9
MANUFACTURING	11001191	А	2	-149	335	54.8	710	178	11.3
MINING	11003191	А	2	-3	0	0.1	0	0	0.0
IRRIGATION	11004191	А	1	-539	4	0.4	9	2	0.1
IRRIGATION	11004191	А	2	-40,452	266	28.2	564	141	5.1
LIVESTOCK	11005191	А	1	-31	15	2.4	35	8	0.4
LIVESTOCK	11005191	А	2	-2,570	1,276	201.0	2,590	651	32.7
STRATFORD	10864000	А	1	-242	228	18.4	483	121	5.7
COUNTY-OTHER	10996211	А	1	-55	38	3.3	89	21	0.9
MINING	11003211	А	1	-14	2	0.3	5	1	0.1
IRRIGATION	11004211	А	1	-91,586	601	63.9	1,274	319	11.6
LIVESTOCK	11005211	А	1	-3,213	1,596	251.3	3,240	814	40.9
SHAMROCK	10822000	А	2	-252	238	19.2	505	126	6.0
WHEELER	10961000	А	2	-268	253	20.4	536	134	6.4
Impacts based on water needs									

Impact of

Table 10.50 - Social and Economic Impacts of Not Meeting Needs by Basin, 2050

						Impact of			
						Need on			
						Gross			Impact of
						Business			Need on
		Regional				Output in		Impact of	Income in
	Water User	Water		Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Group	Planning		Need	Need on	Dollars	Need on	School	Dollars
Water User Group Name	Identifier	Group	Basin	(Acre-Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
CLAUDE	10173000	А	2	-267	252	20.4	514	129	6.3
GROOM	10365000	А	2	-121	114	9.2	233	58	2.9
PANHANDLE	10675000	А	2	-933	880	71.2	1,795	449	22.2
SKELLYTOWN	10834000	А	1	-59	56	4.5	119	34	1.4
WHITE DEER	10962000	A	1	-267	252	20.4	514	129	6.3
WHITE DEER	10962000	A	2	-14	13	1.1	28	8	0.3
DALHART	10226000	A	1	-1,002	673	59.7	1,373	343	16.6
COUNTY-OTHER	10996056	A	1	-172	118	10.4	241	60	2.9
MANUFACTURING	11001056	А	1	-232	1,629	266.6	3,307	831	55.0
IRRIGATION	11004056	А	1	-381,008	2,501	265.9	5,077	1,276	48.1
LIVESTOCK	11005056	А	1	-16,796	8,343	1,313.8	16,936	4,255	213.8
LEFORS	10515000	А	2	-78	74	5.9	158	45	1.9
MCLEAN	10578000	А	2	-220	208	16.8	424	106	5.2
MANUFACTURING	11001090	А	1	-57	49	8.0	104	30	1.7
MINING	11003096	А	2	-7	1	0.1	2	1	0.0
GRUVER	10368000	А	1	-334	315	25.5	643	161	7.9
DALHART	10226000	А	1	-803	539	47.8	1,100	275	13.3
CANADIAN	10142000	А	1	-601	567	45.8	1,157	289	14.3
MANUFACTURING	11001106	А	1	-9	13	2.2	28	8	0.4
MANUFACTURING	11001117	А	1	-1,657	2,171	355.1	4,407	1,107	73.2
MANUFACTURING	11001148	А	1	-86	194	31.7	396	99	6.5
MINING	11003148	А	1	-9	1	0.2	2	1	0.0
CACTUS	10134000	А	1	-838	563	49.9	1,149	287	13.8
DUMAS	10255000	А	1	-3,848	4,114	323.2	8,351	2,098	104.3
SUNRAY	10872000	А	1	-807	761	61.6	1,552	388	19.2
COUNTY-OTHER	10996171	А	1	-430	294	26.0	600	150	7.2
MANUFACTURING	11001171	А	1	-9,429	18,879	3,088.7	37,569	9,628	637.0
STEAM ELECTRIC POWER	11002171	А	1	-200	106	20.5	216	54	5.3
IRRIGATION	11004171	А	1	-200,576	1,317	140.0	2,674	672	25.3
LIVESTOCK	11005171	А	1	-9,786	4,861	765.5	9,868	2,479	124.5
PERRYTON	10689000	А	1	-2,320	1,558	138.2	3,163	795	38.3
VEGA	10928000	А	1	-61	58	4.7	124	35	1.4
Impacts based on water needs	identified in T	able 7 delive	red to TWI	DB as of 9/11	1/2001				

Impact of

Table 10.50 - Social and Economic Impacts of Not Meeting Needs by Basin, 2050

						Impact of			
						Need on			
						Gross			Impact of
						Business			Need on
		Regional				Output in		Impact of	Income in
	Water User	Water		Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Group	Planning		Need	Need on	Dollars	Need on	School	Dollars
Water User Group Name	Identifier	Group	Basin	(Acre-Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
VEGA	10928000	А	2	-184	174	14.0	355	89	4.4
COUNTY-OTHER	10996180	Α	1	-2,273	1,555	137.2	3,157	793	38.3
COUNTY-OTHER	10996180	А	2	-22	15	1.3	32	9	0.4
MINING	11003180	А	2	-311	44	6.7	94	27	1.5
IRRIGATION	11004180	А	1	-7,700	51	5.4	109	31	1.0
IRRIGATION	11004180	А	2	-18,249	120	12.7	245	61	2.3
AMARILLO	10020000	А	1	-8,126	14,729	1,053.8	29,311	7,512	381.4
AMARILLO	10020000	А	2	-6,065	10,994	786.5	21,878	5,607	284.6
COUNTY-OTHER	10996188	А	1	-1,260	862	76.0	1,758	440	21.2
COUNTY-OTHER	10996188	А	2	-268	183	16.2	373	93	4.5
MANUFACTURING	11001188	А	1	-799	1,702	278.5	3,455	868	57.4
STEAM ELECTRIC POWER	11002188	А	1	-15,859	8,392	1,629.0	17,036	4,280	418.8
MINING	11003188	А	1	-231	32	5.0	68	20	1.1
MINING	11003188	А	2	-179	25	3.9	53	15	0.9
IRRIGATION	11004188	А	1	-6,884	45	4.8	96	27	0.9
IRRIGATION	11004188	А	2	-6,993	46	4.9	98	28	0.9
AMARILLO	10020000	А	2	-15,612	28,298	2,024.5	56,313	14,432	732.7
CANYON	10145000	А	2	-772	825	64.8	1,683	421	20.9
HAPPY	10378000	А	2	-71	67	5.4	143	41	1.7
LAKE TANGLEWOOD	10500000	А	2	-282	266	21.5	543	136	6.7
COUNTY-OTHER	10996191	А	1	-629	430	38.0	877	219	10.6
COUNTY-OTHER	10996191	А	2	-5,109	3,496	308.4	7,097	1,783	86.1
MANUFACTURING	11001191	A	2	-182	409	66.9	834	209	13.8
MINING	11003191	A	2	-5	1	0.1	2	1	0.0
IRRIGATION	11004191	A	1	-534	4	0.4	9	2	0.1
IRRIGATION	11004191	A	2	-46,680	306	32.6	624	156	5.9
LIVESTOCK	11005191	A	1	-34	17	2.7	36	10	0.4
LIVESTOCK	11005191	A	2	-3,373	1,675	263.8	3,400	854	42.9
STRATFORD	10864000	A	1	-496	468	37.8	955	239	11.8
COUNTY-OTHER	10996211	A	1	-105	72	6.3	153	44	1.8
MINING	11003211	A	1	-31	4	0.7	9	2	0.2
IRRIGATION	11004211	A	1	-194,797	1,279	135.9	2,596	652	24.6
Impacts based on water needs			-			100.0	2,000	002	21.0

Impact of

Table 10.50 - Social and Economic Impacts of Not Meeting Needs by Basin, 2050

			ig Necus L	y Dasin, 200	0	Impact of			
						Need on			
						Gross			Impact of
						Business			Need on
		Regional				Output in		Impact of	Income in
	Water User	Water		Value of	Impact of	1999 US	Impact of	Need on	1999 US
	Group	Planning		Need	Need on	Dollars	Need on	School	Dollars
Water User Group Name	Identifier	Group	Basin	(Acre-Feet)	Employment	(Millions)	Population	Enrollment	(Millions)
LIVESTOCK	11005211	А	1	-7,679	3,815	600.7	7,744	1,946	97.7
SHAMROCK	10822000	А	2	-321	303	24.5	618	155	7.6
WHEELER	10961000	А	2	-268	253	20.4	516	129	6.4

IMPLAN REPORT OF INDUSTRY FINAL DEMAND AGGREGATED TO 7 SECTORS

		REGION A						
			I	Millions of	Dollars			
Industry	Households	Federal Gov't	State & Local Gov't	Capital	Inventory	Domestic Exports	Foreign Exports	Final Demand (Sum)
Livestock	14.332	0.248	1.907	0.374	0.287	1,460.74	10.248	1488.138
Irrigation	2.937	0.022	0.281	0.034	0.388	156.192	130.617	290.471
Mining	21.953	0.915	2.836	1.64	1.689	1,641.90	19.899	1690.836
Manufacturing	1,044.55	43.584	127.451	65.306	79.722	644.871	464.89	2470.371
Steam Electric	117.492	0.017	27.783	0.026	0.009	142.843	0.783	288.953
Municipal Commercial	1,525.29	37.228	353.267	56.702	19.527	1.415	70.748	2064.181
Municipal Household	146.3	1,141.6	0.0	0.0	255.6	0.0	286.9	1830.4

NOTE: The sum of these final demands are not total final demand for the region. These numbers include only selected sectors from a larger (528 sector) regional model that reported significant water use in the base year. Total final demand for the region would include all remaining, lower water use sectors.

IMPLAN REPORT OF MULTIPLIERS

Panhandle Water Planning Region (Region A)

	Jobs Per Million Dollars of Output					
Industry	Direct Effects	Indirect Effects	Induced Effects	Total	Type I Multiplier	Type II Multiplier
Livestock	3.8	8.1	4.2	16.1	3.133	4.251
Irrigation	9.5	9.9	4.8	24.1	2.043	2.545
Municipal Commercial	22.1	4.0	9.6	35.7	1.179	1.615
Mining	5.2	2.6	4.4	12.1	1.495	2.343
Manufacturing	3.2	8.3	6.1	17.7	3.556	5.439
Steam Electric	2.3	2.0	4.5	8.9	1.862	3.817
Municipal Household	9.5	1.9	2.7	14.1	1.200	1.484

Output

(Gross Business Receipts/Sales)

Industry	Direct Effects	Indirect Effects	Induced Effects	Total	Type I Multiplier	Type II Multiplier
Livestock	1	0.979	0.339	2.318	1.979	2.318
Irrigation	1	0.961	0.381	2.342	1.961	2.342
Municipal Commercial	1	0.384	0.772	2.156	1.384	2.156
Mining	1	0.344	0.351	1.694	1.344	1.694
Manufacturing	1	1.154	0.490	2.644	2.154	2.644
Steam Electric	1	0.209	0.363	1.572	1.209	1.572
Municipal Household	1	0.145	0.172	1.317	1.145	1.317

Labor Income

Industry	Direct Effects*	Indirect Effects*	Induced Effects*	Total*	Type I Multiplier	Type II Multiplier
Livestock	0.059	0.216	0.102	0.377	4.670	6.404
Irrigation	0.062	0.247	0.115	0.424	4.951	6.790
Municipal Commercial	0.514	0.113	0.233	0.859	1.219	1.672
Mining	0.203	0.082	0.106	0.390	1.404	1.925
Manufacturing	0.140	0.258	0.148	0.545	2.849	3.907
Steam Electric	0.231	0.064	0.109	0.404	1.278	1.753
Municipal Household	0.198	0.048	0.059	0.304	1.242	1.539

* Income Portion of Gross Outputs

Employment

SOCIO-ECONOMIC IMPACTS OF NOT MEETING WATER NEEDS

PANHANDLE REGIONAL WATER PLANNING GROUP (REGION A)

SECTION 1 SUMMARY OF RESULTS

Section 357.7(4) of the rules for implementing Senate Bill 1 require that the social and economic impact of not meeting regional water supply needs be evaluated by the Regional Water Planning Groups (RWPG). The Texas Water Development Board (TWDB) is required to provide technical assistance, upon request, to complete the evaluations. The Board has offered its staff to conduct the required analysis of the impacts of the identified needs for each region, using a common methodological approach for all regions.

The Panhandle Regional Water Planning Group submitted a request to TWDB for assistance, and then requested this alternative analysis, with the estimated direct impact of irrigation originally developed by TWDB staff replaced by an estimate developed by the Texas Agricultural Extension Service. Board staff has completed the analysis of the social and economic impacts of not meeting water needs as identified in Exhibit B, Table 7. TWDB evaluated each negative value, showing an unmet water need for an individual water user group (WUG), using data that connected water use with the economy and the population of the region.

The detailed results of the analysis are found in Tables 9 and 10, included in Section 3 of this report. Each water user group with a need is evaluated in terms of direct and indirect economic and social impact on the region resulting from the shortage. Economic variables chosen by TWDB for this analysis include gross economic output (sales and business gross income), employment (number of jobs) and personal income (wages, salaries and proprietors net receipts). The effects of shortages on population and school enrollments are the social variables of the analysis. Declining populations indicate a deprecation of social services in most, but not every case, while declining school enrollment indicates loss of younger cohorts of the population and possibilities of strains on the tax bases, when combined with economic losses. RWPGs are allowed to expand this analysis at their discretion.

The purpose of this element of Senate Bill 1 planning is to give the regions an estimate of the potential costs of not acting to meet anticipated needs in each water user group, or conversely, the potential benefit to be gained from devising a strategy to meet a particular need. Collectively, the summation of all the impacts gives the region a view of the ultimate magnitude of the impacts caused by not meeting all of the entire list of needs. These summations should be considered a worst-case scenario for the region, since the likelihood of not meeting the entire list of needs is very small.

IMPACTS OF UNMET WATER NEEDS FOR THE REGION

The Panhandle Regional Water Planning Group identified individual water user groups which showed an unmet need during drought-of-record supply conditions for each decade from 2000 to 2050.

The region projected that total water demands would increase from 1.72 million acre-feet in 2000 to 1.77 million acre-feet in 2030, and continuing to increase to 1.81 million acre-feet in 2050.

Under extreme supply limitations and with no management strategies in place, water shortages would amount to 49 acre-feet in 2000, rising to 629 thousand acre-feet in 2030 and to 985 thousand acre-feet by 2050.

The water needs of the region amount to about 20% of the forecasted demand by 2020, rising to 45% of demand in 2040 and 54% in 2050. This means that by 2050 the region would be able to supply only 46% of the projected needs unless supply development or other water management strategies are implemented.

(See Figure 1 and Table 1)

Economic Growth Limitations

The difference between expected future growth, unrestricted by water shortage, and expected growth restricted by unmet water needs provides the measure of impact.

Employment-

Left entirely unmet, the level of shortage in 2010 results in 1,200 fewer jobs than would be expected in unrestricted development (without water needs) by 2010. The gap between unrestricted and restricted job growth grows to 43 thousand by 2030,and to 132 thousand jobs that the restricted economy could not create by 2050.

Population-

The forecasted population growth of the region would be economically restricted by curtailed potential job creation. This in turn causes both an outmigration of some current population and an expected curtailment of future population growth. Compared to the baseline growth in population, the region could expect 2,400 fewer people in 2010, growing to 85 thousand fewer in 2030 and 266 thousand fewer in 2050. The expected 2050 population under the severe shortage conditions would be 48% lower than projected in the region's most likely growth forecast.

Income-

The potential loss of economic development in the region amounts to about 0.5% less income to people in 2010, with the gap growing to 20% less than expected in 2030. By 2050 the region would have 51% less income than is currently projected assuming no water restrictions.

Water User Groups with Shortages

The economic and social impact of an unmet water need varies greatly depending on the type of Water User Group for which the shortage is anticipated. On a per acre-foot basis, the largest impacts will generally result from shortages in manufacturing and municipal uses, while shortages for irrigation will typically result in the smallest impact. Table 2 (in Section 2 of this report) presents the impacts of unmet water needs summarized for each of the six types of Water User Group.

Water shortages in the Panhandle region are relatively small until the year 2020, when irrigation water needs begin to be unmet. While irrigation represents the largest category of need, relatively smaller water shortages for municipal, manufacturing, steam electric, and livestock result in more significant social and economic impacts.

In 2010, municipalities have unmet needs of 1,571 acre-feet, 96% of the total unmet needs. The economic impacts of this shortage (1,070 jobs, \$95 million in output, and \$26 million of income) represent approximately 80-90% of the total impacts. By 2050, unmet municipal needs total 55 thousand acre-feet (only 6% of the total) resulting in 74 thousand jobs not created, and reductions of \$5.6 billion in potential output and \$1.9 billion in potential income.

The impact of not meeting manufacturing needs is significant from 2020 through 2050. In 2020, manufacturing has unmet needs of 1.5 thousand acre-feet, 0.4% of the total unmet needs. The economic impacts of this shortage include loss of 4 thousand jobs (25% of the total employment impact) and \$639 million in output (31% of the total output impact). In 2050, unmet manufacturing needs are over 12 thousand acre-feet (1% of the total) resulting in 25 thousand jobs not created and reduction of \$4.1 billion in output (27.5% of the total output impact).

Significant shortages are also expected in the generation of steam electric power in 2050, when unmet steam electric needs total 16 thousand acre-feet (1.6% of the total) resulting in 8.5 thousand jobs not created, and reductions of \$1.6 billion in potential output and \$424 million in potential income.

Water needs for livestock begin to be unmet in 2020, when the shortage totals nearly 10 thousand acre-feet (about 3% of needs). The result is a loss of nearly 5 thousand jobs and \$125 million in income (about 30% of the total impact). By 2050, the shortage of 38 thousand acre-feet represents 4% of total needs, and results in 19 thousand jobs lost and \$480 million in reduced income (13% of the income impact).

Unmet irrigation needs represent the largest category of need, but, due to the relatively small value of economic output added per acre-foot, the impacts of not meeting irrigation needs are considerably less. In 2020, irrigation has unmet needs of 325 thousand acre-feet, 95% of the total. The economic impacts of the shortage (2,132 direct and indirect

jobs, \$227 million in output, and \$41 million in income) represent less than 15% of the total economic impact. By 2050, even though the unmet irrigation needs are 88% of total needs, they account for less than 5 percent of the total economic and social impact.

INTERPRETATION OF THE RESULTS

Users are cautioned not to assume that the entire list of needs with impacts is a prediction of future water disasters. These data simply give regional planners one source of information by which to develop efficient and effective means to meet the needs and avoid calamities.

Some clarification is needed to understand the impact numbers. The following points must be kept in mind when using the data:

- a) The impacts are expressed in terms of <u>regional impact</u>. Thus, individual water user group shortages are shown as they influence the entire region's economy and not just the limits of the direct impact. The total impact of municipal shortage for a particular city, for example, includes the direct impact within the city limits and the impact indirectly through the region. The indirect linkages were derived from regional economic models. There are no models for individual water user groups.
- b) While the entirety of an estimated impact applies to the region as a whole, a significant portion will generally be felt in the local area where the shortage occurs. An impact that is of a small magnitude relative to impacts of other shortages on other areas may be extremely severe if its magnitude is large relative to the size of the local economy. Thus, while the absolute magnitude of agricultural shortages may appear to be small, the true severity of the impact may be much more significant to the surrounding rural area.
- c) Water supplies are calculated on drought-of-record levels. Shortages that show up for the 2000 decade and beyond are considered to be mostly the result of severe dry conditions; this contributes to the apparent abnormally large size of some impacts. This approach to supply analysis results in a worst-case scenario. Historically, most water user groups have at least partially met their needs through management of the remaining supplies, either by conservation, limitations on lower-valued uses such as lawn watering, or finding alternative sources of water. The results in this report <u>assume no applied management</u> <u>strategies</u>. The entirety of the needs is not met in any fashion.
- d) The analysis begins by calculating water use coefficients-defined as production (dollars of sales to final customers, or final demand) resulting from use of an acrefoot of water. This measure is considered an <u>average</u>, not marginal measure of water use. Thus, the analysis does not attempt to measure the market forces that would tend to drive the price of water higher or reserve limited water for the highest-valued uses, as it becomes scarce. The average value approach was used because the analysis is intended to show the present value in today's regional economies of differing amounts of water use. With this information analysts can answer the question, "How much water does it take to support the current level and structure of economies assume a continuation of this known relationship

of volumes of water use to economic output, under current structures of use. The models do not attempt to estimate the market allocation of the resource among competing activities because this change in structure is considered a possible management strategy–relying on market forces to work in a water-marketing system. Marginal cost analysis would be necessary for evaluating such an approach.

- e) The Municipal water use category includes <u>commercial establishments</u>. The impacts from even small shortages in many such establishments are considerably higher on a per-acre-foot basis than in any other category. Thus, relatively small Municipal shortages can have a very large amount of economic impact, since the analysis assumes a direct relationship between curtailed water use and lost economic production. Since this analysis is intended to provide impacts without assuming any strategies, the normal response of conservation programs is not assumed. The impact data appear to overstate the Municipal category, but the results are consistently measured, since no response to the shortage is assumed that would mitigate loss of critical water used in commercial and residential settings.
- f) The sizes of the projected impacts do not represent reductions from the current levels of economic activity or population. That is, the data are a <u>comparison</u> between a <u>baseline forecast</u>, assuming no water shortages, and a <u>restricted forecast</u>, based on the assumption of future water shortages. In some cases, with severe water shortages the regional economy could actually decline, dropping employment below current levels. For most regions, however, the measurement of impact represents an <u>opportunity cost</u>, or lost potential development that would be foregone in the absence of water management strategies.

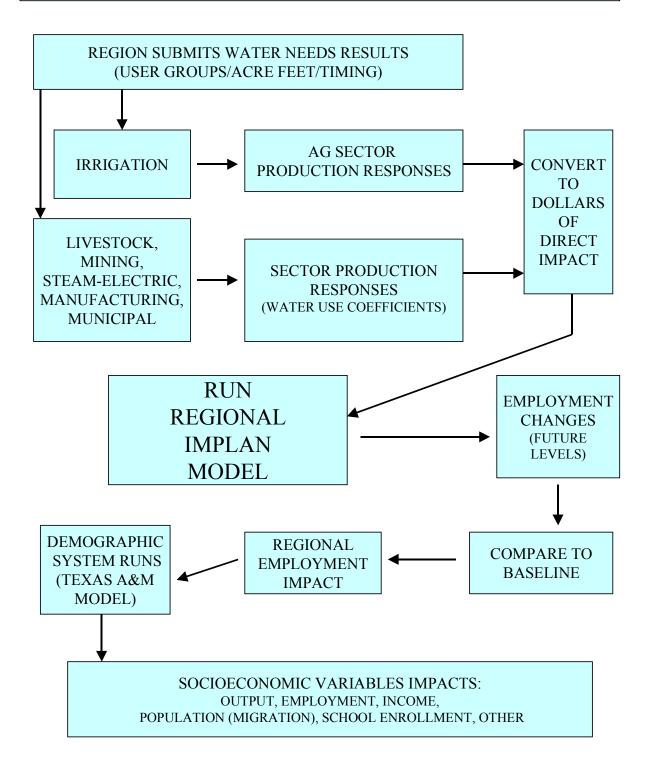
OVERVIEW OF THE METHODOLOGY

Estimation of the socioeconomic impact of unmet water needs begins with estimation of the direct impact of the absence of water on the individual or business making productive use of the water. The direct economic impact of unmet water needs is defined as the dollar value of final demand (production for sale to final consumers) that could not be produced because of the absence of water. This direct impact per acre-foot was estimated by region for each type of water user – residential, commercial, manufacturing, irrigation, livestock, mining, and steam-electric.

The term *Water Use Coefficients* is used in this study to refer to the direct impact on the different water user groups of the loss of one acre-foot of water. Estimates were based on the average value of output added per acre-foot of water used by those firms/individuals that are reliant on water (i.e., where lack of water would result in inability to operate or at least cause significant curtailment of operations).

The total regional impact of water shortage does not end with the direct impact. Indirect impacts (often referred to as third-party impacts) refer to the reduction of output by

firms/individuals which result from change in operations by those who are directly impacted by lack of water. Those who are directly impacted, producing less due to lack of water, will make fewer purchases of inputs, thus resulting in losses to the firms/individuals who produce and sell those products. These firms, facing less demand for their products, then reduce their purchases from their own suppliers. Indirect impacts can thus be said to continue to ripple throughout the economy.


The most common method of estimating the extent of indirect impact is the *Input-Output Model*. This type of model uses actual data from local economies to show the buying and selling linkages among the different economic sectors. For this study, input-output models were assembled for each of the 16 regions from county-level input-output models developed by the Minnesota Implan Group. Data from these models are available in Attachment B.

The total extent of economic loss, direct plus indirect impact relative to the estimated direct impact, is derived from the input-output model in the form of a *multiplier*. Multipliers have been derived to estimate the total impact on three important economic variables – Total business output, personal income, and employment.

In addition to the economic impacts related to water shortages, demographic changes would also be expected to take place. While availability of jobs is not the sole reason for living in a given place, the absence of jobs created would be expected to cause many current residents to leave a region in search of other opportunities or cause reduction of anticipated migration into the region by current nonresidents. Thus, the estimated employment impact was used to estimate change in two important social variables – regional population and school enrollment.

The relationship between employment change and change in population and school enrollment was estimated using the model developed for the Texas Population Estimates and Projections Program, specifically modified for the purposes of this study by the Department of Rural Sociology at Texas A&M University.

FLOW OF THE ANALYSIS SYSTEM

Detailed Data Availability

The data in Section 3, Tables 9.00 through 9.50 show the impacts on the socioeconomic variables for each water user group by decade, 2000 (Table 9.00) through 2050 (Table 9.50). Tables 10.00 through 10.50 correspond to the same decades as for Table(s) 9, but provides additional detail on the impact in each river basin where a shortage for a particular water user group occurs in two or more basins. Users can consult the tables to determine any remaining unmet needs after the management strategies to meet the needs are determined by the RWPG. Each unmet, or partially met, need can be added together to determine the remaining economic development costs of not meeting the needs.

Under the Rules the RWPG can determine any social impact or other economic variables of impact at its discretion. The analysis submitted by TWDB represents the <u>assistance</u> provided upon request. The underlying data and calculation techniques are available to each region.

The Attachments to this report will provide the RWPG with details of the data used in its region and the worksheets used in the calculations. Staff of TWDB is available to answer technical questions about the data.

SECTION 2 SUMMARY DATA

Table 2 provides details of the summary of regional water needs before management strategies are in place, including the needs impacts listed by category of use.

The Table should be used only for measuring the extreme limit of lost potential economic development for the region as a whole, caused by complete lack of development of water supplies in the region for those water user groups in need of supply.

The data are not a prediction or forecast of water shortages, but show the cumulative effect of simultaneous unmet needs for those with potential shortages.

Water use categories include Municipal (residential and commercial), Manufacturing (industry), Steam Electric Power (consumptive use), Mining (including oil and gas), Irrigation (on-farm water use) and Livestock. The level of impact is largely determined by which category has an unmet shortage. Under the analysis system, small amounts of water shortage in the Municipal category can cause relatively large economic impacts, since water use is measured against value of production. Thus, unmet needs in the Municipal category often overshadow those in other categories. Often, however, relatively small adjustments to the supply allocations can be strategically made to meet less water intensive needs, producing large positive impacts. These decisions are part of the RWPGs responsibilities. The data provided by the Summary tables can point to the sources of most of the potential economic and social impacts.

EXHIBIT B, TABLES 9 AND 10 **SECTION 3**

Tables 9.00 through 9.50 show the impacts on the socioeconomic variables for each water user group by decade, 2000 (Table 9.00) through 2050 (Table 9.50). Tables 10.00 through 10.50 correspond to the same decades as for Table(s) 9, but provides additional detail on the impact in each river basin where a shortage for a particular water user group occurs in two or more basins.

Note: In these tables, for all entities other than cities, the last three digits of the Water User Group identifier represent the county code. The following list shows county codes and corresponding county names for this region.

CODE	COUNTY NAME
6	ARMSTRONG
33	CARSON
38	CHILDRESS
44	COLLINGSWORTH
56	DALLAM
65	DONLEY
90	GRAY
96	HALL
98	HANSFORD
103	HARTLEY
106	HEMPHILL
117	HUTCHINSON
148	LIPSCOMB
171	MOORE
179	OCHILTREE
180	OLDHAM
188	POTTER
191	RANDALL
197	ROBERTS
211	SHERMAN
242	WHEELER

ATTACHMENT A

WATER USE COEFFICIENTS

PANHANDLE WATER PLANNING REGION (REGION A)

Water Use Coefficients, as used in this study, represent the average dollar value of output sold to final demand per acre-foot of water used in the production of this output.

For 4 of the 6 types of Water User Group, a single Water Use Coefficient has been estimated for all users in the region:

Water User Group	Water Use Coefficient (\$ per acre-foot)
Steam Electric	65,348
Mining	12,698
Irrigation	298
Livestock	33,748

The Municipal water user group provides water for both commercial and residential users, each of which were estimated to have a different water use coefficient. The distribution of water use between the two types of users was assumed to vary depending on whether the water user group had a city or a "county other" classification. For cities, the assumed distribution is dependent on population.

<u>User Type</u> Residential	Water Use	Coefficient (\$ per acre-foot) 34,946
Commercial		122,096
Population	% Sales to Residential	% Sales to Commercial
< 5000	86.07%	13.93%
5,000-10,000	93.76%	6.24%
10,000-25,000	82.52%	17.48%
25,000-50,000	77.92%	22.08%
50,000-250,000	71.11%	28.89%
> 250,000	61.49%	38.51%
"County Other"	93.40%	6.60%

Water use coefficients for manufacturing were estimated separately for individual counties, based on the distribution of water use among different manufacturing industries in the county and the average productivity of water in different types of manufacturing industries.

County	Water Use Coefficient (\$ per acre-foot)
CARSON	434,608
GRAY	53,174
HANSFORD	48,260
HEMPHILL	91,475
HUTCHINSON	81,078
LIPSCOMB	138,963
MOORE	123,907
OCHILTREE	138,963
POTTER	131,846
RANDALL	138,963

ATTACHMENT B

REGIONAL ECONOMIC MODEL DATA, MULTIPLIERS AND BASE YEAR VARIABLES

PANHANDLE WATER PLANNING REGION (REGION A)

The impact analysis was conducted using a regional interindustry (input/output) model for the region. These models were developed by TWDB using IMPLAN Professional[™] Version 2.0 software, a proprietary product of MIG, Inc. of Stillwater, MN. The county economic data was provided in a dataset containing details for 586 economic sectors in Texas for 1995. TWDB collapsed these sectors into models of seven sectors, representing the major water use categories used in water development planning. The data are unique to the region.

For this region, the summary data in IMPLAN for the 1995 base year for major economic variables were as follows:

POPULATION	342,917
EMPLOYMENT	203,755
HOUSEHOLDS	142,107
TOTAL PERSONAL INCOME	\$7.049 Billion In 1999 dollars- \$7.705 Billion
	ψ $(.04)$ Dimon in $(.04)$ domais ψ $(.05)$ Dimon

The tables on the following pages include 1) the base year Final Demands for the seven water use sectors and 2) the multipliers used to estimate the indirect impacts from economic changes due to water shortages by sector.

The Final Demand data were used to calculate the Water Use Coefficients by matching each sector's dollar totals to volumes of water use in the corresponding category for the calendar year-base year 1995. The result is an average of production associated with an acre-foot of water use. This measure produces an average value of water in terms that can be used to apply the IMPLAN multipliers. Regional indirect economic changes can then be estimated.

The multipliers are ratios that, when applied to the direct changes (estimated by the Water Use Coefficients in Attachment A), result in a total impact on the entire region. The impact totals represent the sum of successive changes among all economic sectors caused by the initial change in the affected sector. Multipliers are listed for Employment, Output (Gross Sales or Receipts), and Income (earned income from business and labor activity, not including transfer payments).

ATTACHMENT C LETTER OF REQUEST FOR TECHNICAL ASSISTANCE

COUNTY-OTHER A	RMSTRONG	DED					COUNTY#	BASIN#	2000	2010	2020	2030	2040	2050	Comments
		RED	010173000	А	0173	0114	006	02	0	0	0	-150	-268	-267	
IDDICATION A	RMSTRONG	RED	010996006	А	0996	0757	006	02	49	62	79	90	100	107	
INNUATION A	RMSTRONG	RED	011004006	А	1004	1004	006	02	10,214	10,214	10,213	10,213	10,213	10,213	
LIVESTOCK A	RMSTRONG	RED	011005006	А	1005	1005	006	02	569	512	459	405	346	280	
MANUFACTURING A	RMSTRONG	RED	011001006	А	1001	1001	006	02	0	0	0	0	0	0	
MINING A	RMSTRONG	RED	011003006	А	1003	1003	006	02	1	2	1	0	0	0	
STEAM ELECTRIC POWER A	RMSTRONG	RED	011002006	А	1002	1002	006	02	0	0	0	0	0	0	
COUNTY-OTHER C.	CARSON	CANADIAN	010996033	А	0996	0757	033	01	0	0	0	0	0	0	
COUNTY-OTHER C.	CARSON	RED	010996033	А	0996	0757	033	02	0	0	0	0	0	0	
GROOM C.	CARSON	RED	010365000	А	0365	0875	033	02	0	0	0	0	-51	-121	
		CANADIAN	011004033	А	1004	1004	033	01	17,070	17,070	17,069	17,069	17,069	17,069	
		RED	011004033	А	1004	1004	033	02	0	0	0	0	0	0	
		CANADIAN	011005033	А	1005	1005	033	01	462	437	405	376	344	309	
LIVESTOCK C.	CARSON	RED	011005033	А	1005	1005	033	02	0	0	0	0	0	0	
		CANADIAN	011001033	А	1001	1001	033	01	0	0	0	0	0	0	
		RED	011001033	А	1001	1001	033	02	0	0	0	0	0	0	
		CANADIAN	011003033	А	1003	1003	033	01	0	183	400	500	557	585	
		RED	011003033	A	1003	1003	033	02	0	0	0	0	0	0	
		RED	010675000	А	0675	0453	033	02	0	0	0	0	-738	-933	
		CANADIAN	010834000	А	0834	0960	033	01	0	0	-44	-64	-61	-59	
		CANADIAN	011002033	А	1002	1002	033	01	0	0	0	0	0	0	
		RED	011002033	A	1002	1002	033	02	0	0	0	0	0	0	
		CANADIAN	010962000	A	0962	0647	033	01	0	0	0	0	-45	-267	
		RED	010962000	A	0962	0647	033	02	0	0	0	0	-3	-14	
		RED	010164000	A	0164	0109	038	02	0	0	0	0	0	0	
		RED	010996038	A	0996	0757	038	02	168	209	224	233	237	232	
		RED	011004038	A	1004	1004	038	02	1,597	1,579	1,516	1,504	1,493	1,481	
		RED	011005038	A	1005	1005	038	02	314	296	236	224	212	198	
		RED	011001038	A	1001	1001	038	02	0	0	0	0	0	0	
		RED	011003038	A	1003	1003	038	02	16	17	16	16	16	15	
		RED	011002038	А	1002	1002	038	02	0	0	0	0	0	0	
	OLLINGSWORTH		010996044	А	0996	0757	044	02	24	24	28	32	38	40	
	OLLINGSWORTH		011004044	А	1004	1004	044	02	8,525	8,538	8,529	8,532	8,535	8,534	
	OLLINGSWORTH		011005044	А	1005	1005	044	02	276	247	175	150	121	90	
	COLLINGSWORTH		011001044	A	1001	1001	044	02	0	0	0	0	0	0	
	OLLINGSWORTH		011003044	А	1003	1003	044	02	0	0	0	0	0	0	
	COLLINGSWORTH		011002044	А	1002	1002	044	02	0	0	0	0	0	0	
	COLLINGSWORTH		010947000	А	0947	0637	044	02	43	41	38	37	36	35	
		CANADIAN	010996056	A	0996	0757	056	01	0	0	0	0	0	0	
		CANADIAN	010226000	A	0226	0150	056	01	0	0	0	0	0	0	
		CANADIAN	011004056	A	1004	1004	056	01	0	0	0	-273,976	-380,971	-380,963	
		CANADIAN	011005056	A	1005	1005	056	01	0	0	0	0	-14,742	-16,796	
		CANADIAN	011001056	A	1001	1001	056	01	0	0	0	0	-232	-232	
		CANADIAN	011003056	A	1003	1003	056	01	0	0	0	0	0	0	
		CANADIAN	011002056	A	1002	1002	056	01	0	0	0	0	0	0	
		RED	010170000	A	0170	0112	065	02	0	0	0	0	0	0	
		RED	010996065	A	0996	0757	065	02	47	64	82	99	109	120	
		RED	011004065	A	1004	1004	065	02	485	485	485	485	485	485	
		RED	011005065	A	1001	1001	065	02	540	460	380	319	252	180	
		RED	011003005	A	1003	1003	065	02	0.2	0	0	0	0	0	

WUGNAME	COUNTYNAME	BASINNAME	WUGNUM	RWPG	SEO#	CITY#	COUNTY#	BASIN#	2000	2010	2020	2030	2040	2050	Comments
MINING		RED	011003065	А	1003	1003	065	02	4	3	2	1	1	1	
STEAM ELECTRIC POWER	DONLEY	RED	011002065	А	1002	1002	065	02	0	0	0	0	0	0	
COUNTY-OTHER	GRAY	CANADIAN	010996090	А	0996	0757	090	01	368	341	322	268	241	222	
COUNTY-OTHER	GRAY	RED	010996090	А	0996	0757	090	02	257	248		296	305	313	
IRRIGATION	GRAY	CANADIAN	011004090	А	1004	1004	090	01	3,760	3,749	3,731	3,500	3,460	3,423	
IRRIGATION	GRAY	RED	011004090	А	1004	1004	090	02	7,593	7,590	7,585	7,552	7,545	7,539	
LEFORS	GRAY	RED	010515000	А	0515	0898	090	02	0	-19	-95	-85	-80	-78	
LIVESTOCK	GRAY	CANADIAN	011005090	А	1005	1005	090	01	172	89	42	6	0	0	
LIVESTOCK	GRAY	RED	011005090	А	1005	1005	090	02	1,049	520	219	54	0	0	
MANUFACTURING	GRAY	CANADIAN	011001090	А	1001	1001	090	01	0	0	0	0	0	-57	
MANUFACTURING	GRAY	RED	011001090	А	1001	1001	090	02	0	0	0	0	0	0	
MCLEAN	GRAY	RED	010578000	А	0578	0380	090	02	0	0	-246	-232	-226	-220	
MINING	GRAY	CANADIAN	011003090	А	1003	1003	090	01	68	73	75	75	76	76	
MINING	GRAY	RED	011003090	А	1003	1003	090	02	198	274	388	464	435	354	
PAMPA	GRAY	CANADIAN	010674000	А	0674	0452	090	01	231	735	736	736	736	735	
STEAM ELECTRIC POWER	GRAY	CANADIAN	011002090	А	1002	1002	090	01	0	0	0	0	0	0	
		RED	011002090	А	1002	1002	090	02	0	0	0	0	0	0	
COUNTY-OTHER		RED	010996096	А	0996	0757	096	02	188	183	178	172	169	165	
IRRIGATION	HALL	RED	011004096	А	1004	1004	096	02	2,727	2,737	2,749	2,758	2,759	2,753	
		RED	011005096	А	1005	1005	096	02	125	113	104	94	84	71	
MANUFACTURING	HALL	RED	011001096	А	1001	1001	096	02	0	0	0	0	0	0	
MEMPHIS	HALL	RED	010585000	А	0585	0394	096	02	7	33	59	80	96	106	
MINING		RED	011003096	А	1003	1003	096	02	-1	-2	-3	-4	-5	-6	
STEAM ELECTRIC POWER		RED	011002096	А	1002	1002	096	02	0	0	0	0	0	0	
TURKEY		RED	010915000	А	0915	0979	096	02	10	14	17	18	18	15	
COUNTY-OTHER	HANSFORD	CANADIAN	010996098	А	0996	0757	098	01	43	46	58	65	80	93	
GRUVER	HANSFORD	CANADIAN	010368000	А	0368	0256	098	01	0	-295	-372	-361	-346	-334	
IRRIGATION	HANSFORD	CANADIAN	011004098	А	1004	1004	098	01	114,996	113,151	112,057	110,892	109,560	108,065	
LIVESTOCK	HANSFORD	CANADIAN	011005098	А	1005	1005	098	01	1,583	0	0	1	0	0	
MANUFACTURING	HANSFORD	CANADIAN	011001098	А	1001	1001	098	01	7	3	2	2	11	8	
MINING	HANSFORD	CANADIAN	011003098	А	1003	1003	098	01	0	35	60	166	167	163	
SPEARMAN	HANSFORD	CANADIAN	010849000	А	0849	0573	098	01	48	40	60	89	122	138	
STEAM ELECTRIC POWER		CANADIAN	011002098	А	1002	1002	098	01	0	0	0	0	0	0	
CHANNING	HARTLEY	CANADIAN	010159000	А	0159	0106	103	01	13	14	13	13	13	13	
COUNTY-OTHER	HARTLEY	CANADIAN	010996103	А	0996	0757	103	01	19	0	11	13	17	16	
		CANADIAN	010226000	А	0226	0150	103	01	0	0	0	0	0	0	
IRRIGATION		CANADIAN	011004103	А	1004	1004	103	01	176,346	175,882	175,468	175,157	173,614	173,283	
LIVESTOCK		CANADIAN	011005103	А	1005	1005	103	01	0	0	0	0	0	0	
		CANADIAN	011001103	А	1001	1001	103	01	0	0	0	0	0	0	
MINING	HARTLEY	CANADIAN	011003103	А	1003	1003	103	01	0	0	0	0	0	0	
STEAM ELECTRIC POWER	HARTLEY	CANADIAN	011002103	А	1002	1002	103	01	0	0	0	0	0	0	
CANADIAN	HEMPHILL	CANADIAN	010142000	А	0142	0093	106	01	0	0	-199	-641	-615	-601	
COUNTY-OTHER	HEMPHILL	CANADIAN	010996106	А	0996	0757	106	01	83	84	88	93	98	101	
COUNTY-OTHER		RED	010996106	А	0996	0757	106	02	35	36	39	43	47	49	
		CANADIAN	011004106	А	1004	1004	106	01	118	119	114	109	103	100	
IRRIGATION		RED	011004106	А	1004	1004	106	02	13	13	12	11	10	10	
LIVESTOCK		CANADIAN	011005106	А	1005	1005	106	01	572	497	413	317	246		
		RED	011005106	А	1005	1005	106	02	396	344	286	220	170	143	
		CANADIAN	011001106	А	1001	1001	106	01	0	0	0	0	0	0	
		RED	011001106	А	1001	1001	106	02	-4	-5	-6	-7	-8	-9	

WUGNAME	COUNTYNAME	BASINNAME	WUGNUM	RWPG	SEO#	CITY#	COUNTY#	BASIN#	2000	2010	2020	2030	2040	2050	Comments
MINING		CANADIAN	011003106	А	1003	1003	106	01	0	0	0	0	0	0	
MINING	HEMPHILL	RED	011003106	А	1003	1003	106	02	0	0	0	0	0	0	
STEAM ELECTRIC POWER	HEMPHILL	CANADIAN	011002106	А	1002	1002	106	01	0	0	0	0	0	0	
STEAM ELECTRIC POWER	HEMPHILL	RED	011002106	А	1002	1002	106	02	0	0	0	0	0	0	
BORGER	HUTCHINSON	CANADIAN	010100000	А	0100	0067	117	01	3	0	8	7	6	22	
COUNTY-OTHER	HUTCHINSON	CANADIAN	010996117	А	0996	0757	117	01	12	35	79	123	174	207	
FRITCH	HUTCHINSON	CANADIAN	010320000	А	0320	0222	117	01	1	16	38	62	91	105	
IRRIGATION	HUTCHINSON	CANADIAN	011004117	А	1004	1004	117	01	0	0	0	0	0	0	
LIVESTOCK		CANADIAN	011005117	А	1005	1005	117	01	514	447	382	323	259	189	
MANUFACTURING		CANADIAN	011001117	А	1001	1001	117	01	0	462	0	0	5	343	
MINING		CANADIAN	011003117	А	1003	1003	117	01	139	180	317	480	558	595	
		CANADIAN	011002117	А	1002	1002	117	01	0	0	0	0	0	0	
STINNETT		CANADIAN	010861000	A	0861	0582	117	01	52	60	74	93	117	127	
TCW Supply, Inc.		CANADIAN						01	0	0	0	0	0	0	
BOOKER		CANADIAN	010099000	А	0099	0066	148	01	55	55	68	75	86	100	
COUNTY-OTHER		CANADIAN	010996148	A	0996	0757	148	01	41	35		49	52		
IRRIGATION		CANADIAN	011004148	A	1004	1004	148	01	10	7	6	4	2	0	
LIPSCOMB		CANADIAN	010526000	A	0526	0359	148	01	0	0	2	3	4	6	
LIVESTOCK		CANADIAN	011005148	A	1005	1005	148	01	594	0	0	0	0	0	
MANUFACTURING		CANADIAN	011001148	A	1001	1001	148	01	0	0	0	0	0	0	
MINING	LIPSCOMB	CANADIAN	011003148	A	1003	1003	148	01	1	1	1	1	0	-9	
STEAM ELECTRIC POWER		CANADIAN	011002148	A	1002	1002	148	01	0	0	0	0	0	0	
CACTUS	MOORE	CANADIAN	010134000	A	0134	0762	171	01	0	0	0	-592	-703	-838	
COUNTY-OTHER	MOORE	CANADIAN	010996171	A	0996	0757	171	01	0	0	0	-427	-419	-430	
DUMAS	MOORE	CANADIAN	010255000	A	0255	0170	171	01	0	0	0	-3,418	-3,603	-3,848	
IRRIGATION	MOORE	CANADIAN	011004171	A	1004	1004	171	01	3	3	-21,395	-200,576	-200,576	-200,576	
LIVESTOCK	MOORE	CANADIAN	011005171	A	1001	1001	171	01	0	0	788	-7,459	-8,546	-9,786	
MANUFACTURING	MOORE	CANADIAN	011001171	A	1001	1001	171	01	0	0	0	-8,269	-8,863	-9,429	
MINING	MOORE	CANADIAN	011003171	A	1001	1001	171	01	848	1,079	1,625	1,445	1,502	1,499	
STEAM ELECTRIC POWER	MOORE	CANADIAN	011002171	A	1002	1002	171	01	0.0	0	0	-200	-200	-200	
SUNRAY	MOORE	CANADIAN	010872000	A	0872	0588	171	01	0	0	0	-701	-750	-807	
BOOKER		CANADIAN	010099000	A	0099	0066	179	01	-1	0	0	0	0	0	
COUNTY-OTHER		CANADIAN	010996179	A	0996	0757	179	01	27	92	98	107	118	132	
IRRIGATION		CANADIAN	011004179	A	1004	1004	179	01	9,088	9,088	9,088	9,088	9,088	9,088	
LIVESTOCK		CANADIAN	011005179	A	1005	1001	179	01	2,183	1,677	,	75	69),000	
MANUFACTURING		CANADIAN	011001179	A	1003	1003	179	00	_,105	0	0,9	, 9	0	0	
MINING		CANADIAN	011003179	A	1001	1001	179	01	6	32	48	64	83	79	
PERRYTON		CANADIAN	010689000	A	0689	0461	179	01	0	-1,518		-2,432	-2,370	-2,320	
		CANADIAN	011002179	A	1002	1002	179	01	0	0	2,102	2, 132	0	2,520	
COUNTY-OTHER		CANADIAN	010996180	A	0996	0757	180	01	0	0	0	0	0	-2,273	
COUNTY-OTHER		RED	010996180	A	0996	0757	180	02	0	0	0	0	0	-22	
IRRIGATION		CANADIAN	011004180	A	1004	1004	180	01	0	0	0	0	-846	-7,700	
IRRIGATION		RED	011004180	A	1004	1004	180	01	1	1	1	1	-1,582	-18,248	
LIVESTOCK		CANADIAN	011005180	A	1001	1001	180	01	377	215	45	0	1,002	0	
LIVESTOCK		RED	011005180	A	1005	1005	180	01	26	19	13	8	4	1	
MANUFACTURING		CANADIAN	011001180	A	1003	1003	180	01	20	0	0	0		0	
MANUFACTURING		RED	011001180	A	1001	1001	180	01	0	0	0	0	0	0	
MINING		CANADIAN	011003180	A	1001	1001	180	02	52	45	38	31	23	15	
MINING		RED	011003180	A	1003	1003	180	01	0		0	0	 	-311	
		CANADIAN	011002180	A	1003	1003	180	02	0	0	0	0	0	-511	
STEAM ELECTRIC FOWER	OLDITAM	CANADIAN	011002100	Л	1002	1002	100	01	0	0	0	0	0	0	

WUGNAME	COUNTYNAME	BASINNAME	WUGNUM	RWPG	SEQ#	CITY#	COUNTY#	BASIN#	2000	2010	2020	2030	2040	2050	Comments
STEAM ELECTRIC POWER	OLDHAM	RED	011002180	А	1002	1002	180	02	0	0	0	0	0	0	
VEGA	OLDHAM	CANADIAN	010928000	А	0928	0622	180	01	0	0	0	0	0	-61	
VEGA	OLDHAM	RED	010928000	А	0928	0622	180	02	0	0	0	0	0	-184	
AMARILLO	POTTER	CANADIAN	010020000	А	0020	0014	188	01	0	0	0	0	-1,572	-7,868	
AMARILLO	POTTER	RED	010020000	А	0020	0014	188	02	0	0	0	0	-1,173	-5,872	
COUNTY-OTHER	POTTER	CANADIAN	010996188	А	0996	0757	188	01	0	0	0	0	-1,094	-1,260	
COUNTY-OTHER	POTTER	RED	010996188	А	0996	0757	188	02	0	0	0	0	-270	-268	
IRRIGATION	POTTER	CANADIAN	011004188	А	1004	1004	188	01	0	0	0	0	-7,732	-9,518	
IRRIGATION	POTTER	RED	011004188	А	1004	1004	188	02	0	0	0	-5,385	-6,077	-4,360	
LIVESTOCK	POTTER	CANADIAN	011005188	А	1005	1005	188	01	320	280	239	195	147	94	
LIVESTOCK	POTTER	RED	011005188	А	1005	1005	188	02	39	36	33		27	24	
MANUFACTURING	POTTER	CANADIAN	011001188	А	1001	1001	188	01	0	0	0	0	-602	-777	
MANUFACTURING	POTTER	RED	011001188	А	1001	1001	188	02	1,548	1,228	974	774	377	146	
MINING	POTTER	CANADIAN	011003188	А	1003	1003	188	01	0	0	0	0	-193	-231	
MINING	POTTER	RED	011003188	А	1003	1003	188	02	0	0	0	0	-174	-179	
STEAM ELECTRIC POWER	POTTER	CANADIAN	011002188	А	1002	1002	188	01	0	0	0	0	-12,294	-15,860	
STEAM ELECTRIC POWER	POTTER	RED	011002188	А	1002	1002	188	02	0	0	0	0	0	0	
AMARILLO	RANDALL	RED	010020000	А	0020	0014	191	02	0	0	0	0	-2,840	-15,115	
CANYON	RANDALL	RED	010145000	А	0145	0096	191	02	0	0	0	0	-834	-691	
COUNTY-OTHER	RANDALL	CANADIAN	010996191	А	0996	0757	191	01	0	0	0	0	-543	-629	
COUNTY-OTHER	RANDALL	RED	010996191	А	0996	0757	191	02	0	0	0	0	-3,671	-5,109	
НАРРҮ	RANDALL	RED	010378000	А	0378	0877	191	02	0	0	0	0	0	0	Swisher County supply meets additional demand shown in Table 2 not covered by supply in Table 5. (9/22/00)
IRRIGATION	RANDALL	CANADIAN	011004191	А	1004	1004	191	01	0	0	0	-128	-539		
IRRIGATION	RANDALL	RED	011004191	А	1004	1004	191	02	0	0	0	0	-40,452	-46,680	
LAKE TANGLEWOOD	RANDALL	RED	010500000	А	0500	0895	191	02	0	-12	-305	-303	-294	-282	
LIVESTOCK	RANDALL	CANADIAN	011005191	А	1005	1005	191	01	0	0	0	0	-31	-34	
LIVESTOCK	RANDALL	RED	011005191	А	1005	1005	191	02	0	0	0	0	-2,570	-3,373	
MANUFACTURING	RANDALL	CANADIAN	011001191	А	1001	1001	191	01	0	0	0	0	0	0	
MANUFACTURING	RANDALL	RED	011001191	Α	1001	1001	191	02	0	0	0	0	-148	-173	
MINING	RANDALL	CANADIAN	011003191	А	1003	1003	191	01	1	1	1	0	0	0	
MINING	RANDALL	RED	011003191	А	1003	1003	191	02	0	0	0	0	-3	-5	
STEAM ELECTRIC POWER		CANADIAN	011002191	А	1002	1002	191	01	0	0	0	0	0	0	
STEAM ELECTRIC POWER	RANDALL	RED	011002191	А	1002	1002	191	02	0	0	0	0	0	0	
COUNTY-OTHER	ROBERTS	CANADIAN	010996197	Α	0996	0757	197	01	0	0	0	0	0	0	
COUNTY-OTHER	ROBERTS	RED	010996197	Α	0996	0757	197	02	0	0	0	0	0	0	
IRRIGATION	ROBERTS	CANADIAN	011004197	Α	1004	1004	197	01	6,235	6,235	6,233	6,232	6,230	6,228	
IRRIGATION	ROBERTS	RED	011004197	Α	1004	1004	197	02	0	0	0	0	0	0	
LIVESTOCK	ROBERTS	CANADIAN	011005197	Α	1005	1005	197	01	20	0	0	0	0	0	
LIVESTOCK	ROBERTS	RED	011005197	Α	1005	1005	197	02	0	0	0	0	0	0	
MANUFACTURING	ROBERTS	CANADIAN	011001197	Α	1001	1001	197	01	0	0	0	0	0	0	
MANUFACTURING	ROBERTS	RED	011001197	А	1001	1001	197	02	0	0	0	0	0	0	
MIAMI	ROBERTS	CANADIAN	010594000	Α	0594	0403	197	01	0	0	6	19	31	41	
MINING	ROBERTS	CANADIAN	011003197	А	1003	1003	197	01	0	0	0	0	0	0	
MINING	ROBERTS	RED	011003197	А	1003	1003	197	02	2	1	3	4	4	4	
STEAM ELECTRIC POWER	ROBERTS	CANADIAN	011002197	А	1002	1002	197	01	0	0	0	0	0	0	
STEAM ELECTRIC POWER	ROBERTS	RED	011002197	А	1002	1002	197	02	0	0	0	0	0	0	
COUNTY-OTHER	SHERMAN	CANADIAN	010996211	А	0996	0757	211	01	0	0	0	0	0	0	

Table 7: Comparison of Demands to Current Water Supplier by City and Category

WUGNAME	COUNTYNAME	BASINNAME	WUGNUM	RWPG	SEQ#	CITY#	COUNTY#	BASIN#	2000	2010	2020	2030	2040	2050	Comments
IRRIGATION	SHERMAN	CANADIAN	011004211	А	1004	1004	211	01	0	0	0	0	0	0	
LIVESTOCK	SHERMAN	CANADIAN	011005211	А	1005	1005	211	01	0	0	0	0	0	0	
MANUFACTURING	SHERMAN	CANADIAN	011001211	А	1001	1001	211	01	0	0	0	0	0	0	
MINING	SHERMAN	CANADIAN	011003211	А	1003	1003	211	01	0	0	0	0	0	0	
STEAM ELECTRIC POWER	SHERMAN	CANADIAN	011002211	А	1002	1002	211	01	0	0	0	0	0	0	
STRATFORD	SHERMAN	CANADIAN	010864000	А	0864	0584	211	01	0	0	0	0	0	0	
COUNTY-OTHER	WHEELER	RED	010996242	А	0996	0757	242	02	291	307	324	334	343	346	
IRRIGATION	WHEELER	RED	011004242	А	1004	1004	242	02	3	2	1	1	1	1	
LIVESTOCK	WHEELER	RED	011005242	А	1005	1005	242	02	1,024	921	765	685	599	507	
MANUFACTURING	WHEELER	RED	011001242	А	1001	1001	242	02	0	0	0	0	0	0	
MINING	WHEELER	RED	011003242	А	1003	1003	242	02	55	114	134	146	152	155	
SHAMROCK	WHEELER	RED	010822000	А	0822	0554	242	02	0	0	0	0	-252	-321	
STEAM ELECTRIC POWER	WHEELER	RED	011002242	A	1002	1002	242	02	0	0	0	0	0	0	
WHEELER	WHEELER	RED	010961000	A	0961	0646	242	02	0	-22	-275	-272	-268	-268	

Table 8: Comparison of Water Demands with Current Water Supplies by Major Water Provider of Municipal and Manufacturing Water

Major Water Provider Name	Major Water Provider Number	County Number	Basin Number	n2000	n2010	n2020	n2030	n2040	n2050		WUGNAME	Source
Amarillo	17600	188	01	0	0	0	0	-2,944	-8,126	based on maximum use scenario, does not include Roberts well field	Amarillo	Amarillo System
Amarillo	17600	188	02	0	0	0	0	-2,198	-6,065	based on maximum use scenario, does not include Roberts well field	Amarillo	Amarillo System
Amarillo	17600	191	02	0	0	0	0	-5,319	-15,612	based on maximum use scenario, does not include Roberts well field	Amarillo	Amarillo System
Amarillo	17600	188	01	0	0	0	0	0	0		ASARCO, INC.	Amarillo System
Amarillo	17600	191	02	0	0	0	0	0	0	5 mgd contract limitation. Assume average day = 2.5 mgd.	City of Canyon	Amarillo System
Amarillo	17600	188	02	891	684	467	239	0		Contract with IBP	IBP, Inc.	Amarillo System
Amarillo	17600	191	02	0	0	0	0	0	0		TPWD	Amarillo System
CRMWA	10	117	01	0	0	0	0	0	0		AGRIUM	CRMWA System
CRMWA	10	188	01	0	0	0	0	0	0		Amarillo	CRMWA System
CRMWA	10	188	02	0	0	0	0	0	0		Amarillo	CRMWA System
CRMWA	10	191	02	0	0	0	0	0	0		Amarillo	CRMWA System
CRMWA	10	117	01	0	0	0	0	0	0		City of Borger	CRMWA System
CRMWA	10	223	14	0	0	0	0	0	0		City of Brownfield	CRMWA System
CRMWA	10	058	14	0	0	0	0	0	0		City of Lamesa	CRMWA System
CRMWA	10	110	12	0	0	0	0	0	0		City of Levelland	CRMWA System
CRMWA	10	152	12	0	0	0	0	0	0		City of Lubbock WTP	CRMWA System
CRMWA	10	058	14	0	0	0	0	0	0		City of Odonnell	CRMWA System
CRMWA	10	153	14	0	0	0	0	0	0		City of Odonnell	CRMWA System
CRMWA	10	090	01	0	0	0	0	0	0		City of Pampa	CRMWA System
CRMWA	10	095	12	0	0	0	0	0	0		City of Plainview	CRMWA System
CRMWA	10	152	12	0	0	0	0	0	0		City of Slaton	CRMWA System
CRMWA	10	153	12	0	0	0	0	0	0		City of Tahoka	CRMWA System
CRMWA	10	188	01	0	0	0	0	0	0		Southwestern Public Service	CRMWA System
CRMWA	10			23,367	13,855	13,132	12,643	12,970	13,178	Unallocated water, limited to CRMWA customers	unassigned	CRMWA System
Greenbelt M&IWA	20	038	02	0	0	0	0	0	0		City of Childress	Greenbelt Reservoir
Greenbelt M&IWA	20	065	02	0	0	0	0	0	0		City of Clarendon	Greenbelt Reservoir
Greenbelt M&IWA	20	078	02	0	0	0	0	0	0		City of Crowell	Greenbelt Reservoir
Greenbelt M&IWA	20	065	02	0	0	0	0	0	0		City of Hedley	Greenbelt Reservoir
Greenbelt M&IWA	20	096	02	0	0	0	0	0	0		City of Memphis	Greenbelt Reservoir
Greenbelt M&IWA	20	099	02	0	0	0	0	0	0		City of Quanah	Greenbelt Reservoir
Greenbelt M&IWA	20		02	0	0	0	0	0		No needs for RRA, so records consolidated.	Red River Authority	Greenbelt Reservoir
Greenbelt M&IWA	20			3,708	3,612	3,549	3,436	3,298	3 144	Unallocated water, limited to GM&IWA customers	unassigned	Greenbelt Reservoir

WUGNAME:	Claude	
STRATEGY:	Install 2 new wells	
AMOUNT (ac-ft/yr):	268	
Construction Costs		Costs
Construction Costs		COSIS
Water Wells (2)		\$145,800
Connection to Transmission System		\$160,000
6-in Pipeline to Claude		\$285,120
Pumpstation, building and appurtenances		\$315,000
Ground Storage (.25 MG)		\$100,000
		1 005 000
Subtotal - Construction Costs	\$.	1,005,920
Engineering and Contingencies		\$301,776
Mitigation and Permitting		\$10,059
ROW Land Acquisition		\$3,600
Water Rights Purchase		\$231,000
Subtotal	\$	1,552,355
Interact During Construction		\$22 625
Interest During Construction Total Capital Project Costs	¢	\$33,635 5 1,585,990
Total Capital Project Costs	Φ	01,505,990
Annual Costs		
Debt Service - Total Capital		\$115,220
Operation and Maintenance		
Pipelines		\$4,451
Pumpstations/Wells		\$11,520
Surface Water Treatment		
Pumping Costs		\$6,427
Total Annual Costs		\$137,619
		6513 5 0
Annual Cost (\$ per acre-foot)		\$513.50 \$1.59
Annual Cost (\$ per 1000 gallons)		\$1.58

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Groom Install 1 new wells in city 121
Construction Costs	Costs
Water Wells (1)	\$130,200
Connection to Existing System	\$80,000
Subtotal - Construction Costs	\$210,200
Engineering and Contingencies	\$63,060
Mitigation and Permitting	\$2,102
ROW Land Acquisition Water Rights Purchase	\$0 \$17,500
water Rights I utchase	\$17,500
Subtotal	\$292,862
Interest During Construction	\$6,345
Total Capital Project Costs	\$299,207
Annual Costs	
Debt Service - Total Capital	\$21,737
Operation and Maintenance	¢000
Pipelines Pumpstations/Wells	\$800 \$3,255
Surface Water Treatment	φ5,255
Pumping Costs	\$2,408
Total Annual Costs	\$28,200
Annual Cost (\$ per acre-foot)	\$233.06
Annual Cost (\$ per 1000 gallons)	\$0.72

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Panhandle Install 2 new wells 933
Construction Costs	Costs
Water Wells (2)	\$386,400
Connection to Existing System	\$200,000
Subtotal - Construction Costs	\$586,400
Engineering and Contingencies	\$175,920
Mitigation and Permitting	\$5,864
ROW Land Acquisition	\$0
Water Rights Purchase	\$101,150
Subtotal	\$869,334
Interest During Construction	\$18,836
Total Capital Project Costs	\$888,170
Annual Costs	
Debt Service - Total Capital	\$64,525
Operation and Maintenance	
Pipelines	\$2,000
Pumpstations/Wells	\$9,660
Surface Water Treatment Pumping Costs	\$24,916
Total Annual Costs	\$101,100
	+
Annual Cost (\$ per acre-foot)	\$108.36
Annual Cost (\$ per 1000 gallons)	\$0.33

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Skellytown Install 1 new well in city 64
Construction Costs	Costs
Water Wells (1)	\$115,200
Connection to Existing System	\$50,000
Subtotal - Construction Costs	\$165,200
Engineering and Contingencies	\$49,560
Mitigation and Permitting	\$1,652
ROW Land Acquisition	\$0
Water Rights Purchase	\$76,650
Subtotal	\$293,062
Interest During Construction	\$6,350
Total Capital Project Costs	\$299,412
Annual Costs	
Debt Service - Total Capital	\$21,752
Operation and Maintenance	
Pipelines	\$500
Pumpstations/Wells	\$2,880
Surface Water Treatment	* 4 = *
Pumping Costs	\$1,709
Total Annual Costs	\$26,841
Annual Cost (\$ per acre-foot) Annual Cost (\$ per 1000 gallons)	\$419.39 \$1.29

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	White Deer Install 2 new wells in city 281
Construction Costs	Costs
Water Wells (2)	\$356,400
Connection to Existing System	\$160,000
Subtotal - Construction Costs	\$516,400
Engineering and Contingencies	\$154,920
Mitigation and Permitting	\$5,164
ROW Land Acquisition	\$0
Water Rights Purchase	\$22,575
Subtotal	\$699,059
Interest During Construction	\$15,147
Total Capital Project Costs	\$714,206
Annual Costs	
Debt Service - Total Capital	\$51,886
Operation and Maintenance	
Pipelines	\$1,600
Pumpstations/Wells	\$8,910
Surface Water Treatment	
Pumping Costs	\$7,504
Total Annual Costs	\$69,900
Annual Cost (\$ per acre-foot)	\$248.76
Annual Cost (\$ per 1000 gallons)	\$0.76

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	McLean Install 2 new wells within 1.5 miles 246
Construction Costs	Costs
Water Wells (2)	\$188,400
Connection to Transmission System	\$160,000
6-inch Pipeline from Well to McLean	\$142,560
Pumpstation, building and appurtenances	\$315,000
Ground Storage (.1 MG)	\$42,000
Subtotal - Construction Costs	\$847,960
Engineering and Contingencies	\$254,388
Mitigation and Permitting	\$8,480
ROW Land Acquisition	\$2,727
Water Rights Purchase	\$136,500
Subtotal	\$1,250,055
Interest During Construction	\$27,085
Total Capital Project Costs	\$1,277,140
Annual Costs	¢02 783
Debt Service - Total Capital Operation and Maintenance	\$92,783
Pipelines	\$1,600
Pumpstations/Wells	\$4,710
Surface Water Treatment	ψ+,/10
Pumping Costs	\$6,588
Total Annual Costs	\$105,680.98
Annual Cost (\$ per acre-foot)	\$429.60
Annual Cost (\$ per 1000 gallons)	\$1.32

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Gruver Develop exiting water rights and new rights 372
Construction Costs	Cost
Water Wells (2)	\$273,600
Connection to Existing System	\$160,000
6-in Pipeline to Gruver	\$475,200
Pumpstation, building and appurtenances	\$519,200
Ground Storage (0.1 MG)	\$42,000
Subtotal - Construction Costs	\$433,600
Engineering and Contingencies	\$130,080
Mitigation and Permitting	\$4,336
ROW Land Acquisition	\$6,000
Water Rights Purchase	\$178,500
Subtotal	\$752,516
Interest During Construction	\$16,305
Total Capital Project Costs	\$768,821
Annual Costs Debt Service - Total Capital	\$55,854
Operation and Maintenance	φ υ υ,ου ι
Pipelines	\$6,352
Pumpstations	\$19,820
Surface Water Treatment	\$0
Pumping Costs	\$15,181
Total Annual Costs	\$97,207.03
Annual Cost (\$ per acre-foot) Annual Cost (\$ per 1000 gallons)	\$261.31 \$0.80

WUGNAME:	Gruver
STRATEGY:	Palo Duro project
AMOUNT (ac-ft/yr):	200
Construction Costs	Cost
Palo Duro Transmission Project	\$58,680,274
Percentage of Total Capital - City of Gruver	\$1,872,376
Annual Costs Debt Service - Total Capital Operation and Maintenance	\$136,026
Pipelines	\$6,167
Pumpstations	\$7,001
Surface Water Treatment	\$29,116
Purchased Water from PDRA	\$13,686
Pumping Costs	\$12,643
Pumping Costs Total Annual Costs	\$13,643 \$205,639
Annual Cost (\$ per acre-foot)	\$1,028.20
Annual Cost (\$ per 1000 gallons)	\$3.16

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Canadian Develop new water rights 641
Construction Costs	Cost
Water Wells (2)	\$80,400
Connection to Transmission System	\$160,000
10-in Pipeline to Canadian	\$739,200
Pumpstation, building and appurtenances	\$388,200
Ground Storage (.5 MG)	\$156,000
Subtotal - Construction Costs	\$1,523,800
Engineering and Contingencies	\$457,140
Mitigation and Permitting	\$15,238
ROW Land Acquisition	\$6,000
Water Rights Purchase	\$413,000
Subtotal	\$2,415,178
Interest During Construction	\$52,330
Total Capital Project Costs	\$2,467,508
Annual Costs	
Debt Service - Total Capital	\$179,262
Operation and Maintenance	\$177,202
Pipelines	\$7,592
Pumpstations	\$11,715
Surface Water Treatment	\$0
Pumping Costs	\$11,121
Total Annual Costs	\$209,690
	\$22 5 12
Annual Cost (\$ per acre-foot)	\$327.13
Annual Cost (\$ per 1000 gallons)	\$1.00

WUGNAME:	Cactus
STRATEGY:	Develop new well field
AMOUNT (ac-ft/yr):	1,735
Construction Costs	Cost
Water Wells (4)	\$626,400
Connection to Existing System	\$800,000
16-in Pipeline to Cactus	\$976,800
Pumpstation, building and appurtenances	\$681,000
Ground Storage (1 MG)	\$275,000
Subtotal - Construction Costs	\$3,359,200
Engineering and Contingencies	\$1,007,760
Mitigation and Permitting	\$33,592
ROW Land Acquisition	\$9,090
Water Rights Purchase	\$711,900
Subtotal	\$5,121,542
Interest During Construction	\$110,968
Total Capital Project Costs	\$5,232,510
Annual Costs Debt Service - Total Capital Operation and Maintenance Pipelines Pumpstations / Wells Surface Water Treatment Pumping Costs Total Annual Costs	\$380,136 \$20,518 \$32,685 \$0 \$51,182 \$484,521
Annual Cost (\$ per acre-foot)	\$279.26
Annual Cost (\$ per 1000 gallons)	\$0.86

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Cactus Palo Duro Project 2,000
Construction Costs	Cost
Palo Duro Transmission Project Percentage of Total Capital - City of Cactus	\$58,680,274 \$18,723,763
Annual Costs	
Debt Service - Total Capital	\$1,360,261
Operation and Maintenance	
Pipelines	\$61,672
Pumpstations	\$70,014
Surface Water Treatment	\$291,161
Purchased Water from PDRA	\$136,857
Pumping Costs	\$136,427
Total Annual Costs	\$2,056,393
Annual Cost (\$ per acre-foot)	\$1,028.20
Annual Cost (\$ per 1000 gallons)	\$3.16

WUGNAME:	Dumas
STRATEGY:	Develop new water rights
AMOUNT (ac-ft/yr):	1,367
Construction Costs	Cost
Water Wells (3)	\$431,100
Connection to Existing System	\$300,000
8-in Pipeline to Dumas	\$1,082,400
Pumpstation, building and appurtenances	\$519,200
Ground Storage (.5 MG)	\$156,000
Subtotal - Construction Costs	\$2,488,700
Engineering and Contingencies	\$746,610
Mitigation and Permitting	\$24,887
ROW Land Acquisition	\$9,090
Water Rights Purchase	\$567,000
Subtotal	\$3,836,287
Interest During Construction	\$83,121
Total Capital Project Costs	\$3,919,408
Annual Costs Debt Service - Total Capital Operation and Maintenance	\$284,741
Pipelines	\$15,384
Pumpstations	\$23,758
Surface Water Treatment	\$0 \$27.426
Pumping Costs	\$37,436
Total Annual Costs	\$361,317.80
Annual Cost (\$ per acre-foot)	\$264.31
Annual Cost (\$ per 1000 gallons)	\$0.81

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Dumas Palo Duro project 2,560
Construction Costs	Cost
Palo Duro Transmission Project Percentage of Total Capital - City of Dumas	\$58,680,274 \$23,966,417
Annual Costs	
Debt Service - Total Capital	\$1,741,134
Operation and Maintenance	
Pipelines	\$78,940
Pumpstations	\$89,618
Surface Water Treatment	\$372,687
Purchased Water from PDRA	\$175,177
Pumping Costs	\$174,626
Total Annual Costs	\$2,632,183
Annual Cost (\$ per acre-foot)	\$1,028.20
Annual Cost (\$ per 1000 gallons)	\$3.16

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Sunray Install 2 new wells within 5 miles 440
Construction Costs	Cost
Water Wells (2)	\$267,000
Connection to Existing System	\$160,000
8-in Pipeline to Sunray	\$633,600
Pumpstation, building and appurtenances	\$519,200
Ground Storage (.5 MG)	\$156,000
Subtotal - Construction Costs	\$1,735,800
Engineering and Contingencies	\$520,740
Mitigation and Permitting	\$17,358
ROW Land Acquisition	\$6,000
Water Rights Purchase	\$252,350
Subtotal	\$2,532,248
Interest During Construction	\$54,866
Total Capital Project Costs	\$2,587,114
Annual Costs	¢197.051
Debt Service - Total Capital Operation and Maintenance	\$187,951
Pipelines	\$7,936.00
Pumpstations	\$19,655.00
Surface Water Treatment	\$0
Pumping Costs	\$14,047
Total Annual Costs	\$229,588.83
Annual Cost (\$ per acre-foot)	\$521.79
Annual Cost (\$ per 1000 gallons)	\$1.60

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Sunray Palo Duro Project 500
Construction Costs	Cost
Palo Duro Transmission Project Percentage of Total Capital - City of Sunray	\$58,680,274 \$4,680,941
Annual Costs	
Debt Service - Total Capital	\$340,065
Operation and Maintenance	
Pipelines	\$15,418
Pumpstations	\$17,504
Surface Water Treatment	\$72,790
Purchased Water from PDRA	\$34,214
Pumping Costs	\$34,107
Total Annual Costs	\$514,098.20
Annual Cost (\$ per acre-foot)	\$1,028.20
Annual Cost (\$ per 1000 gallons)	\$3.16

WUGNAME:	Perryton
STRATEGY:	Develop existing and new water rights
AMOUNT (ac-ft/yr):	2,482
Construction Costs	Cost
Water Wells (5)	\$765,000
Connection to Existing System	\$400,000
Connection to New System	\$300,000
16-in Pipeline to Perryton	\$1,082,400
Pumpstation, building and appurtenances	\$761,900
Ground Storage (1 MG)	\$275,000
Subtotal - Construction Costs	\$3,584,300
Engineering and Contingencies	\$1,075,290
Mitigation and Permitting	\$35,843
ROW Land Acquisition (30-ft)	\$9,090
Water Rights Purchase	\$642,600
Subtotal	\$5,347,123
Interest During Construction	\$115,856
Total Capital Project Costs	\$5,462,979
Annual Costs Debt Service - Total Capital Operation and Maintenance Pipelines Pumpstations/Wells Surface Water Treatment Pumping Costs Total Annual Costs	\$396,879 \$14,824 \$38,173 \$87,059 \$536,935
Annual Cost (\$ per acre-foot)	\$216.33
Annual Cost (\$ per 1000 gallons)	\$0.66

WUGNAME:	Vega
STRATEGY:	Develop additional supply in Deaf Smith Co.
AMOUNT (ac-ft/yr):	245
Construction Costs	Cost
Water Wells (2)	\$146,400
Connection to Transmission System	\$160,000
6-in Pipeline to Vega	\$475,200
Pumpstation, building and appurtenances	\$388,200
Ground Storage (.1 MG)	\$75,000
Subtotal - Construction Costs	\$1,244,800
Engineering and Contingencies	\$373,440
Mitigation and Permitting	\$12,448
ROW Land Acquisition	\$6,000
Water Rights Purchase	\$51,100
Subtotal	\$1,687,788
Interest During Construction	\$36,569
Total Capital Project Costs	\$1,724,357
Annual Costs Debt Service - Total Capital Operation and Maintenance Pipelines Pumpstations/ Wells Surface Water Treatment Pumping Costs Total Annual Costs	\$125,273 \$4,952 \$13,365 \$0 \$8,943 \$152,533
Annual Cost (\$ per acre-foot)	\$622.58
Annual Cost (\$ per 1000 gallons)	\$1.91

WUGNAME:	Amarillo
STRATEGY:	Develop Roberts Co well field for city needs
AMOUNT (ac-ft/yr):	30,000
Construction Costs	Cost
Water Wells (30)	\$4,212,000
Connection to Transmission System	\$10,692,000
54-in Pipeline from Well Field to Amarillo	\$50,529,600
Pumpstation, building and appurtenances (3)	\$42,000,000
Storage Tank (3 x 8 MG)	\$4,200,000
Subtotal - Construction Costs	\$111,633,600
Engineering and Contingencies	\$33,490,080
Mitigation and Permitting	\$1,116,336
ROW Land Acquisition	\$158,400
Water Rights Purchase	\$0
Subtotal	\$146,398,416
Interest During Construction	\$8,431,524
Total Capital Project Costs	\$154,829,940
Annual Costs Debt Service - Total Capital Operation and Maintenance Pipelines Pumpstations/Wells Surface Water Treatment Pumping Costs Total Annual Costs	\$11,248,227 \$612,216 \$1,155,300 \$4,068,790 \$17,084,532
Annual Cost (\$ per acre-foot)	\$569.48
Annual Cost (\$ per 1000 gallons)	\$1.75

WUGNAME:	Amarillo
STRATEGY: AMOUNT (ac-ft/yr):	Develop Roberts Co wellfield for city/customer needs 45,000
Construction Costs	Cost
Water Wells (40) Connection to Transmission System 66-in Pipeline from Well Field to Amarillo Pumpstation, building and appurtenances Storage Tank (3 x 8 MG)	\$5,616,000 \$14,256,000 \$73,529,280 \$52,200,000 \$4,500,000
Subtotal - Construction Costs	\$150,101,280
Engineering and Contingencies Mitigation and Permitting ROW Land Acquisition Water Rights Purchase <i>Subtotal</i> Interest During Construction Total Capital Project Costs	\$45,030,384 \$1,501,013 \$158,400 \$0 \$196,791,077 \$11,333,788 \$208,124,865
Annual Costs Debt Service - Total Capital Operation and Maintenance Pipelines Pumpstations/ Wells Surface Water Treatment Pumping Costs Total Annual Costs Annual Cost (\$ per acre-foot) Annual Cost (\$ per 1000 gallons)	\$15,120,045 \$877,853 \$1,445,400 \$5,572,823 \$23,016,120 \$511.47 \$1.57

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Canyon Develop new groundwater rights 772
Construction Costs	Cost
Water Wells (3) Connection to Existing System Connection to New System 10-in Pipeline to Canyon Pumpstation, building and appurtenances Ground Storage (.5 MG)	\$189,900 \$250,000 \$200,000 \$739,200 \$519,200 \$156,000
Subtotal - Construction Costs	\$2,054,300
Engineering and Contingencies Mitigation and Permitting ROW Land Acquisition Water Rights Purchase	\$616,290
Subtotal	\$2,670,590
Interest During Construction Total Capital Project Costs	\$57,864 \$2,728,454
Annual Costs Debt Service - Total Capital Operation and Maintenance Pipelines Pumpstations/Wells Surface Water Treatment Pumping Costs	\$198,219 \$7,592 \$17,728 \$0 \$17,933
Total Annual Costs	\$241,472
Annual Cost (\$ per acre-foot) Annual Cost (\$ per 1000 gallons)	\$312.79 \$0.96

WUGNAME:	Lake Tanglewood
STRATEGY:	Develop existing and new water rights
AMOUNT (ac-ft/yr):	305
Construction Costs	Cost
Water Wells (3)	\$188,100
Connection to Existing System	\$200,000
Connection to New System	\$160,000
8-in Pipeline to Lake Tanglewood	\$633,600
Pumpstation, building and appurtenances	\$315,000
Ground Storage (.25 MG)	\$100,000
Subtotal - Construction Costs	\$388,100
Engineering and Contingencies	\$116,430
Mitigation and Permitting	\$3,881
ROW Land Acquisition	\$6,000
Water Rights Purchase	\$521,500
Subtotal	\$1,035,911
Interest During Construction	\$22,445
Total Capital Project Costs	\$1,058,356
Annual Costs	
Debt Service - Total Capital	\$76,888
Operation and Maintenance	ψ/0,000
Pipelines	\$6,536
Pumpstations/ Wells	\$12,578
Surface Water Treatment	\$0
Pumping Costs	\$8,267
Total Annual Costs	\$104,269
Annual Cost (\$ per acre-foot)	\$341.87
Annual Cost (\$ per 1000 gallons)	\$1.05

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Shamrock Install 2 new wells, 12 miles transmission 321
Construction Costs	Cost
Water Wells (2)	\$105,600
Connection to Existing Wells	\$160,000
8-in Pipeline from Well to Shamrock	\$1,520,640
Pumpstation, building and appurtenances	\$388,200
Ground Storage (.25 MG)	\$100,000
Subtotal - Construction Costs	\$2,274,440
Engineering and Contingencies	\$682,332
Mitigation and Permitting	\$22,744
ROW Land Acquisition	\$14,400
Water Rights Purchase	\$116,550
Subtotal	\$3,110,466
Interest During Construction	\$67,394
Total Capital Project Costs	\$3,177,861
Annual Costs Debt Service - Total Capital	\$230,868
Operation and Maintenance	¢ 2 30,000
Pipelines	\$16,806
Pumpstations/Wells	\$47,721
Surface Water Treatment	
Pumping Costs	\$6,099
Total Annual Costs	\$301,495
Annual Cost (\$ per acre-foot)	\$939.24
Annual Cost (\$ per 1000 gallons)	\$2.88

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Wheeler Install 2 new wells, 15 miles transmission 275
Construction Costs	Cost
Water Wells (2)	\$105,600
Connection to Transmission System	\$160,000
8-in Pipeline from Well toWheeler	\$1,900,800
Pumpstation, building and appurtenances	\$388,200
Ground Storage (.1 MG)	\$42,000
Subtotal - Construction Costs	\$2,491,000
Engineering and Contingencies	\$747,300
Mitigation and Permitting	\$24,910
ROW Land Acquisition	\$18,000
Water Rights Purchase	\$340,900
Subtotal	\$3,622,110
Interest During Construction	\$78,480
Total Capital Project Costs	\$3,700,590
Annual Costs	¢260.044
Debt Service - Total Capital	\$268,844
Operation and Maintenance Pipelines	\$20,608
Pumpstations/Wells	\$20,608 \$12,345
Surface Water Treatment	\$12,345
Pumping Costs	\$5,129
Total Annual Costs	\$306,925
	φ500,725
Annual Cost (\$ per acre-foot)	\$1,116.09
Annual Cost (\$ per 1000 gallons)	\$3.43

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Dallam - Livestock Develop new water rights 16,796
Construction Costs	Cost
Water Wells (105)	\$7,875,000
Subtotal - Construction Costs	\$7,875,000
Engineering and Contingencies	\$2,362,500
Mitigation and Permitting	\$78,750
Water Rights Purchase	\$4,858,700
Subtotal	\$15,174,950
Interest During Construction	\$328,796
Total Capital Project Costs	\$15,503,746
Annual Costs	
Debt Service - Total Capital	\$1,126,330
Operation and Maintenance	
Pipelines	\$0
Pumpstations	\$196,875
Surface Water Treatment	\$0
Pumping Costs	\$742,795
Total Annual Costs	\$2,066,000
Annual Cost (\$ per acre-foot) Annual Cost (\$ per 1000 gallons)	\$123.01 \$0.38

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Moore - Livestock Develop new water rights 9,786
Construction Costs	Cost
Water Wells (61)	\$4,575,000
Subtotal - Construction Costs	\$4,575,000
Engineering and Contingencies	\$1,372,500
Mitigation and Permitting	\$45,750
ROW Land Acquisition	\$0
Water Rights Purchase	\$1,810,200
Subtotal	\$7,803,450
Interest During Construction	\$169,077
Total Capital Project Costs	\$7,972,527
Annual Costs	
Debt Service - Total Capital	\$579,195
Operation and Maintenance	
Pipelines	
Pumpstations	\$114,375
Surface Water Treatment	\$0
Pumping Costs	\$432,781
Total Annual Costs	\$1,126,351
Annual Cost (\$ per acre-foot) Annual Cost (\$ per 1000 gallons)	\$115.10 \$0.35

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Randall - Livestock Develop new water rights 3,407
Construction Costs	Cost
Water Wells (12)	\$378,000
Subtotal - Construction Costs	\$378,000
Engineering and Contingencies	\$113,400
Mitigation and Permitting	\$3,780
ROW Land Acquisition Water Rights Purchase	\$2,191,000
Subtotal	\$2,686,180
Interest During Construction	\$58,201
Total Capital Project Costs	\$2,744,381
Annual Costs	
Debt Service - Total Capital	\$199,376
Operation and Maintenance	
Pipelines	
Pumpstations	\$9,450
Surface Water Treatment Pumping Costs	\$0 \$66,644
Total Annual Costs	\$275,470
Annual Cost (\$ per acre-foot) Annual Cost (\$ per 1000 gallons)	\$80.85 \$0.25

WUGNAME: STRATEGY:	Manufacturing - Dallam County Purchase additional water rights and install 1 new well
AMOUNT (ac-ft/yr):	232
Construction Costs	Cost
Water Wells (1)	\$82,000
Connection to Existing System	\$100,000
Subtotal - Construction Costs	\$182,000
Engineering/ Contingencies @ 30%	\$54,600
ROW costs	\$0
Water rights purchase	\$50,750
Subtotal	\$287,350
Interest during construction	\$6,226
Total Capital Project Costs	\$293,576
Annual Costs	
Debit Service (30 years)	\$21,328
Operation and Maintenance	\$3,050
Pumping costs	\$5,138
Treatment Costs Water Purchase Costs	\$0 \$0
Total Annual Costs	
i otai Annual Costs	\$29,516
Annual Cost (\$ per acre-feet)	\$127.23
Annual Cost (\$ per 1000 gallons)	\$0.39

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Manufacturing - Moore County 13 new wells in Moore Co. near demands 9,429
Construction Costs	Cost
Water Wells (13)	\$1,157,000
Connection to Existing System	\$1,300,000
Subtotal - Construction Costs	\$2,457,000
Engineering/ Contingencies @ 30%	\$737,100
ROW costs	\$0
Water rights purchase	\$6,074,950
Subtotal	\$9,269,050
Interest during construction	\$200,829
Total Capital Project Costs	\$9,469,879
Annual Costs	
Debit Service (30 years)	\$687,976
Operation and Maintenance	\$41,925
Pumping costs	\$240,958
Treatment Costs	\$0
Water Purchase Costs	\$0
Total Annual Costs	\$970,860
Annual Cost (\$ per acre-feet)	\$102.97
Annual Cost (\$ per 1000 gallons)	\$0.32

WUGNAME:	Manufacturing - Potter County
STRATEGY:	2 new wells in Potter Co. near demands
AMOUNT (ac-ft/yr):	690
Construction Costs	Cost
Water Well	\$92,800
Connection to Manufacturing System	\$200,000
Subtotal - Construction Costs	\$292,800
Engineering/ Contingencies @ 30%	\$87,840
ROW costs	\$0
Water rights purchase	\$306,250
Subtotal	<i>\$686,890</i>
Interest during construction	\$14,883
Total Capital Project Costs	\$701,773
Annual Costs Debit Service (30 years) Operation and Maintenance Pumping costs Treatment Costs Water Purchase Costs Total Annual Costs	\$50,983 \$4,320 \$10,403 \$0 \$0 \$65,706
Annual Cost (\$ per acre-feet)	\$95.23
Annual Cost (\$ per 1000 gallons)	\$0.29

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Manufacturing - Randall County Purchase additional water rights and install 1 new well 173
Construction Costs	Cost
Water Well	\$42,200
Connection to Existing System	\$100,000
Subtotal - Construction Costs	\$142,200
Engineering/ Contingencies @ 30%	\$42,660
ROW costs	\$0
Water rights purchase	\$122,500
Subtotal	\$307,360
Interest during construction	\$0
Total Capital Project Costs	\$307,360
Annual Costs	
Debit Service (30 years)	\$22,329
Operation and Maintenance	\$2,055
Pumping costs	\$2,432
Treatment Costs Water Purchase Costs	\$0 \$0
Total Annual Costs	\$0 \$26,816
Annual Cost (\$ per acre-feet)	\$155.01
Annual Cost (\$ per 1000 gallons)	\$0.48

WUGNAME:	Steam Electric Power - Moore County
STRATEGY:	Purchase additional water rights
AMOUNT (ac-ft/yr):	200
Construction Costs	Cost
Water Well	\$76,400
Connection to Existing System	\$100,000
Subtotal - Construction Costs	\$176,400
Engineering/ Contingencies @ 30%	\$52,920
ROW costs	\$0
Water rights purchase	\$105,000
Subtotal	\$334,320
Interest during construction	\$0
Total Capital Project Costs	\$334,320
Annual Costs Debit Service (30 years) Operation and Maintenance Pumping costs Treatment Costs Water Purchase Costs Total Annual Costs	\$24,288 \$2,910 \$4,515 \$0 \$0 \$31,713
Annual Cost (\$ per acre-feet)	\$158.56
Annual Cost (\$ per 1000 gallons)	\$0.49

WUGNAME:	Steam Electric Power - Potter County
STRATEGY:	Pipeline for treated effluent to power station
AMOUNT (ac-ft/yr):	15,860
Construction Costs	Cost
30-inch Transmission Line	\$5,612,160
Pump Station Improvements	\$700,000
Conflicts	\$821,100
Subtotal - Construction Costs	\$7,133,260
Engineering/ Contingencies @ 30%	\$2,139,978
ROW costs	\$0
Water rights purchase	\$0
Subtotal	\$9,273,238
Interest during construction	\$386,385
Total Capital Project Costs	\$9,659,623
Annual Costs Debit Service (30 years) Operation and Maintenance Pumping costs Treatment Costs <i>Water Purchase Costs</i> * Total Annual Costs	\$701,761 \$73,622 \$132,291 \$0 \$1,033,663 \$1,941,336
Annual Cost (\$ per acre-feet)	\$122.40
Annual Cost (\$ per 1000 gallons)	\$0.38

* purchase costs to be confirmed with Amarillo

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Mining - Potter County 3 new wells in Dockum Aquifer located near demands 410
Construction Costs	Cost
Water Wells (3)	\$180,000
Connection to System	\$300,000
Subtotal - Construction Costs	\$480,000
Engineering/ Contingencies @ 30%	\$144,000
ROW costs	\$0
Water rights purchase	\$210,000
Subtotal	\$834,000
Interest during construction	\$18,070
Total Capital Project Costs	\$852,070
Annual Costs	
	\$61,002
Debit Service (30 years) Operation and Maintenance	\$61,902 \$7,500
Pumping costs	\$7,500
Treatment Costs	\$0
Water Purchase Costs	\$0 \$0
Total Annual Costs	\$76,911
Annual Cost (\$ per acre-feet) Annual Cost (\$ per 1000 gallons)	\$187.59 \$0.58

WUGNAME: STRATEGY: AMOUNT (ac-ft/yr):	Mining - Oldham County New well field in Dockum Aquifer (2 wells) 311
Construction Costs	Cost
Water Wells (2)	\$120,000
Connection to System	\$200,000
Subtotal - Construction Costs	\$320,000
Engineering/ Contingencies @ 30%	\$96,000
ROW costs	\$0
Water rights purchase	\$84,000
Subtotal	\$500,000
Interest during construction	\$10,833
Total Capital Project Costs	\$510,833
Annual Costs	
Debit Service (30 years)	\$37,111
Operation and Maintenance	\$5,000
Pumping costs	\$5,696
Treatment Costs	\$0
Water Purchase Costs	\$0
Total Annual Costs	\$47,807
Annual Cost (\$ per acre-feet)	\$153.72
Annual Cost (\$ per 1000 gallons)	\$0.47

//UGNAME:County-Other in Randall CountyTRATEGY:18 new wells installed near demand sourceMOUNT (ac-ft/yr):5,738				
Construction Costs	Cost			
Water Well Connection to Distribution System	\$1,128,600 \$1,800,000			
Subtotal - Construction Costs	\$2,928,600			
Engineering/ Contingencies @ 30% ROW costs Water rights purchase	\$878,580 \$0 \$3,675,000			
Subtotal	\$7,482,180			
Interest during construction Total Capital Project Costs	\$162,114 \$7,644,294			
Annual Costs Debit Service (30 years) Operation and Maintenance Pumping costs Treatment Costs Water Purchase Costs Total Annual Costs	\$555,350 \$46,215 \$111,931 \$0 \$0 \$713,496			
Annual Cost (\$ per acre-feet) Annual Cost (\$ per 1000 gallons)	\$124.35 \$0.38			

WUGNAME:County-Other in Potter CountySTRATEGY:10 new wells installed near demand sourceAMOUNT (ac-ft/yr):1,528					
Construction Costs	Cost				
Water Well	\$696,000				
Connection to Distribution System	\$1,000,000				
Subtotal - Construction Costs	\$1,696,000				
Engineering/ Contingencies @ 30%	\$508,800				
ROW costs	\$0				
Water rights purchase	\$787,500				
Subtotal	\$2,992,300				
Interest during construction	\$64,833				
Total Capital Project Costs	\$3,057,133				
Annual Costs Debit Service (30 years) Operation and Maintenance Pumping costs Treatment Costs Water Purchase Costs Total Annual Costs	\$222,097 \$27,400 \$32,800 \$0 \$0 \$282,298				
Annual Cost (\$ per acre-feet)	\$184.75				
Annual Cost (\$ per 1000 gallons)	\$0.57				

FACTORS FOR INTEREST DURING CONSTRUCTION

factor (6 months)	0.02167
Factor (12 months)	0.04167
factor (18 months)	0.05759
factor (24 months)	0.07819
factor (36 month construction)	0.1188

EXAMPLE:

Interest during construction for a project with:18 months constructioncapital costs\$1,000,000Interest during const\$57,593

Panhandle Water Planning Project Task 5 Addendum

Water Management Strategies for Reducing Irrigation Demands in Region A (All 21 Counties)

Prepared for

Freese and Nichols, Inc. Fort Worth, Texas

Prepared by

L. Almas¹, F. Bretz¹, S. Amosson², T. Marek¹, L. New² and B. Stewart³

Texas A&M University Agricultural Research and Extension Center Amarillo, Texas

September 18, 2000

¹ Research Associate, Research Associate, and Research Engineer and Superintendent, Texas Agricultural Experiment Station, Amarillo, Texas.

² Professor and Management Economist and Professor and Agricultural Engineer, Texas Agricultural Extension Service, Amarillo, Texas.

³ Professor and Director of Dryland Agriculture Institute, WTAMU, Canyon, Texas.

Water Management Strategies for Reducing Irrigation Demands in Region A

The Agricultural Demands and Projections Subcommittee of the Panhandle Water Planning Group for Region A developed water management strategies for potentially reducing irrigation demands to retain 50 percent of the groundwater currently in the Ogallala Aquifer over the 50 year period of 2000 to 2050. These strategies include the use of the North Plains Potential Evapotranspiration Network (NPPET) to schedule irrigation, changes in crop variety, irrigation equipment efficiency improvements, changes in crop types, implementation of conservation tillage methods, precipitation enhancement and conversion of irrigated land to dryland. Each of these practices is presented in Table 1 with the anticipated annual water savings in acre-inches and the expected percentage of acres by decade that would be shifted to these methods.

The water management strategies need to be focused on Dallam, Moore, Oldham, Potter, Randall and Sherman Counties that are projected to have water availability reductions of greater than 50 percent by 2050. However, water management strategies for reducing irrigation demands in all 21 counties of Region A were analyzed. According to the "Comparison of Current Water Supplies to Demands" in Task 4, by the year 2050 the deficits for irrigation in these counties in acre-feet could be: Dallam, -381,008 acre-feet; Moore, -200,576; Oldham, -25,948; Potter, -13,877; Randall, -47,214; and Sherman, -194,797 acre-feet (PWPG, 2000). It means that in year 2050 total water shortage for irrigation in these six counties will be 863,421 acre-feet. Seven potential water management strategies for reducing irrigation demands in all counties are suggested to conserve groundwater in the Ogallala Aquifer.

over the time perio	u of 2000 to	2030.		n			
Water	Assumed	Assumed	Goal for				
Management	Annual	Baseline	Adoption	Adoption	Adoption	Adoption	Adoption
Strategy	Regional	Use	2010	2020	2030	2040	2050
	Water	Year					
	Savings	2000					
	(ac-in)						
Use of NPPET	2	20%	70%	90%	90%	90%	90%
Change in Crop	2	10%	40%	70%	70%	70%	70%
Variety							
Irrigation Equip	3	55%	75%	95%	95%	95%	95%
Changes							
Change in Crop	5	0%	20%	40%	40%	40%	40%
Туре							
Conservation	2	50%	60%	70%	70%	70%	70%
Tillage Methods							
Precipitation	1	0%	100%	100%	100%	100%	100%
Enhancement							
Irrigated to	12-14	0%	5%	10%	15%	15%	15%
Dryland Farming							

Table 1. Seven water management strategies for reducing irrigation demands in Dallam, Moore, Oldham, Potter, Randall and Sherman Counties to conserve groundwater in the Ogallala Aquifer over the time period of 2000 to 2050.

The irrigated acres that are utilized in the water management strategies for all 21 counties of Region A are obtained from the Texas Agricultural Statistics Service (TASS, 1998). The total 1997 irrigated acres for these counties are 1,363,438 acres, Table 2.

Counties of Re	-								
County	Corn	Cotton	Hay	Pasture	Peanuts	Sorghum	Soybeans	Wheat	Total
									Acres
					acre	S			
Armstrong	1,200	800	60	316	0	2,100	0	5,000	9,476
Carson	15,200	0	200	14,410	0	23,400	3,700	36,100	93,010
Childress	0	1,700	410	350	459	467	0	100	3,486
Collingsworth	750	5,200	670	969	10,200	1,600	0	1,400	20,789
Dallam	157,000	0	8,000	14,588	0	8,000	700	96,300	284,588
Donley	2,500	1,200	1,336	2,705	2,800	1,400	225	377	12,543
Gray	7,100	0	730	711	0	5,100	1,500	19,900	35,041
Hall	1,500	10,700	609	560	2,100	163	0	155	15,787
Hansford	49,000	0	1,500	5,017	0	21,800	9,400	106,400	193,117
Hartley	87,400	0	2,200	9,990	0	8,200	900	30,600	139,290
Hemphill	0	425	449	1,241	0	206	0	2,100	4,421
Hutchinson	14,500	0	25	2,113	0	4,200	915	6,500	28,253
Lipscomb	2,200	0	9,190	2,570	0	1,900	880	7,900	24,640
Moore	87,800	0	0	13,805	0	22,000	1,900	45,900	171,405
Ochiltree	17,000	0	259	0	0	12,300	4,400	23,500	57,459
Oldham	862	0	0	520	0	10,500	0	18,300	30,182
Potter	971	0	0	2,948	0	1,500	0	22,800	28,219
Randall	5,500	100	2,185	6,570	0	14,800	0	17,700	46,855
Roberts	2,100	0	0	832	0	2,000	0	3,400	8,332
Sherman	70,700	300	1,072	6,283	0	20,500	50	53,300	152,205
Wheeler	960	600	100	642	807	906	0	325	4,340
Total	524,243	21,025	28,995	87,140	16,366	163,042	24,570	498,057	1,363,438

Table 2. Irrigated acres by crop for Dallam, Moore, Oldham, Potter, Randall and Sherman Counties of Region A in 1997.

Use of the Potential Evapotranspiration Network for Scheduling Irrigation

It is assumed that by utilizing the North Plains Potential Evapotranspiration Network (NPPET) two acre-inches of groundwater will be saved annually. Additionally, it is assumed that in the baseline year of 2000 that 20 percent of the irrigated acres utilize the potential evapotranspiration (PET) crop water use information. The expectation is that 70 percent of the irrigated acres from 2001 to 2010 and 90 percent of the irrigated acres from 2011 to 2050 will use the PET irrigation recommendations. The estimated water savings from adopting this strategy are presented in Table 3.

County	Irrigated Acres ¹	Annual W	ater Savings	s (acre-feet)	during each	decade
	110105	2010	2020	2030	2040	2050
Armstrong	9,476	790	1,106	1,106	1,106	1,106
Carson	93,010	7,751	10,851	10,851	10,851	10,851
Childress	3,486	291	407	407	407	407
Collingsworth	20,789	1,732	2,425	2,425	2,425	2,425
Dallam	284,588	23,716	33,202	33,202	33,202	33,202
Donley	12,543	1,045	1,463	1,463	1,463	1,463
Gray	35,041	2,920	4,088	4,088	4,088	4,088
Hall	15,787	1,316	1,842	1,842	1,842	1,842
Hansford	193,117	16,093	22,530	22,530	22,530	22,530
Hartley	139,290	11,608	16,251	16,251	16,251	16,251
Hemphill	4,421	368	516	516	516	516
Hutchinson	28,253	2,354	3,296	3,296	3,296	3,296
Lipscomb	24,640	2,053	2,875	2,875	2,875	2,875
Moore	171,405	14,284	19,997	19,997	19,997	19,997
Ochiltree	57,459	4,788	6,704	6,704	6,704	6,704
Oldham	30,182	2,515	3,521	3,521	3,521	3,521
Potter	28,219	2,352	3,292	3,292	3,292	3,292
Randall	46,855	3,905	5,466	5,466	5,466	5,466
Roberts	8,332	694	972	972	972	972
Sherman	152,205	12,684	17,757	17,757	17,757	17,757
Wheeler	4,340	362	506	506	506	506
Total Region A	1,363,438	113,620	159,068	159,068	159,068	159,068

Table 3. Estimated water savings in acre-feet for the next 50 years (2000-2050) for all counties of Region A using the North Plains Potential Evapotranspiration Network (NPPET) for scheduling irrigation.

¹Irrigated acres were calculated and obtained from Task 2.

Change in Crop Variety

It is assumed that by shifting from a long season crop to a short season crop, two acreinches per year of irrigation water will be conserved per acre. The two crops examined in this analysis are corn and sorghum. For both crops, it is assumed in the baseline year of 2000 that 10 percent of the acres will be planted to the short season variety. It is expected that from 2001 to 2010 and from 2011 to 2050, 40 percent and 70 percent, respectively, of the irrigated acres will be planted to the short season varieties. The estimated water savings when converting from long season corn to short season is presented in Table 4. The potential water savings when changing from long season sorghum to short season sorghum is presented in Table 5.

County	Irrigated	Annual W	ater Saving	s (acre-feet)	during each	n decade
	Corn					
	Acres ¹					
		<u>2010</u>	<u>2020</u>	<u>2030</u>	2040	<u>2050</u>
Armstrong	1,200	60	120	120	120	120
Carson	15,200	760	1,520	1,520	1,520	1,520
Childress	0	0	0	0	0	0
Collingsworth	750	38	75	75	75	75
Dallam	157,000	7,850	15,700	15,700	15,700	15,700
Donley	2,500	125	250	250	250	250
Gray	7,100	355	710	710	710	710
Hall	1,500	75	150	150	150	150
Hansford	49,000	2,450	4,900	4,900	4,900	4,900
Hartley	87,400	4,370	8,740	8,740	8,740	8,740
Hemphill	0	0	0	0	0	0
Hutchinson	14,500	725	1,450	1,450	1,450	1,450
Lipscomb	2,200	110	220	220	220	220
Moore	87,800	4,390	8,780	8,780	8,780	8,780
Ochiltree	17,000	850	1,700	1,700	1,700	1,700
Oldham	862	43	86	86	86	86
Potter	971	49	97	97	97	97
Randall	5,500	275	550	550	550	550
Roberts	2,100	105	210	210	210	210
Sherman	70,700	3,535	7,070	7,070	7,070	7,070
Wheeler	960	48	96	96	96	96
Total	524,243	26,212	52,424	52,424	52,424	52,424

 Table 4. Estimated water savings in acre-feet for the next 50 years (2000-2050) for all

 21 counties of Region A by changing from long season corn to short season corn varieties.

 County
 Irrigated

 Annual Water Savings (acre-feet) during each decade

¹Irrigated corn acres were calculated and obtained from Task 2.

County	Irrigated	Annual	Water Saving	s (acre-feet)	during each d	ecade
	Sorghum					
	Acres ¹					
		<u>2010</u>	2020	<u>2030</u>	<u>2040</u>	2050
Armstrong	2,100	105	210	210	210	210
Carson	23,400	1,170	2,340	2,340	2,340	2,340
Childress	467	23	47	47	47	47
Collingswor	1,600	80	160	160	160	160
th						
Dallam	8,000	400	800	800	800	800
Donley	1,400	70	140	140	140	140
Gray	5,100	255	510	510	510	510
Hall	163	8	16	16	16	16
Hansford	21,800	1,090	2,180	2,180	2,180	2,180
Hartley	8,200	410	820	820	820	820
Hemphill	206	10	21	21	21	21
Hutchinson	4,200	210	420	420	420	420
Lipscomb	1,900	95	190	190	190	190
Moore	22,000	1,100	2,200	2,200	2,200	2,200
Ochiltree	12,300	615	1,230	1,230	1,230	1,230
Oldham	10,500	525	1,050	1,050	1,050	1,050
Potter	1,500	75	150	150	150	150
Randall	14,800	740	1,480	1,480	1,480	1,480
Roberts	2,000	100	200	200	200	200
Sherman	20,500	1,025	2,050	2,050	2,050	2,050
Wheeler	906	45	91	91	91	91
Total	163,042	8,152	16,304	16,304	16,304	16,304

Table 5. Estimated water savings in acre-feet for the next 50 years (2000-2050) for all 21 counties of Region A by changing from long season sorghum to short season sorghum varieties.

¹Irrigated sorghum acres were calculated and obtained from Task 2.

Irrigation Equipment Changes

It is assumed that the incorporation of more efficient irrigation equipment/technology in a farming/ranching operation would provide another method of conserving groundwater. The application efficiencies of furrow irrigation, surge flow, low elevation sprinkler application (LESA), low energy precision application (LEPA), and drip are 60 percent, 75 percent, 88 percent, 95 percent, and 97 percent, respectively (New, 1999). The system with the higher efficiency rating is considered more efficient because it leads to less water usage while maintaining the same yields.

It is assumed that 55 percent of irrigated agriculture is already utilizing the more efficient distribution systems in the base year of 2000. It is expected that by 2010 an additional 20 percent of the farming/ranching operations will use methods such as surge flow, LESA and LEPA. In the years 2011 to 2050, it is anticipated that 95 percent of the irrigated crops will be under these irrigation methods. However, it is assumed that 5 percent of furrow irrigated acres will be converted to drip irrigation by 2010. This conversion will increase to 10 percent and 15 percent by 2020 and 2030, respectively.

Furrow irrigated acres for corn, cotton, hay, pasture, peanuts, sorghum, soybeans and wheat all counties of Region A in 1997 are located in Table 6 (Almas, et al., 2000). An analysis of irrigation equipment changes has been done for corn, pasture, sorghum, soybeans and wheat. Cotton, hay and peanuts were not included because of their small number of irrigated acres.

County	Corn	Cotton	Нау	Pasture	Peanuts	Sorghum	Soybeans	Wheat	County Totals
Armstrong	913	609	46	241	0	1,598	0	3,805	7,212
Carson	10,827	0	142	10,264	0	16,667	2,635	25,713	66,249
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	218	1,511	195	281	2,963	465	0	407	6,039
Dallam	46,662	0	2,378	4,336	0	2,378	208	28,622	84,583
Donley	193	97	101	212	212	102	19	29	965
Gray	4,104	0	422	411	0	2,948	867	11,504	20,257
Hall	0	0	0	0	0	0	0	0	0
Hansford	31,446	0	963	3,220	0	13,990	6,032	68,282	123,932
Hartley	1,548	0	50	175	0	150	25	549	2,497
Hemphill	0	71	75	207	0	34	0	350	736
Hutchinson	6,011	0	10	876	0	1,741	379	2,695	11,713
Lipscomb	96	0	393	107	0	85	43	341	1,065
Moore	30,242	0	0	4,755	0	7,578	654	15,810	59,040
Ochiltree	9,029	0	138	0	0	6,533	2,337	12,482	30,519
Oldham	795	0	0	480	0	9,682	0	16,875	27,832
Potter	950	0	0	2,884	0	1,468	0	22,307	27,609
Randall	4,119	75	1,636	4,921	0	11,085	0	13,257	35,093
Roberts	391	0	0	155	0	373	0	633	1,552
Sherman	3,252	13	49	289	0	943	2	2,452	7,000
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	150,798	2,375	6,597	33,812	3,175	77,820	13,203	226,112	513,893

Table 6. Furrow irrigated acres for corn, cotton, hay, pasture, peanuts, sorghum, soybeans and wheat in all counties of Region A in 1997.

Two methodologies for calculating water savings in acre-feet when shifting from furrow irrigated crops to surge flow, LESA, LEPA, and DRIP are used. One approach utilizes the PET irrigation water use estimates by crop and county that were developed in Task 2. The water use estimates are presented in Appendix A. The second approach uses a flat rate of 3 acre-inches per crop per year for all crops in all counties.

Conversion of furrow to surge flow saves a total of 2,593,584 acre-feet of water over fifty years using the PET water use estimates whereas LESA and LEPA conserve 4,061,619 acre-feet and 4,407,145 acre-feet, respectively, Table 7. Drip results in water savings of 1,514,845 acre-feet over next fifty years with the assumption that 5 percent of furrow irrigated acres will be converted till 2010. This conversion will increase to 10 percent and 15 percent in 2020 and 2030, respectively. There is an increase in water savings of 56.60 percent using LESA and 69.92 percent using LEPA over surge flow.

Table 7. Water savings in acre-feet for corn, pasture, sorghum, soybeans and wheat for the next 50 years (2001-2050) for all counties when shifting from furrow irrigation to surge flow, LESA, LEPA, and DRIP using the PET water use estimates, and 3 acre-inches per year.

Irrigation System/	Corn	Pasture	Sorghum	Soybeans	Wheat	Total for
Сгор						5 crops
			acr	e-feet		
PET Water Use Basis						
Furrow to Surge Flow ¹	1,232,028	377,298	320,518	29,031	634,709	2,593,584
Furrow to LESA ¹	1,928,861	591,194	502,179	45,436	993,950	4,061,619
Furrow to LEPA ¹	2,093,173	641,385	544,891	49,240	1,078,457	4,407,145
Furrow to DRIP ²	697,724	226,408	192,329	17,386	380,998	1,514,845
3 ac-in/year Basis	678,591	152,154	350,190	59,414	1,017,504	2,257,853

¹ 20 percent additional furrow irrigated acres to be converted to surge flow, LESA, and LEPA by 2010 and 40 percent by 2020.

 2 5 percent furrow irrigated acres to be converted to drip by 2010, 10 percent by 2020, and 15 percent by 2030.

The total water savings for wheat for 50 years is 634,709 acre-feet using surge flow, 993,950 acre-feet using LESA, 1,078,457 acre-feet using LEPA, and 380,998 acre-feet using DRIP, Table 7. There is an increase of 56.60 percent in water savings when changing from surge flow to LESA and an increase of 69.92 percent when shifting from surge flow to LEPA.

The estimated water savings due to the change in irrigation equipment from furrow irrigation to surge flow, LESA, LEPA and drip for 21 counties of Region A are presented in Tables 8 to 11, respectively. The change in irrigation equipment from furrow to MESA is not included in the water saving analysis in this strategy. The water saving estimates for the four irrigation equipment changes are based on the PET irrigation water requirements developed in Task 2. The county with the largest number of furrow irrigated acres i.e., 122,969 (corn, pasture, sorghum, soybeans and wheat) is Hansford County while Donley County has 555 furrow irrigated acres for corn, pasture, sorghum, and wheat. The estimated water savings by county and by

decade are further subdivided by crop (corn, pasture, sorghum, soybeans and wheat) and are located in Appendix B, Tables 1 through 20.

County	Furrow	Annual	Water Sa	vings for	selected ye	ears	Total
	Irrigated						for
	Acres	• • • • •			• • • •		50 years
		2010	2020	2030	2040	2050	
					e-feet		• • • • •
Armstrong	6,557	276	552	552	552	552	24,849
Carson	66,107	3,953	7,907	7,907	7,907	7,907	355,815
Childress	0	0	0	0	0	0	0
Collingsworth	1,371	90	181	181	181	181	8,132
Dallam	82,205	6,516	13,032	13,032	13,032	13,032	586,438
Donley	555	48	95	95	95	95	4,297
Gray	19,835	708	1,416	1,416	1,416	1,416	63,701
Hall	0	0	0	0	0	0	0
Hansford	122,969	4,567	9,133	9,133	9,133	9,133	410,987
Hartley	2,447	209	417	417	417	417	18,776
Hemphill	590	29	57	57	57	57	2,572
Hutchinson	11,703	1,036	2,073	2,073	2,073	2,073	93,275
Lipscomb	672	29	57	57	57	57	2,582
Moore	59,040	4,120	8,240	8,240	8,240	8,240	370,796
Ochiltree	30,381	1,483	2,967	2,967	2,967	2,967	133,495
Oldham	27,832	1,467	2,934	2,934	2,934	2,934	132,008
Potter	27,609	1,427	2,855	2,855	2,855	2,855	128,460
Randall	33,382	2,266	4,533	4,533	4,533	4,533	203,985
Roberts	1,552	64	129	129	129	129	5,794
Sherman	6,938	529	1,058	1,058	1,058	1,058	47,624
Wheeler	0	0	0	0	0	0	0
Total	501,746	28,818	57,635	57,635	57,635	57,635	2,593,584

Table 8. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated crops to surge flow¹ using PET irrigation water requirements that incorporates application efficiencies.

¹ 20 percent additional furrow irrigated acres to be converted to surge flow by 2010 and 40 percent by 2020.

County	Furrow	An	nual Water S	avings for s	elected year	S	Total
	Irrigated						For
	Acres						50 years
		2010	2020	2030	2040	2050	
				acre-f			
Armstrong	6,557	433	865	865	865	865	38,934
Carson	66,107	6,191	12,383	12,383	12,383	12,383	557,225
Childress	0	0	0	0	0	0	0
Collingsworth	1,371	142	283	283	283	283	12,742
Dallam	82,205	10,200	20,400	20,400	20,400	20,400	918,022
Donley	555	75	150	150	150	150	6,731
Gray	19,835	1,110	2,220	2,220	2,220	2,220	99,905
Hall	0	0	0	0	0	0	0
Hansford	122,969	7,146	14,292	14,292	14,292	14,292	643,155
Hartley	2,447	327	654	654	654	654	29,426
Hemphill	590	45	90	90	90	90	4,034
Hutchinson	11,703	1,624	3,248	3,248	3,248	3,248	146,150
Lipscomb	672	45	90	90	90	90	4,046
Moore	59,040	6,454	12,908	12,908	12,908	12,908	580,849
Ochiltree	30,381	2,324	4,649	4,649	4,649	4,649	209,202
Oldham	27,832	2,297	4,594	4,594	4,594	4,594	206,708
Potter	27,609	2,236	4,473	4,473	4,473	4,473	201,269
Randall	33,382	3,551	7,102	7,102	7,102	7,102	319,601
Roberts	1,552	101	202	202	202	202	9,069
Sherman	6,938	828	1,657	1,657	1,657	1,657	74,551
Wheeler	0	0	0	0	0	0	0
Total	501,746	45,129	90,258	90,258	90,258	90,258	4,061,619

Table 9. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated crops to LESA¹ using PET irrigation water requirements that incorporates application efficiencies.

¹ 20 percent additional furrow irrigated acres to be converted to LESA by 2010 and 40 percent by 2020.

County	Furrow	Ar	nual Water	Savings for	selected yea	rs	Total
	Irrigated						for
	Acres						50 years
		2010	2020	2030	2040	2050	
					e-feet		
Armstrong	6,557	469	938	938	938	938	42,226
Carson	66,107	6,716	13,431	13,431	13,431	13,431	604,402
Childress	0	0	0	0	0	0	0
Collingsworth	1,371	154	307	307	307	307	13,833
Dallam	82,205	11,066	22,131	22,131	22,131	22,131	995,915
Donley	555	81	162	162	162	162	7,307
Gray	19,835	1,203	2,406	2,406	2,406	2,406	108,288
Hall	0	0	0	0	0	0	0
Hansford	122,969	7,760	15,519	15,519	15,519	15,519	698,376
Hartley	2,447	355	709	709	709	709	31,920
Hemphill	590	49	97	97	97	97	4,377
Hutchinson	11,703	1,763	3,526	3,526	3,526	3,526	158,662
Lipscomb	672	49	98	98	98	98	4,390
Moore	59,040	7,003	14,007	14,007	14,007	14,007	630,306
Ochiltree	30,381	2,523	5,045	5,045	5,045	5,045	227,026
Oldham	27,832	2,491	4,983	4,983	4,983	4,983	224,226
Potter	27,609	2,424	4,849	4,849	4,849	4,849	218,200
Randall	33,382	3,855	7,710	7,710	7,710	7,710	346,942
Roberts	1,552	109	219	219	219	219	9,835
Sherman	6,938	899	1,798	1,798	1,798	1,798	80,914
Wheeler	0	0	0	0	0	0	0
Total	501,746	48,968	97,937	97,937	97,937	97,937	4,407,145

Table 10. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated crops to LEPA¹ using PET irrigation water requirements that incorporates application efficiencies.

¹ 20 percent additional furrow irrigated acres to be converted to LEPA by 2010 and 40 percent by 2020.

County	Furrow	Annu	al Water Sa	avings for s	elected yea	rs	Total
	Irrigated						for
	Acres						50 years
		2010	2020	2030	2040	2050	
				acre-	feet		
Armstrong	6,557	122	244	366	366	366	14,656
Carson	66,107	1,753	3,506	5,259	5,259	5,259	210,375
Childress	0	0	0	0	0	0	0
Collingsworth	1,371	40	80	121	121	121	4,823
Dallam	82,205	2,811	5,623	8,434	8,434	8,434	337,376
Donley	555	21	42	63	63	63	2,526
Gray	19,835	310	620	929	929	929	37,172
Hall	0	0	0	0	0	0	0
Hansford	122,969	2,005	4,010	6,016	6,016	6,016	240,621
Hartley	2,447	90	180	270	270	270	10,798
Hemphill	590	13	26	39	39	39	1,545
Hutchinson	11,703	449	897	1,346	1,346	1,346	53,840
Lipscomb	672	13	25	38	38	38	1,524
Moore	59,040	1,785	3,571	5,356	5,356	5,356	214,243
Ochiltree	30,381	647	1,294	1,941	1,941	1,941	77,620
Oldham	27,832	657	1,315	1,972	1,972	1,972	78,892
Potter	27,609	640	1,280	1,920	1,920	1,920	76,803
Randall	33,382	1,009	2,018	3,028	3,028	3,028	121,106
Roberts	1,552	28	56	85	85	85	3,388
Sherman	6,938	229	459	688	688	688	27,537
Wheeler	0	0	0	0	0	0	0
Total	501,746	12,624	25,247	37,871	37,871	37,871	1,514,845

Table 11. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated crops to DRIP¹ using PET irrigation water requirements that incorporates application efficiencies.

¹Five percent furrow irrigated acres to be converted to drip by 2010, 10 percent by 2020, and 15 percent by 2030.

The investment needs to be made in more efficient irrigation technologies to capture estimated water savings. The investment costs for the alternative irrigation systems at four pumping lift levels including the well, pump, engine and distribution system costs are presented in Table 12. Furrow requires the least capital investment, \$62,690 (\$391.81 per acre), at 250 feet lift but is considered the most labor-intensive method of irrigation, as the pipes are often moved manually. A furrow system can easily be converted to surge flow by adding surge valves to the system. Surge flow requires an investment of \$65,890 (\$411.81 per acre) for a 250 feet lift. Additional investment to change from furrow to surge flow is only \$20 per acre but application efficiency is improved from 60.00 percent to 75.00 percent.

The investment costs required for MESA, LESA, and LEPA are \$79,740 (\$637.92 per acre), \$84,350 (\$674.80 per acre), and \$86,012 (\$688.10 per acre), respectively for a 250 feet lift. MESA can be converted to LESA with an additional investment of \$36.88 per acre. Converting LESA to LEPA requires an additional investment of \$13.30 per acre. Drip requires the highest capital investment; however, it is considered the least labor-intensive method of irrigation due to automation.

At a pumping lift of 550 feet, the furrow system requires an investment of \$110,077 (\$687.98 per acre) for the well, pump, engine and distribution system on 160 acres where the subsurface drip requires an investment of \$216,784 (\$1,354.90 per acre) to irrigate the same number of acres. Additional investment cost above furrow for LESA, LEPA, and drip at 350 feet lift is \$303.98, \$317.28, and \$666.92 per acre, respectively. The additional investment cost is also presented in Table 12.

Operating costs have two components, fixed and variable costs. The fixed costs include depreciation, taxes, insurance and interest charges associated with the investment. The variable costs are comprised of fuel charges, lubrication, maintenance, repair charges and labor costs. The annual fixed costs are calculated for corn using an average water requirement of 18.82 acreinches per acre. These costs are shown in Table 13 for four pumping lift levels for each irrigation system.

The fixed costs range from \$1.38 per acre-inch at 250 feet to \$2.33 per acre-inch at 550 feet for furrow. The fixed costs to pump and distribute an acre-inch of water with MESA, LESA, and LEPA at 250 feet lift are \$2.84, \$3.51, and \$3.90, respectively. Per acre-inch fixed costs at 550 feet lift with MESA, LESA, and LEPA increase to \$4.43, \$5.30, and \$5.82, respectively. The fixed costs per acre-inch range from \$5.17 at 250 feet to \$6.71 at 550 feet for drip.

The variable costs per acre-inch of water pumped at four pumping lifts under each alternative irrigation system are calculated. Variable costs include fuel, lubrication, maintenance, repair charges and labor costs. The variable costs are also presented in Table 13. The variable costs range from \$3.49 per acre-inch at 250 feet to \$5.65 per acre-inch at 550 feet for furrow. The variable costs range from \$3.33 at 250 feet to \$5.56 at 550 feet for drip.

Irrigation System/	Well	Pump	Engine	Distribution System	Total Investment	Acres Irrigated	Investment Cost	Additional Investment
Lift				5		U		Cost above Furrow
			Dolla	ars		acres	\$/a	cre
Furrow								
250'	18,700	14,040	3,500	26,450	62,690	160	391.81	
350'	23,625	19,610	5,000	26,450	74,685	160	466.78	
450'	28,000	23,520	5,500	26,450	83,470	160	521.69	
550'	34,312	29,315	20,000		110,077	160	687.98	
Surge Flow								
250'	18,700	14,040	3,500	29,650	65,890	160	411.81	20.00
350'	23,625	19,610	5,000	29,650	77,885	160	486.78	20.00
450'	28,000	23,520	5,500	29,650	86,670	160	541.69	20.00
550'	34,312	29,315	20,000	29,650	113,277	160	707.98	20.00
MESA								
250'	18,700	14,040	3,500	43,500	79,740	125	637.92	246.11
350'	23,625	19,610	5,000	43,500	91,735	125	733.88	267.10
450'	28,000	23,520	5,500	43,500	100,520	125	804.16	282.47
550'	34,312	29,315	20,000	43,500	127,127	125	1,017.02	329.04
LESA								
250'	18,700	14,040	3,500	48,110	84,350	125	674.80	282.99
350'	23,625	19,610	5,000	48,110	96,345	125	770.76	303.98
450'	28,000	23,520	5,500	48,110	105,130	125	841.04	319.35
550'	34,312	29,315	20,000	48,110	131,737	125	1,053.90	365.92
LEPA								
250'	18,700	14,040	3,500	49,772	86,012	125	688.10	296.29
350'	23,625	19,610	5,000	49,772	98,007	125	784.06	317.28
450'	28,000	23,520	5,500	49,772	106,792	125	854.34	332.65
550'	34,312	29,315	20,000	49,772	133,399	125	1,067.19	379.21
DRIP								
250'	18,700	14,040	3,500	133,157	169,397	160	1,058.73	666.92
350'	23,625	19,610	5,000	133,157	181,392	160	1,133.70	666.92
450'	28,000	23,520	5,500	133,157	190,177	160	1,188.61	666.92
550'	34,312	29,315	20,000	133,157	216,784	160	1,354.90	666.92

Table 12. Investment costs for alternative irrigation systems at four pumping lift levels, Region A.

System/Lift	250'	350'	450'	550'
		Dollars/acre	-inch	
FF				
Fixed Cost	1.38	1.71	1.92	2.33
Variable Cost	3.49	4.20	4.93	5.65
Total Cost	4.87	5.91	6.85	7.98
SF				
Fixed Cost	1.81	2.22	2.49	3.00
Variable Cost	3.69	4.41	5.16	5.88
Total Cost	5.50	6.63	7.65	8.88
MESA				
Fixed Cost	2.84	3.39	3.74	4.43
Variable Cost	3.31	4.03	4.88	5.55
Total Cost	6.15	7.42	8.62	9.98
LESA				
Fixed Cost	3.51	4.13	4.53	5.30
Variable Cost	3.32	4.06	4.83	5.59
Total Cost	6.83	8.19	9.36	10.89
LEPA				
Fixed Cost	3.90	4.56	4.99	5.82
Variable Cost	3.38	4.12	4.90	5.67
Total Cost	7.28	8.68	9.89	11.49
DRIP				
Fixed Cost	5.17	5.70	6.05	6.71
Variable Cost	3.33	4.06	4.81	5.56
Total Cost	8.50	9.76	10.86	12.27

Table 13. Total pumping costs using natural gas as fuel to pump water from the Ogallala aquifer at four levels of pumping lifts for six irrigation systems, Region A

Change in Crop Type

One method of reducing groundwater use is changing the crop type that is planted. The assumption is that corn acres will be converted to sorghum, cotton or soybean acres, soybean acres will be diverted to wheat acres, sorghum acres will be shifted to wheat acres at the rate of 20 percent by 2010 and 40 percent by 2020. Irrigated acres will be changed to dryland acres at the rate of 5 percent by 2010, 10 percent by 2020, and 15 percent by 2030-2050.

Two methodologies for calculating water savings in acre-feet are examined for six cropping alternatives. One approach utilizes the difference in PET irrigation water use estimates by crop and county that were developed in Task 2 that incorporates the application efficiency rating. The water use estimates are presented in Appendix A. The second approach uses a flat rate of water savings of 5 acre-inches per year irrespective of crop type.

The estimated water savings by county and decade when changing from a high water use crop to an intermediate or low water use crop are located in Tables 14 through 18. When shifting

322,833 irrigated corn acres to sorghum, cotton or soybeans, there is water saving of 4,556,012, 5,285,830, and 5,769,420 acre-feet, respectively, for the time period of 2000 to 2050. There is water saving of 403,660 acre-feet when converting 77,300 acres of sorghum to wheat. There is an additional water saving of 3,830 acre-feet upon changing 2,650 soybean acres to wheat acres.

County	Irrigated	An	nual water sa	avings for se	lected years		Total
	Corn						For
	Acres	2010	2020	2020	20.40	0050	50 years
		2010	2020	2030	2040	2050	
			• • •	acre-fe			
Armstrong	1,200	195	390	390	390	390	17,550
Carson	15,200	2,348	4,697	4,697	4,697	4,697	211,356
Childress	0	0	0	0	0	0	0
Collingsworth		138	275	275	275	275	12,375
Dallam	157,000	23,864	47,728	47,728	47,728	47,728	2,147,760
Donley	2,500	422	844	844	844	844	37,988
Gray	7,100	1,065	2,130	2,130	2,130	2,130	95,850
Hall	1,500	218	437	437	437	437	19,643
Hansford	49,000	6,378	12,756	12,756	12,756	12,756	574,035
Hartley	87,400	13,867	27,735	27,735	27,735	27,735	1,248,072
Hemphill	0	0	0	0	0	0	0
Hutchinson	14,500	2,811	5,621	5,621	5,621	5,621	252,953
Lipscomb	2,200	358	715	715	715	715	32,175
Moore	87,800	13,814	27,628	27,628	27,628	27,628	1,243,248
Ochiltree	17,000	2,839	5,678	5,678	5,678	5,678	255,510
Oldham	862	153	305	305	305	305	13,732
Potter	971	169	339	339	339	339	15,235
Randall	5,500	969	1,938	1,938	1,938	1,938	87,203
Roberts	2,100	293	587	587	587	587	26,397
Sherman	70,700	11,654	23,307	23,307	23,307	23,307	1,048,835
Wheeler	960	171	342	342	342	342	15,379
Total	524,243	81,725	163,451	163,451	163,451	163,451	7,355,293

Table 14. Estimated water savings in acre-feet by county by decade when converting from irrigated corn to irrigated sorghum using the PET irrigation water requirement that incorporates application efficiencies.

County	Irrigated	Ann	ual water s	savings for s	selected yea	ars	Total
	Corn						For
	Acres						50 years
		2010	2020	2030	2040	2050	
					e-feet		
Armstrong	1,200	220	441	441	441	441	19,836
Carson	15,200	2,792	5,583	5,583	5,583	5,583	251,256
Childress	0	0	0	0	0	0	0
Collingsworth	750	141	282	282	282	282	12,679
Dallam	157,000	28,783	57,567	57,567	57,567	57,567	2,590,500
Donley	2,500	469	938	938	938	938	42,225
Gray	7,100	1,266	2,532	2,532	2,532	2,532	113,955
Hall	1,500	256	511	511	511	511	22,995
Hansford	49,000	7,807	15,615	15,615	15,615	15,615	702,660
Hartley	87,400	15,878	31,755	31,755	31,755	31,755	1,428,990
Hemphill	0	0	0	0	0	0	0
Hutchinson	14,500	3,207	6,414	6,414	6,414	6,414	288,623
Lipscomb	2,200	403	807	807	807	807	36,300
Moore	87,800	15,248	30,496	30,496	30,496	30,496	1,372,314
Ochiltree	17,000	3,222	6,443	6,443	6,443	6,443	289,935
Oldham	862	170	339	339	339	339	15,257
Potter	971	188	376	376	376	376	16,910
Randall	5,500	1,074	2,149	2,149	2,149	2,149	96,690
Roberts	2,100	354	708	708	708	708	31,878
Sherman	70,700	13,268	26,536	26,536	26,536	26,536	1,194,123
Wheeler	960	200	401	401	401	401	18,029
Total	524,243	94,946	189,892	189,892	189,892	189,892	8,545,154

Table 15. Estimated water savings in acre-feet by county by decade when converting from irrigated corn to irrigated cotton using the PET irrigation water requirement that incorporates application efficiencies.

County	Irrigated	Annu	al water sa	wings for s	elected ye	ars	Total for
	Corn						50 years
	Acres						
		2010	2020	2030	2040	2050	
				acre-	feet		
Armstrong	1,200	247	494	494	494	494	22,230
Carson	15,200	3,063	6,126	6,126	6,126	6,126	275,652
Childress	0	0	0	0	0	0	0
Collingsworth	750	154	309	309	309	309	13,894
Dallam	157,000	31,008	62,015	62,015	62,015	62,015	2,790,675
Donley	2,500	518	1,037	1,037	1,037	1,037	46,650
Gray	7,100	1,381	2,762	2,762	2,762	2,762	124,286
Hall	1,500	272	544	544	544	544	24,458
Hansford	49,000	8,003	16,007	16,007	16,007	16,007	720,300
Hartley	87,400	17,320	34,640	34,640	34,640	34,640	1,558,779
Hemphill	0	0	0	0	0	0	0
Hutchinson	14,500	3,284	6,569	6,569	6,569	6,569	295,583
Lipscomb	2,200	443	887	887	887	887	39,897
Moore	87,800	16,565	33,130	33,130	33,130	33,130	1,490,844
Ochiltree	17,000	3,417	6,834	6,834	6,834	6,834	307,530
Oldham	862	193	385	385	385	385	17,326
Potter	971	216	431	431	431	431	19,401
Randall	5,500	1,230	2,460	2,460	2,460	2,460	110,715
Roberts	2,100	376	752	752	752	752	33,831
Sherman	70,700	14,894	29,788	29,788	29,788	29,788	1,340,472
Wheeler	960	208	415	415	415	415	18,691
Total	524,243	102,791	205,582	205,582	205,582	205,582	9,251,212

Table 16. Estimated water savings in acre-feet by county by decade when converting from irrigated corn to irrigated soybeans using the PET irrigation water requirement that incorporates application efficiencies.

County	Irrigated	An	nual water s	avings for se	elected years	5	Total
	Sorghum						For 50 years
	Acres	2010	2020	2020	2040	2050	50 years
		2010	2020	2030	2040	2050	
				acre-f			
Armstrong	2,100	167	334	334	334	334	15,026
Carson	23,400	1,513	3,026	3,026	3,026	3,026	136,188
Childress	467	43	86	86	86	86	3,867
Collingsworth	1,600	134	267	267	267	267	12,024
Dallam	8,000	455	909	909	909	909	40,920
Donley	1,400	128	256	256	256	256	11,529
Gray	5,100	409	818	818	818	818	36,797
Hall	163	6	13	13	13	13	577
Hansford	21,800	0	0	0	0	0	0
Hartley	8,200	421	842	842	842	842	37,884
Hemphill	206	19	38	38	38	38	1,727
Hutchinson	4,200	537	1,074	1,074	1,074	1,074	48,321
Lipscomb	1,900	166	331	331	331	331	14,906
Moore	22,000	1,082	2,163	2,163	2,163	2,163	97,350
Ochiltree	12,300	779	1,558	1,558	1,558	1,558	70,110
Oldham	10,500	611	1,222	1,222	1,222	1,222	54,968
Potter	1,500	99	199	199	199	199	8,933
Randall	14,800	1,019	2,037	2,037	2,037	2,037	91,686
Roberts	2,000	94	188	188	188	188	8,460
Sherman	20,500	1,220	2,440	2,440	2,440	2,440	109,778
Wheeler	906	106	212	212	212	212	9,527
Total	163,042	9,006	18,013	18,013	18,013	18,013	810,575

Table 17. Estimated water savings in acre-feet by county by decade when converting from irrigated sorghum to irrigated wheat using the PET irrigation water requirement that incorporates application efficiencies.

County	Irrigated	An	nual water s	avings for se	elected years	5	Total
	Soybeans						for 50
	Acres	2010	2020	2020	20.40	2050	years
		2010	2020	2030	2040	2050	
• •	0	0	0	acre-fe		0	0
Armstrong	0	0	0	0	0	0	0
Carson	3,700	65	131	131	131	131	5,883
Childress	0	0	0	0	0	0	0
Collingsworth	0	0	0	0	0	0	0
Dallam	700	8	16	16	16	16	714
Donley	225	12	24	24	24	24	1,073
Gray	1,500	54	107	107	107	107	4,815
Hall	0	0	0	0	0	0	0
Hansford	9,400	0	0	0	0	0	0
Hartley	900	11	21	21	21	21	959
Hemphill	0	0	0	0	0	0	0
Hutchinson	915	87	174	174	174	174	7,837
Lipscomb	880	42	85	85	85	85	3,815
Moore	1,900	34	68	68	68	68	3,050
Ochiltree	4,400	129	258	258	258	258	11,616
Oldham	0	0	0	0	0	0	0
Potter	0	0	0	0	0	0	0
Randall	0	0	0	0	0	0	0
Roberts	0	0	0	0	0	0	0
Sherman	50	1	1	1	1	1	62
Wheeler	0	0	0	0	0	0	0
Total	24,570	442	885	885	885	885	39,823

Table 18. Estimated water savings in acre-feet by county by decade when converting from irrigated soybeans to irrigated wheat using the PET irrigation water requirement that incorporates application efficiencies.

The anticipated water savings by decade (2000-2050) and by county when shifting irrigated acres to dryland acres, at the assumed rate of 5 percent by 2010, 10 percent by 2020, and 15 percent by 2030-2050, for the six counties are presented in Table 19. Dallam County has the largest number of irrigated acres, 276,588, and Potter County has the smallest number of irrigated acres, 28,219. Subsequently, the largest estimated water savings will occur in Dallam County at 2,190,914 acre-feet for the 50 years and the smallest water savings will result in Potter County at 145,863 acre-feet.

County	Irrigated	Anr	nual water s	savings for	selected yea	ars	Total
	Acres						for
							50 years
		2010	2020	2030	2040	2050	
				acı	re-feet		
Armstrong	8,616	302	605	907	907	907	36,275
Carson	92,810	4,623	9,246	13,869	13,869	13,869	554,759
Childress	917	56	112	168	168	168	6,737
Collingsworth	4,719	195	390	585	585	585	23,397
Dallam	276,588	18,258	36,515	54,773	54,773	54,773	2,190,914
Donley	7,207	514	1,027	1,541	1,541	1,541	61,624
Gray	34,311	1,021	2,042	3,062	3,062	3,062	122,497
Hall	2,378	130	260	391	391	391	15,630
Hansford	191,617	5,928	11,856	17,784	17,784	17,784	711,366
Hartley	137,090	9,786	19,572	29,358	29,358	29,358	1,174,308
Hemphill	3,547	143	286	430	430	430	17,183
Hutchinson	28,228	2,084	4,168	6,253	6,253	6,253	250,107
Lipscomb	15,450	556	1,112	1,668	1,668	1,668	66,712
Moore	171,405	9,969	19,939	29,908	29,908	29,908	1,196,320
Ochiltree	57,200	2,328	4,657	6,985	6,985	6,985	279,418
Oldham	30,182	1,324	2,649	3,973	3,973	3,973	158,939
Potter	28,219	1,216	2,431	3,647	3,647	3,647	145,863
Randall	44,570	2,523	5,046	7,569	7,569	7,569	302,761
Roberts	8,332	288	575	863	863	863	34,530
Sherman	150,833	9,579	19,159	28,738	28,738	28,738	1,149,519
Wheeler	2,833	203	406	609	609	609	24,377
Totals	1,297,052	71,027	142,054	213,081	213,081	213,081	8,523,236

Table 19. Estimated water savings in acre-feet by county by decade when converting from irrigated crops to dryland using the PET irrigation water requirement that incorporates application efficiencies.

Water savings from the change in crop type by crop for 50 years are summarized in Table 20. Estimated water savings due to conversion of irrigated crop acres to dryland farming in six counties of Region A are also given in Table 20. It is anticipated that conversion of irrigated land into dryland farming in six counties will result in estimated water savings of 5,144,315 acre-feet over next 50 years.

Table 20. Water savings in acre-feet when changing crop types for the next 50 years (2001-2050) for all 21 counties in Region A using PET water use estimates calculated in Task 2 that incorporates the application efficiency rating for each system, and 5 acre-inches per year.

that meerperates the	<u></u>					
Water Savings	Corn	Corn	Corn	Sorghum	Soybeans	Irrigated
Approach/Crop	Converted	Converted	Converted	Converted	Converted	Converted to
change Scenario	to	to Cotton	to	to	То	Dryland Crop
	Sorghum		Soybeans	Wheat	Wheat	acres
			cumulati	ive acre-feet	[
Using PET Water	7,355,293	8,545,154	9,251,212	810,575	39,823	8,523,236
Using 5 ac-in/yr.	3,931,823	3,931,823	3,931,823	1,222,815	184,275	3,242,630

Implementing Conservation Tillage Methods

It is assumed that two acre-inches of groundwater on an annual basis will be saved by implementing conservation tillage methods. In the initial year of 2000, it is assumed that 50 percent of the acres will already be utilizing these conservation practices. It is also anticipated that 60 percent of the acres in the years 2001 to 2010 and 70 percent of the acres in the years 2011 to 2050 will be under conservation tillage. The expected total water savings for 2001 to 2050 are located in Table 21.

2050) in all counties of Region A by implementing conservation tillage.									
County	Irrigated Acres ¹	I	Annual Wate	er Savings (a	acre-feet)				
		<u>2010</u>	<u>2020</u>	<u>2030</u>	2040	<u>2050</u>			
Armstrong	9,476	158	316	316	316	316			
Carson	93,010	1,550	3,100	3,100	3,100	3,100			
Childress	3,486	58	116	116	116	116			
Collingsworth	20,789	346	693	693	693	693			
Dallam	284,588	4,743	9,486	9,486	9,486	9,486			
Donley	12,543	209	418	418	418	418			
Gray	35,041	584	1,168	1,168	1,168	1,168			
Hall	15,787	263	526	526	526	526			
Hansford	193,117	3,219	6,437	6,437	6,437	6,437			
Hartley	139,290	2,322	4,643	4,643	4,643	4,643			
Hemphill	4,421	74	147	147	147	147			
Hutchinson	28,253	471	942	942	942	942			
Lipscomb	24,640	411	821	821	821	821			
Moore	171,405	2,857	5,714	5,714	5,714	5,714			
Ochiltree	57,459	958	1,915	1,915	1,915	1,915			
Oldham	30,182	503	1,006	1,006	1,006	1,006			
Potter	28,219	470	941	941	941	941			
Randall	46,855	781	1,562	1,562	1,562	1,562			
Roberts	8,332	139	278	278	278	278			
Sherman	152,205	2,537	5,074	5,074	5,074	5,074			
Wheeler	4,340	72	145	145	145	145			
Total	1,363,438	22,724	45,448	45,448	45,448	45,448			
1									

Table 21. Estimated water savings in acre-feet for irrigated acres for the next 50 years (2001-2050) in all counties of Region A by implementing conservation tillage.

¹Irrigated acres were calculated and obtained from Task 2.

Precipitation Enhancement

The remaining water management strategy is precipitation enhancement. It is assumed that there will be no acres utilizing precipitation enhancement in the baseline year of 2000. However, it is expected that 100 percent of the acres will be using this technology for the years 2001 to 2050. The estimated water saving is one acre-inch annually. The estimated water savings are presented in Table 22.

of Region A by using precipitation enhancement.										
County	Irrigated Acres ¹		Annual Wa	ater Savings (acre-feet)					
		<u>2010</u>	<u>2020</u>	<u>2030</u>	<u>2040</u>	<u>2050</u>				
Armstrong	9,476	790	790	790	790	790				
Carson	93,010	7,751	7,751	7,751	7,751	7,751				
Childress	3,486	291	291	291	291	291				
Collingsworth	20,789	1,732	1,732	1,732	1,732	1,732				
Dallam	284,588	23,716	23,716	23,716	23,716	23,716				
Donley	12,543	1,045	1,045	1,045	1,045	1,045				
Gray	35,041	2,920	2,920	2,920	2,920	2,920				
Hall	15,787	1,316	1,316	1,316	1,316	1,316				
Hansford	193,117	16,093	16,093	16,093	16,093	16,093				
Hartley	139,290	11,608	11,608	11,608	11,608	11,608				
Hemphill	4,421	368	368	368	368	368				
Hutchinson	28,253	2,354	2,354	2,354	2,354	2,354				
Lipscomb	24,640	2,053	2,053	2,053	2,053	2,053				
Moore	171,405	14,284	14,284	14,284	14,284	14,284				
Ochiltree	57,459	4,788	4,788	4,788	4,788	4,788				
Oldham	30,182	2,515	2,515	2,515	2,515	2,515				
Potter	28,219	2,352	2,352	2,352	2,352	2,352				
Randall	46,855	3,905	3,905	3,905	3,905	3,905				
Roberts	8,332	694	694	694	694	694				
Sherman	152,205	12,684	12,684	12,684	12,684	12,684				
Wheeler	4,340	362	362	362	362	362				
	1,363,438	113,620	113,620	113,620	113,620	113,620				

Table 22. Estimated water savings in acre-feet for the next 50 years (2000-2050) for all counties of Region A by using precipitation enhancement.

¹Irrigated acres were calculated and obtained from Task 2.

Summary of Costs and Estimated Water Savings of six Water Management Strategies

This section includes a brief description of the methodology to estimate the cost to implement each proposed water management strategy. The estimated costs are represented in terms of 1999-dollar values. The investment cost for PET, change in irrigation equipment, and cost for conversion of irrigated land to dryland is amortized over 25 years at 6 percent interest rate to assess annualized cost for these strategies. The estimated cost of water saved is equal to annual cost divided by estimated water saved.

North Plains Potential Evapotranspiration (NPPET) Network is one of the most successful water management programs in Texas. Producers in Region A use it to make irrigation decisions on an estimated 20 percent of the irrigated land. Currently, there are ten stations located throughout the Region. The network is assumed to be expanded to serve 70 percent and 90 percent of the irrigated acres by 2010 and 2020, respectively. To meet this objective six

additional stations will be added at an estimated cost of \$76,000 or \$0.06 per acre. The annual cost for maintaining all stations has been estimated at \$171,500 or \$0.13 per acre. This results in an amortized cost to implement this strategy of \$0.1347 per acre per year resulting in an estimated cost of \$0.81 per acre-foot/acre/year of water savings. These results are presented in Table 23.

Strategy	Cost of	Annual Cost	Water Savings	Cost/ac-ft
	Implementation			
	of Strategy			
	\$/ac	\$/ac	ac-ft/ac/year	\$/ac-ft/ac/yr
PET				
Capital cost \$0.06/ac	0.06	0.0047		
Maintenance cost		0.1300		
\$0.13/ac/yr				
Total		0.1347	0.17	0.81
Crop Variety				
Long Season Corn to	17.97	17.97	0.17	107.82
Short Season Corn				
Long Season Sorghum	2.76	2.76	0.17	16.56
to Short Season Sorghum				
Equipment Change				
Furrow to Surge	20.00	1.56	0.34	4.60
Furrow to LESA	303.98	23.78	0.54	44.04
Furrow to LEPA	317.28	24.82	0.59	42.07
Furrow to DRIP	666.92	52.17	0.66	79.05
Сгор Туре				
Corn to Sorghum	102.26	102.26	0.75	136.35
Corn to Cotton	46.36	46.36	0.92	50.57
Corn to Soybeans	105.50	105.50	0.96	110.09
Sorghum to Wheat	20.53	20.53	0.27	76.99
Soybeans to Wheat	17.29	17.29	0.06	296.40
Irrigated to Dry-land	584.00	45.68	0.98	46.61
Conservation Tillage		6.25	0.17	37.43
Precipitation Enhancement		0.09	0.08	1.08

Table 23. Cost estimates for implementation of proposed strategies and corresponding estimated cost of water savings from each water management strategy.

Two scenarios in the change in crop variety strategy include moving from long season corn to short season corn and from long season sorghum to short season sorghum. The estimated water saving from these strategies was assumed to be two acre-inches per acre. It has been assumed that there will be 15 percent loss of yield with the change in crop variety and there will be 15 percent savings on fertilizer cost along with yield and water related savings in variable cost. The net loss of income from long season corn to short season corn has been estimated at \$17.97 per acre. Hence, the cost of water saved is \$107.82 per acre-foot. Shifting long season sorghum to short season sorghum resulted in a net loss in income of \$2.76 per acre and an estimated cost of water saving of \$16.56 per acre-foot.

The additional investment in dollars for converting furrow irrigation to surge flow, LESA, LEPA, and drip is \$20.00, \$303.98, \$317.28, and \$666.92 per acre, respectively. The corresponding annualized cost per acre for each strategy is \$1.56, \$23.78, \$24.82, and \$52.17, respectively. The estimated water saving in acre-foot/acre/year from furrow to surge flow is 0.34, from furrow to LESA is 0.54, from furrow to LEPA is 0.59, and from furrow to drip is 0.66. The estimated cost of water saving for each alternative is \$4.60, \$44.04, \$42.07, and \$79.05 per acrefoot/acre/year, respectively. The results indicate that surge flow has the lowest investment cost and the lowest water saving. However, it is more labor intensive than LESA, LEPA and DRIP. That is the reason for low adoption rate of surge flow. Drip irrigation has the highest investment cost and the highest water savings but it is the most expensive method in terms of cost of water saved using sprinkler irrigation is approximately half of the cost of water saved from drip. Sprinkler irrigation has benefits of savings from field operations, labor, and chemigation in addition to water savings. These are some of the reasons for the accelerated adoption rate of center pivot irrigation in the region.

Six scenarios are evaluated for change in crop type. The conversions include shifting from corn to sorghum, corn to cotton, corn to soybeans, sorghum to wheat, soybeans to wheat, and irrigated crops to dryland crops. The loss in income is calculated for each crop type conversion. The gain in variable cost is also calculated for each change. The net loss of income is calculated by subtracting gain in variable cost from loss of income. The net loss in income is the cost of water saved except conversion from irrigated to dryland scenario.

It is assumed that value of irrigated land with good and fair water is \$1,050 and \$600 per acre, respectively (Texas Chapter of American Society of Farm Managers and Rural Appraisers, 2000). Composite of irrigated acres in six counties indicates 52 percent of high water use and 48 percent medium water use. The value of dry cropland is \$250 per acre. The net loss in value of land for high and medium water use is \$800 and \$350 per acre, respectively. Using the composite, net loss in value of land is estimated at \$584 per acre. The net loss in land value is the cost of water saving from converting irrigated land to dryland farming. This amount is amortized for 25 years at 6 percent interest to assess annualized cost. The estimated cost, water saved and cost of water saved from each scenario is presented in Table 23.

The net loss of income from corn to sorghum, corn to cotton, corn to soybeans, sorghum to wheat, soybeans to wheat, and irrigated to dryland farming has been estimated at \$102.26, \$46.36, \$105.50, \$20.53, \$17.29, and \$45.68 per acre/year, respectively. The estimated water savings for these crop type changes are 0.75, 0.92, 0.96, 0.27, 0.06, and 0.98 acre-foot/acre/year, respectively. Hence, the cost of water saved is \$136.35, \$50.57, \$110.09, \$76.99, \$296.40, and \$46.61 per acre-foot/acre/year. These results indicate that conversion of irrigated land to dryland farming is the most economical option in terms of cost of water savings. The second and third

economical crop type changes are moving from corn to cotton and sorghum to wheat, respectively. However, both of these alternatives face limited feasibility since cotton may not be able to be successfully grown on corn ground and sorghum and wheat do not compete for the same water with respect to pumping season. Converting soybean acres to wheat results in a negligible quantity of water saved per acre. Hence, it is the most expensive alternative to save water.

Implementing conservation tillage methods such as no till and minimum tillage is assumed to save two acre-inches of groundwater on an annual basis. It is assumed that the conservation tillage costs 25 percent above the cost of conventional tillage. It is important to note that the cost of conservation tillage relative to conventional tillage is highly variable depending on recurrent weed pressure, conservation practices utilized, and fuel prices. The cost of conservation tillage is assumed to be \$6.25 per acre/year. This results in a cost of water saved of \$37.43 per acrefoot/acre/year.

Precipitation enhancement efforts are being implemented in seven areas of Texas. There are two water districts in Region A in early phases of development. The budget analysis of existing programs indicates an average cost around nine cents per acre (PRPC, 2000). The same has been assumed in this report. The estimated water saving is one acre-inch annually. Hence, the cost of water saved from this strategy is \$1.08 per acre-foot/acre/year.

Estimated Economic Value of Water to Irrigated Crop Producers, Region A

The accurate assessment of the value of water or an irrigated producer's ability to pay for the water is very difficult without knowing the producer's specific situation. An individual producer's ability to pay for water depends on the crop grown, well depth, fuel cost, age and type of equipment used, tillage systems employed, market price, soil productivity among other factors. Therefore, any assessment made should be viewed as approximate and not definitive.

Two breakeven water prices are calculated by crop in this analysis, each with a specific significance. The first breakeven price is where the price of water makes gross receipts equal variable costs (out-of-pocket expenditures after adjusting for the best dryland alternative). At this price a producer is indifferent whether he irrigates or not in a given crop season. If the price of water is higher than the breakeven, the producer is better off to shut the pumps off and go dryland. Conversely, if the price is lower then the producer is better off to pump.

The second breakeven price calculated refers to the price a producer could pay for water and cover total cost. Total cost includes all variable cost (out-of-pocket expenses) and the fixed cost associated with depreciation and repairs of farming and irrigation equipment and land costs. Paying above this breakeven over the long term jeopardizes the producer's ability to remain a viable irrigated operation.

The costs, yields and associated water requirements for the projected 2000 crop budgets published by the Texas Agricultural Extension Service for the area were used in this analysis. Budgets were adjusted to reflect five-year price averages and the newly developed irrigation costs (Task 4). All crops analyzed were assumed to be under LESA systems utilizing natural gas as power source at the rate of \$2.71 per mcf with a lift of 350 feet. The crop characteristics, costs and return assumptions are given in Table 24.

Crop	Ac-in	Yield	Unit	Five-year	Gross	Variable	Return	Total Cost
Стор	applied	1 ICIU	Oint	Price	Receipts	Cost	over VC	Total Cost
	uppneu				d Crops	0050		
Description	12	2.25		U	1	445 57	205 (0	(55.50
Peanuts	13	2.25	ton	325.00	731.25	445.57	285.68	655.58
Cotton ¹	12	650	lbs	0.70	496.60	348.55	148.05	527.24
Corn	20	200	bu	2.78	556.00	339.66	216.34	528.12
Wheat ²	15	65 bu		3.51	276.15	167.35	108.80	297.93
Hay-alfalfa	24	5.5	5.5 ton		584.32	285.36	298.96	518.21
Soybeans	16	50 bu		5.66	283.00	179.66	103.34	321.73
Sorghum	14	70	cwt	4.36	305.20	188.35	116.85	338.01
-				Dryland A	lternatives			
Cotton ¹		275	lbs	0.70	210.10	198.06	12.04	291.21
Sorghum		22	bu	4.36	95.92	60.47	35.45	96.99
Wheat ²		18	bu	3.51	78.93	37.54	41.39	72.07

Table 24. Crop characteristics, cost, and return assumptions for calculating breakeven water prices.

¹Gross receipts for cotton include a value for cottonseed.

²Gross receipts for wheat include a grazing income.

In addition, it is assumed that farm program payments scheduled to cease in 2002 will be continued in some form. Future farm program payments were assumed to be equivalent to the management fee assessed against the crops above the cost of farm labor. Therefore, management fee and farm program payments were assumed to offset each other and not included in this analysis.

Two scenarios were considered in this analysis. Scenario 1 assumed five-year average prices existed, natural gas price of \$2.71 per mcf and cost structure presented in the 2000 Extension budgets for the area. Scenario 2 utilizes the same assumptions with the exceptions of natural gas prices at \$4.00 per mcf and crop prices 10 percent below the five-year average. Scenario 2 was developed to provide insight into the impact of low prices and high energy costs similar to this year on irrigated producers.

The results of these two scenarios are given in Table 25. In Scenario 1, the breakeven price producers could pay for an acre-inch ranged from \$8.11 for soybeans to \$23.08 for peanuts before it became profitable to go to the best dryland alternative. These breakeven prices represent the prices producers could pay to end up with the same return over out-of-pocket expenses (variable costs) as a dryland producer. The relatively large difference between the projected pumping cost (\$4.06) and the breakeven costs suggest little curtailing of pumping would occur.

10010 25. 1		Scen	ario 1 ^a	Scenario 2 ^b							
Crop	Break-			Break- Estimated		Estimated	Break-	Estimated			
	even VC	VC of	even TC	TC of	even VC	VC of	even TC	TC of			
	Water	water	Water	water	Water	water	Water	water			
	Price ^c		Price		Price ^c		Price				
		\$/ac-in				\$/ac-in					
			-								
Peanuts	23.08	4.06	14.01	8.19	18.07	5.30	8.39	9.43			
Cotton	13.2	4.06	5.64	8.19	9.72	5.30	1.50	9.43			
Corn	12.96	4.06	9.58	8.19	10.56	5.30	6.80	9.43			
Wheat	8.75	4.06	9.64	8.19	7.76	5.30	5.22	9.43			
Hay-alfalfa	16.52	4.06	10.95	8.19	12.81	5.30	8.51	9.43			
Soybeans	8.11	4.06	5.77	8.19	6.84	5.30	4.00	9.43			
Sorghum	9.66	4.06	10.53	8.19	8.05	5.30	3.67	9.43			

Table 25. Estimated breakeven water prices for irrigated crop producers in Region A.

^a Scenario 1 assumes 5-year average prices and natural gas price at \$2.71/mcf.

^b Scenario 2 assumes commodity prices 10 percent below 5-year price averages and natural gas price at \$4.00/mcf.

^c Variable cost (VC) breakeven price was calculated by utilizing the return over VC of the irrigated crop subtracting the return over VC of the dryland alternative crop and dividing by the acre-inches applied.

The second breakeven price calculated in Scenario 1 refers to the maximum an irrigated producer could pay for water to recover total cost. Total cost includes all variable costs and fixed costs associated with replacement of farming equipment, irrigation equipment and land charges. Most of the crops analyzed had a breakeven between \$9.50-\$11.00 per acre-inch. The estimated total cost per acre-inch of \$8.19 suggests producers receive \$1.50-\$3.00 per acre-inch premium for irrigating over the long-term. No inferences can be made about the relative ranking of crops since small changes in the cost structure or water applied could easily affect rankings.

Further delineation of irrigation costs can provide implications for the ability of irrigated producers to pay for imported water over the long-term. Fuel comprises \$2.61 of the \$4.06 variable cost. Therefore, irrigated producers could pay \$2.61 per acre-inch for water delivered to the pivot and still maintain their long-term returns to irrigation. The maximum a producer could pay under this scenario would be \$4.11-\$5.61 per acre-inch and still remain viable in the long run. The amount an irrigated producer could pay for the imported water could increase approximately \$1.50 per acre-inch if he relied totally on imported water thus eliminating the need for investment in a well and pump.

The second scenario is presented simply to reflect the impact of lower commodity prices (10 percent lower than five-year average) and higher gas prices (\$4.00 per mcf) similar to what is occurring this year. Again the variable cost breakeven for water are above the estimated variable cost of pumping water (\$5.30) suggesting producers will still irrigate. However, the relative narrow difference in these values suggests that marginally productive acreage will leave production. Furthermore water applications have diminishing marginal returns, i.e., each

additional acre-inch applied results in a smaller increase in production. Therefore, there will be a tendency for producers to skip or eliminate an application or two.

If the conditions presented in Scenario 2 persisted for an extended period of time, irrigated agriculture is in trouble. The breakeven price producers could pay for water to cover total cost (\$1.50-\$8.51 per acre-inch) was below the estimated cost of water (\$9.43 per acre-inch) for every crop analyzed suggesting the long-term viability of irrigating these crops is questionable under a low priced commodity and high fuel price scenario.

In summary, most irrigated crop producers appear to receive 1.50-3.00 per acre-inch return beyond the cost of irrigating. If this margin was maintained, producers could pay 2.61 per acre-inch for imported water delivered to the pivot or a maximum of 4.11-5.61 (1.50+2.61 and 3.00+2.61, respectively) per acre-inch before it wouldn't pay to irrigate. The amount a producer may be willing to pay could increase approximately 1.50 per acre-inch if they totally depend on imported water thus not having the well and pump costs. A situation like the current year with below average commodity prices and higher natural gas prices will result in a reduction in water pumped. If these conditions persist over extended period of time the viability of irrigated agriculture in the region is questionable.

References

- Almas, L., F. Bretz, S. Amosson, L. New and T. Marek. April 19, 2000. "Determining Region A Water Supply needs for the 50-year Planning Period." Texas Agricultural Extension Service, Amarillo, Texas.
- New, L. L. 1999. Personal Communication. Texas Agricultural Extension Service, Amarillo, Texas.
- Panhandle Water Planning Group (PWPG). January 14, 2000. "Task 2 Current and Projected Population and Water Demand for the Region." Amarillo, Texas.
- Panhandle Water Planning Group (PWPG). April 2000. "Task 4 Comparison of Current Water Supplies to Demands." Amarillo, Texas
- Panhandle Regional Planning Commission (PRPC). May 2000. "Precipitation Enhancement and Economics in the Texas Panhandle Region." Amarillo, Texas
- Texas Agricultural Statistics Service. 1998. "1998 Texas Agricultural Statistics." United States Department of Agriculture, National Agricultural Statistics Service, Austin, Texas.
- Texas Chapter of the American Society of Farm Managers and Rural Appraisers. 2000. "1999 Trends in Texas Rural Land Values." Texas Chapter ASFMRA, San Antonio, Texas

Appendix A

	Irrigation Water Requirements by Crop and by County, 1997										
County	Corn	Cotton	Hay	Pasture	Peanuts	Sorghum	Soybeans	Wheat			
acre-inches											
Armstrong	18.92	7.90	36.47	27.18	11.33	9.17	6.57	4.40			
Carson	18.92	7.90	34.02	25.16	11.63	9.65	6.83	5.77			
Childress	19.33	7.92	33.27	24.41	11.44	9.67	6.64	4.15			
Collingsworth	17.41	6.14	30.60	22.21	9.71	6.41	5.06	12.43			
Dallam	20.32	9.32	31.83	23.71	13.27	11.20	8.47	7.79			
Donley	18.24	6.98	32.27	23.66	10.59	8.11	5.80	2.62			
Gray	16.89	6.19	30.38	22.10	9.70	7.89	5.22	3.08			
Hall	13.68	3.46	24.17	17.02	6.65	4.95	2.81	2.59			
Hansford	12.45	2.89	23.49	16.61	6.06	4.64	2.65	5.67			
Hartley	20.10	9.20	35.69	26.85	12.87	10.58	8.21	7.50			
Hemphill	17.48	9.49	31.43	22.90	9.99	7.67	5.21	2.08			
Hutchinson	24.01	10.74	37.23	28.36	14.71	12.38	10.42	4.71			
Lipscomb	17.25	6.25	31.34	22.86	9.89	7.50	5.16	2.27			
Moore	18.20	7.78	32.84	23.34	11.15	8.76	6.88	5.81			
Ochiltree	18.53	7.16	33.61	24.84	11.07	8.51	6.47	4.71			
Oldham	22.66	10.86	39.22	29.73	14.45	12.04	9.26	8.55			
Potter	21.83	10.22	38.24	28.75	13.73	11.37	8.51	7.40			
Randall	21.94	10.22	38.17	28.68	13.74	11.37	8.52	7.24			
Roberts	14.42	4.30	26.48	18.93	7.56	6.04	3.68	3.22			
Sherman	21.05	9.79	37.42	28.18	13.37	11.16	8.41	7.59			
Wheeler	21.63	9.11	34.78	26.15	13.24	10.95	8.65	3.94			

Table 1. Irrigation water requirements in acre-inches for corn, cotton, hay, pasture, peanuts, sorghum, soybeans, and wheat for Dallam, Moore, Oldham, Potter, Randall and Sherman Counties, 1997.

Appendix B

County	Furrow	Annual	Annual	2010	2020	2030	2040	2050	Total
	Irrigated	Savings,	Savings,						for
	Acres	75 %acres converted	95 %acres converted						50 years
<u> </u>	012			0.65	1 700	1 700	1 700	1 700	7 701
Armstrong	913	86	173	865	1,729	1,729	1,729	1,729	7,781
Carson	10,827	1,025	2,050	10,249	20,498	20,498	20,498	20,498	92,243
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	218	19	38	190	379	379	379	379	1,706
Dallam	46,662	4,744	9,488	47,440	94,880	94,880	94,880	94,880	426,960
Donley	193	18	35	176	352	352	352	352	1,584
Gray	4,104	347	694	3,468	6,937	6,937	6,937	6,937	31,214
Hall	0	0	0	0	0	0	0	0	0
Hansford	31,446	1,960	3,920	19,601	39,202	39,202	39,202	39,202	176,409
Hartley	1,548	156	311	1,556	3,111	3,111	3,111	3,111	14,002
Hemphill	0	0	0	0	0	0	0	0	0
Hutchinson	6,011	721	1,443	7,214	14,427	14,427	14,427	14,427	64,923
Lipscomb	96	8	17	83	166	166	166	166	746
Moore	30,242	2,752	5,504	27,521	55,041	55,041	55,041	55,041	247,686
Ochiltree	9,029	837	1,673	8,367	16,735	16,735	16,735	16,735	75,306
Oldham	795	90	180	901	1,802	1,802	1,802	1,802	8,108
Potter	950	104	207	1,037	2,074	2,074	2,074	2,074	9,334
Randall	4,119	452	904	4,518	9,035	9,035	9,035	9,035	40,658
Roberts	391	28	56	282	565	565	565	565	2,541
Sherman	3,252	343	685	3,425	6,851	6,851	6,851	6,851	30,829
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	150,798	13,689	27,378	136,892	273,784	273,784	273,784	273,784	1,232,028

Table 1. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated corn to corn under surge flow using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow	Annual	Annual	2010	2020	2030	2040	2050	Total
County	Irrigated	Savings,	Savings,	2010	2020	2030	2040	2030	for
	Acres	75 %acres	95 %acres						50 years
		converted	converted						5
Armstrong	913	135	271	1,353	2,706	2,706	2,706	2,706	12,179
Carson	10,827	1,604	3,208	16,041	32,083	32,083	32,083	32,083	144,373
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	218	30	59	297	594	594	594	594	2,673
Dallam	46,662	7,427	14,854	74,271	148,542	148,542	148,542	148,542	668,437
Donley	193	28	55	276	551	551	551	551	2,481
Gray	4,104	543	1,086	5,432	10,863	10,863	10,863	10,863	48,884
Hall	0	0	0	0	0	0	0	0	0
Hansford	31,446	3,066	6,132	30,659	61,319	61,319	61,319	61,319	275,935
Hartley	1,548	244	488	2,438	4,876	4,876	4,876	4,876	21,943
Hemphill	0	0	0	0	0	0	0	0	0
Hutchinson	6,011	1,130	2,260	11,301	22,603	22,603	22,603	22,603	101,712
Lipscomb	96	13	26	130	260	260	260	260	1,168
Moore	30,242	4,310	8,619	43,096	86,191	86,191	86,191	86,191	387,860
Ochiltree	9,029	1,311	2,622	13,108	26,215	26,215	26,215	26,215	117,970
Oldham	795	141	282	1,411	2,822	2,822	2,822	2,822	12,698
Potter	950	162	325	1,625	3,249	3,249	3,249	3,249	14,621
Randall	4,119	708	1,416	7,078	14,157	14,157	14,157	14,157	63,706
Roberts	391	44	88	442	884	884	884	884	3,978
Sherman	3,252	536	1,072	5,360	10,721	10,721	10,721	10,721	48,243
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	150,798	21,432	42,864	214,318	428,636	428,636	428,636	428,636	1,928,861

Table 2. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated corn to corn under LESA using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated	Annual Savings,	Annual Savings,	2010	2020	2030	2040	2050	Total for
	Acres	75 %acres	95 %acres						50 years
		converted	converted)
Armstrong	913	147	294	1,469	2,938	2,938	2,938	2,938	13,220
Carson	10,827	1,741	3,483	17,413	34,826	34,826	34,826	34,826	156,715
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	218	32	64	322	645	645	645	645	2,902
Dallam	46,662	8,057	16,114	80,570	161,140	161,140	161,140	161,140	725,132
Donley	193	30	60	299	598	598	598	598	2,692
Gray	4,104	589	1,178	5,890	11,780	11,780	11,780	11,780	53,009
Hall	0	0	0	0	0	0	0	0	0
Hansford	31,446	3,328	6,656	33,280	66,560	66,560	66,560	66,560	299,519
Hartley	1,548	264	529	2,645	5,289	5,289	5,289	5,289	23,801
Hemphill	0	0	0	0	0	0	0	0	0
Hutchinson	6,011	1,227	2,455	12,273	24,546	24,546	24,546	24,546	110,458
Lipscomb	96	14	28	141	282	282	282	282	1,267
Moore	30,242	4,678	9,355	46,775	93,550	93,550	93,550	93,550	420,975
Ochiltree	9,029	1,422	2,844	14,221	28,443	28,443	28,443	28,443	127,992
Oldham	795	153	306	1,531	3,063	3,063	3,063	3,063	13,783
Potter	950	176	352	1,762	3,525	3,525	3,525	3,525	15,860
Randall	4,119	768	1,537	7,683	15,365	15,365	15,365	15,365	69,143
Roberts	391	48	96	479	958	958	958	958	4,313
Sherman	3,252	582	1,164	5,821	11,642	11,642	11,642	11,642	52,390
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	150,798	23,257	46,515	232,575	465,150	465,150	465,150	465,150	2,093,173

Table 3. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated corn to corn under LEPA using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated	Annual Savings,	Annual Savings,	Annual Saving,	2010	2020	2030	2040	2050	Total for
	Acres	5 % acres	10 % acres	15 %acres						50 years
		converted	converted	converted						
Armstrong	913	37	73	110	367	734	1,102	1,102	1,102	4,407
Carson	10,827	435	871	1,306	4,353	8,706	13,060	13,060	13,060	52,238
Childress	0	0	0	0	0	0	0	0	0	0
Collingsworth	218	8	16	24	81	161	242	242	242	967
Dallam	46,662	2,014	4,029	6,043	20,143	40,285	60,428	60,428	60,428	241,711
Donley	193	7	15	22	75	150	224	224	224	897
Gray	4,104	147	294	442	1,472	2,945	4,417	4,417	4,417	17,670
Hall	0	0	0	0	0	0	0	0	0	0
Hansford	31,446	832	1,664	2,496	8,320	16,640	24,960	24,960	24,960	99,840
Hartley	1,548	66	132	198	661	1,322	1,983	1,983	1,983	7,934
Hemphill	0	0	0	0	0	0	0	0	0	0
Hutchinson	6,011	307	614	920	3,068	6,137	9,205	9,205	9,205	36,819
Lipscomb	96	4	7	11	35	70	106	106	106	422
Moore	30,242	1,169	2,339	3,508	11,694	23,388	35,081	35,081	35,081	140,325
Ochiltree	9,029	356	711	1,067	3,555	7,111	10,666	10,666	10,666	42,664
Oldham	795	38	77	115	383	766	1,149	1,149	1,149	4,594
Potter	950	44	88	132	441	881	1,322	1,322	1,322	5,287
Randall	4,119	192	384	576	1,921	3,841	5,762	5,762	5,762	23,048
Roberts	391	12	24	36	120	240	359	359	359	1,438
Sherman	3,252	146	291	437	1,455	2,911	4,366	4,366	4,366	17,463
Wheeler	0	0	0	0	0	0	0	0	0	0
Total Region A	150,798	5,814	11,629	17,443	58,144	116,287	174,431	174,431	174,431	697,724

Table 4. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated corn to corn under DRIP using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated	Annual Savings,	Annual Savings,	2010	2020	2030	2040	2050	Total for
	Acres	75 %acres converted	95 %acres converted						50 years
Armstrong	241	33	65	327	653	653	653	653	2,940
Carson	10,264	1,292	2,583	12,915	25,831	25,831	25,831	25,831	116,239
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	281	31	62	312	625	625	625	625	2,812
Dallam	4,336	514	1,028	5,138	10,276	10,276	10,276	10,276	46,241
Donley	212	25	50	251	502	502	502	502	2,258
Gray	411	45	91	454	908	908	908	908	4,088
Hall	0	0	0	0	0	0	0	0	0
Hansford	3,220	267	534	2,672	5,345	5,345	5,345	5,345	24,051
Hartley	175	24	47	235	470	470	470	470	2,116
Hemphill	207	24	47	237	473	473	473	473	2,129
Hutchinson	876	124	248	1,242	2,485	2,485	2,485	2,485	11,182
Lipscomb	107	12	24	122	245	245	245	245	1,101
Moore	4,755	555	1,110	5,548	11,095	11,095	11,095	11,095	49,929
Ochiltree	0	0	0	0	0	0	0	0	0
Oldham	480	71	143	713	1,426	1,426	1,426	1,426	6,416
Potter	2,884	415	830	4,149	8,297	8,297	8,297	8,297	37,337
Randall	4,921	705	1,411	7,053	14,106	14,106	14,106	14,106	63,477
Roberts	155	15	29	147	293	293	293	293	1,320
Sherman	289	41	81	407	814	814	814	814	3,663
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	33,812	4,192	8,384	41,922	83,844	83,844	83,844	83,844	377,298

Table 5. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated pasture to pasture under surge flow using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated	Annual Savings,	Annual Savings,	2010	2020	2030	2040	2050	Total For
	Acres	75 %acres	95 %acres						50 years
		converted	converted						
Armstrong	241	51	102	512	1,024	1,024	1,024	1,024	4,607
Carson	10,264	2,024	4,047	20,237	40,474	40,474	40,474	40,474	182,133
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	281	49	98	490	980	980	980	980	4,408
Dallam	4,336	805	1,610	8,050	16,100	16,100	16,100	16,100	72,450
Donley	212	39	79	393	786	786	786	786	3,536
Gray	411	71	142	712	1,424	1,424	1,424	1,424	6,406
Hall	0	0	0	0	0	0	0	0	0
Hansford	3,220	419	838	4,191	8,382	8,382	8,382	8,382	37,718
Hartley	175	37	74	368	736	736	736	736	3,313
Hemphill	207	37	74	371	741	741	741	741	3,335
Hutchinson	876	195	389	1,946	3,892	3,892	3,892	3,892	17,516
Lipscomb	107	19	38	192	383	383	383	383	1,724
Moore	4,755	869	1,739	8,694	17,388	17,388	17,388	17,388	78,245
Ochiltree	0	0	0	0	0	0	0	0	0
Oldham	480	112	223	1,116	2,233	2,233	2,233	2,233	10,048
Potter	2,884	649	1,299	6,494	12,989	12,989	12,989	12,989	58,450
Randall	4,921	1,106	2,211	11,055	22,110	22,110	22,110	22,110	99,497
Roberts	155	23	46	230	460	460	460	460	2,069
Sherman	289	64	128	638	1,275	1,275	1,275	1,275	5,740
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	33,812	6,569	13,138	65,688	131,376	131,376	131,376	131,376	591,194

Table 6. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated pasture to pasture under LESA using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated Acres	Annual Savings, 75 %acres converted	Annual Savings, 95 %acres converted	2010	2020	2030	2040	2050	Total for 50 years
Armstrong	241	56	111	556	1,111	1,111	1,111	1,111	5,000
Carson	10,264	2,195	4,390	21,948	43,895	43,895	43,895	43,895	197,529
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	281	53	106	532	1,063	1,063	1,063	1,063	4,784
Dallam	4,336	874	1,747	8,736	17,473	17,473	17,473	17,473	78,628
Donley	212	43	85	426	853	853	853	853	3,838
Gray	411	77	154	772	1,544	1,544	1,544	1,544	6,948
Hall	0	0	0	0	0	0	0	0	0
Hansford	3,220	455	909	4,545	9,090	9,090	9,090	9,090	40,906
Hartley	175	40	80	399	799	799	799	799	3,594
Hemphill	207	40	80	402	804	804	804	804	3,620
Hutchinson	876	211	422	2,111	4,222	4,222	4,222	4,222	19,000
Lipscomb	107	21	42	208	416	416	416	416	1,871
Moore	4,755	943	1,886	9,431	18,862	18,862	18,862	18,862	84,878
Ochiltree	0	0	0	0	0	0	0	0	0
Oldham	480	121	242	1,212	2,423	2,423	2,423	2,423	10,904
Potter	2,884	705	1,409	7,047	14,094	14,094	14,094	14,094	63,425
Randall	4,921	1,200	2,400	11,998	23,997	23,997	23,997	23,997	107,986
Roberts	155	25	50	249	499	499	499	499	2,243
Sherman	289	69	138	692	1,384	1,384	1,384	1,384	6,229
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	33,812	7,126	14,253	71,265	142,530	142,530	142,530	142,530	641,385

Table 7. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated pasture to pasture under LEPA using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated Acres	Annual Savings, 5 % acres converted	Annual Savings, 10 % acres converted	Annual Saving, 15 %acres converted	2010	2020	2030	2040	2050	Total for 50 years
Armstrong	241	15	29	44	147	294	441	441	441	1,765
Carson	10,264	581	1,162	1,744	5,812	11,624	17,436	17,436	17,436	69,743
Childress	0	0	1,102	1,744	0,012	0	0	0	0	0,745
Collingsworth	281	14	28	42	141	281	422	422	422	1,688
Dallam	4,336	231	462	694	2,312	4,625	6,937	6,937	6,937	27,749
Donley	212	11	23	34	113	226	339	339	339	1,355
Gray	411	20	41	61	204	409	613	613	613	2,452
Hall	0	0	0	0	0	0	0	0	0	0
Hansford	3,220	120	241	361	1,203	2,407	3,610	3,610	3,610	14,440
Hartley	175	11	21	32	106	211	317	317	317	1,269
Hemphill	207	11	21	32	106	213	319	319	319	1,278
Hutchinson	876	56	112	168	559	1,118	1,676	1,676	1,676	6,706
Lipscomb	107	6	11	17	55	110	165	165	165	660
Moore	4,755	250	499	749	2,496	4,993	7,489	7,489	7,489	29,957
Ochiltree	0	0	0	0	0	0	0	0	0	0
Oldham	480	32	64	96	321	641	962	962	962	3,848
Potter	2,884	187	373	560	1,866	3,733	5,599	5,599	5,599	22,396
Randall	4,921	318	635	953	3,176	6,352	9,528	9,528	9,528	38,111
Roberts	155	7	13	20	66	132	198	198	198	792
Sherman	289	18	37	55	183	367	550	550	550	2,199
Wheeler	0	0	0	0	0	0	0	0	0	0
Total Region A	33,812	1,887	3,774	5,660	18,867	37,735	56,602	56,602	56,602	226,408

Table 8. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated pasture to pasture under DRIP using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated Acres	Annual Savings, 75 %acres converted	Annual Savings, 95 %acres converted	2010	2020	2030	2040	2050	Total for 50 years
Armstrong	1,598	73	147	733	1,465	1,465	1,465	1,465	6,593
Carson	16,667	806	1,611	8,056	16,112	16,112	16,112	16,112	72,503
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	465	15	30	149	297	297	297	297	1,339
Dallam	2,378	133	266	1,332	2,663	2,663	2,663	2,663	11,984
Donley	102	4	8	41	83	83	83	83	372
Gray	2,948	116	233	1,165	2,329	2,329	2,329	2,329	10,481
Hall	0	0	0	0	0	0	0	0	0
Hansford	13,990	324	648	3,241	6,482	6,482	6,482	6,482	29,169
Hartley	150	8	16	79	159	159	159	159	713
Hemphill	34	1	3	13	26	26	26	26	118
Hutchinson	1,741	108	215	1,077	2,153	2,153	2,153	2,153	9,690
Lipscomb	85	3	6	32	64	64	64	64	287
Moore	7,578	332	664	3,322	6,643	6,643	6,643	6,643	29,895
Ochiltree	6,533	278	555	2,777	5,553	5,553	5,553	5,553	24,989
Oldham	9,682	583	1,165	5,826	11,651	11,651	11,651	11,651	52,431
Potter	1,468	83	167	834	1,668	1,668	1,668	1,668	7,507
Randall	11,085	630	1,260	6,300	12,600	12,600	12,600	12,600	56,699
Roberts	373	11	22	112	225	225	225	225	1,011
Sherman	943	53	105	527	1,053	1,053	1,053	1,053	4,739
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	77,820	3,561	7,123	35,613	71,226	71,226	71,226	71,226	320,518

Table 9. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated sorghum to sorghum under surge flow using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated Acres	Annual Savings, 75 %acres converted	Annual Savings, 95 %acres converted	2010	2020	2030	2040	2050	Total for 50 years
Armstrong	1,598	115	230	1,148	2,296	2,296	2,296	2,296	10,333
Carson	16,667	1,261	2,522	12,612	25,223	25,223	25,223	25,223	113,504
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	465	23	47	233	466	466	466	466	2,099
Dallam	2,378	208	417	2,084	4,169	4,169	4,169	4,169	18,760
Donley	102	6	13	65	130	130	130	130	583
Gray	2,948	182	365	1,823	3,646	3,646	3,646	3,646	16,407
Hall	0	0	0	0	0	0	0	0	0
Hansford	13,990	508	1,017	5,083	10,166	10,166	10,166	10,166	45,747
Hartley	150	12	25	124	249	249	249	249	1,118
Hemphill	34	2	4	21	41	41	41	41	185
Hutchinson	1,741	169	338	1,689	3,378	3,378	3,378	3,378	15,201
Lipscomb	85	5	10	50	100	100	100	100	450
Moore	7,578	520	1,041	5,203	10,407	10,407	10,407	10,407	46,831
Ochiltree	6,533	436	871	4,355	8,711	8,711	8,711	8,711	39,198
Oldham	9,682	913	1,827	9,134	18,268	18,268	18,268	18,268	82,204
Potter	1,468	131	261	1,306	2,612	2,612	2,612	2,612	11,755
Randall	11,085	987	1,973	9,865	19,731	19,731	19,731	19,731	88,789
Roberts	373	18	35	176	353	353	353	353	1,587
Sherman	943	83	165	825	1,650	1,650	1,650	1,650	7,426
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	77,820	5,580	11,160	55,798	111,595	111,595	111,595	111,595	502,179

Table 10. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated sorghum to sorghum under LESA using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated Acres	Annual Savings, 75 %acres converted	Annual Savings, 95 %acres converted	2010	2020	2030	2040	2050	Total for 50 years
Armstrong	1,598	125	249	1,247	2,493	2,493	2,493	2,493	11,220
Carson	16,667	1,367	2,733	13,667	27,334	27,334	27,334	27,334	123,005
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	465	25	51	253	507	507	507	507	2,280
Dallam	2,378	226	453	2,263	4,526	4,526	4,526	4,526	20,365
Donley	102	7	14	70	141	141	141	141	633
Gray	2,948	198	395	1,975	3,951	3,951	3,951	3,951	17,778
Hall	0	0	0	0	0	0	0	0	0
Hansford	13,990	553	1,105	5,526	11,052	11,052	11,052	11,052	49,735
Hartley	150	14	27	135	270	270	270	270	1,215
Hemphill	34	2	4	22	45	45	45	45	201
Hutchinson	1,741	183	366	1,831	3,662	3,662	3,662	3,662	16,481
Lipscomb	85	5	11	54	109	109	109	109	488
Moore	7,578	565	1,129	5,645	11,291	11,291	11,291	11,291	50,809
Ochiltree	6,533	473	945	4,726	9,451	9,451	9,451	9,451	42,530
Oldham	9,682	991	1,982	9,908	19,817	19,817	19,817	19,817	89,175
Potter	1,468	142	284	1,419	2,837	2,837	2,837	2,837	12,768
Randall	11,085	1,072	2,143	10,715	21,431	21,431	21,431	21,431	96,437
Roberts	373	19	38	191	382	382	382	382	1,721
Sherman	943	89	179	894	1,789	1,789	1,789	1,789	8,049
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	77,820	6,054	12,109	60,543	121,087	121,087	121,087	121,087	544,891

Table 11. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated sorghum to sorghum under LEPA using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated	Annual Savings,	Annual Savings,	Annual Savings,	2010	2020	2030	2040	2050	Total For
	Acres	5 % acres	10 % acres	15 %acres						50 years
		converted	converted	converted						
Armstrong	1,598	33	66	99	330	659	989	989	989	3,956
Carson	16,667	362	724	1,085	3,618	7,236	10,855	10,855	10,855	43,418
Childress	0	0	0	0	0	0	0	0	0	0
Collingsworth	465	7	13	20	67	134	201	201	201	804
Dallam	2,378	60	120	180	599	1,199	1,798	1,798	1,798	7,193
Donley	102	2	4	6	19	37	56	56	56	223
Gray	2,948	52	105	157	523	1,047	1,570	1,570	1,570	6,280
Hall	0	0	0	0	0	0	0	0	0	0
Hansford	13,990	146	293	439	1,463	2,926	4,389	4,389	4,389	17,558
Hartley	150	4	7	11	36	71	107	107	107	428
Hemphill	34	1	1	2	6	12	18	18	18	71
Hutchinson	1,741	49	97	146	485	971	1,456	1,456	1,456	5,824
Lipscomb	85	1	3	4	14	29	43	43	43	172
Moore	7,578	149	299	448	1,493	2,987	4,480	4,480	4,480	17,922
Ochiltree	6,533	125	250	376	1,252	2,504	3,757	3,757	3,757	15,026
Oldham	9,682	262	524	787	2,622	5,245	7,867	7,867	7,867	31,468
Potter	1,468	38	75	113	375	751	1,126	1,126	1,126	4,505
Randall	11,085	284	567	851	2,836	5,672	8,508	8,508	8,508	34,030
Roberts	373	5	10	15	51	101	152	152	152	607
Sherman	943	24	47	71	237	474	711	711	711	2,843
Wheeler	0	0	0	0	0	0	0	0	0	0
Total Region A	77,820	1,603	3,206	4,808	16,027	32,055	48,082	48,082	48,082	192,329

Table 12. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated sorghum to sorghum under DRIP using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated Acres	Annual Savings, 75 %acres converted	Annual Savings, 95 %acres converted	2010	2020	2030	2040	2050	Total for 50 years
Armstrong	0	0	0	0	0	0	0	0	0
Carson	2,635	90	180	900	1,801	1,801	1,801	1,801	8,104
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	0	0	0	0	0	0	0	0	0
Dallam	208	9	18	88	176	176	176	176	793
Donley	19	1	1	6	11	11	11	11	50
Gray	867	23	45	227	454	454	454	454	2,042
Hall	0	0	0	0	0	0	0	0	0
Hansford	6,032	80	161	804	1,609	1,609	1,609	1,609	7,239
Hartley	25	1	2	10	21	21	21	21	92
Hemphill	0	0	0	0	0	0	0	0	0
Hutchinson	379	20	40	198	396	396	396	396	1,781
Lipscomb	43	1	2	11	22	22	22	22	100
Moore	654	22	45	225	449	449	449	449	2,022
Ochiltree	2,337	76	151	756	1,511	1,511	1,511	1,511	6,801
Oldham	0	0	0	0	0	0	0	0	0
Potter	0	0	0	0	0	0	0	0	0
Randall	0	0	0	0	0	0	0	0	0
Roberts	0	0	0	0	0	0	0	0	0
Sherman	2	0	0	1	2	2	2	2	8
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	13,203	323	645	3,226	6,451	6,451	6,451	6,451	29,031

Table 13. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated soybeans to soybeans under surge flow using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated Acres	Annual Savings, 75 %acres converted	Annual Savings, 95 %acres converted	2010	2020	2030	2040	2050	Total for 50 years
Armstrong	0	0	0	0	0	0	0	0	0
Carson	2,635	141	282	1,410	2,820	2,820	2,820	2,820	12,690
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	0	0	0	0	0	0	0	0	0
Dallam	208	14	28	138	276	276	276	276	1,242
Donley	19	1	2	9	17	17	17	17	78
Gray	867	35	71	354	708	708	708	708	3,187
Hall	0	0	0	0	0	0	0	0	0
Hansford	6,032	126	251	1,257	2,514	2,514	2,514	2,514	11,311
Hartley	25	2	3	16	32	32	32	32	145
Hemphill	0	0	0	0	0	0	0	0	0
Hutchinson	379	31	62	310	620	620	620	620	2,788
Lipscomb	43	2	3	17	35	35	35	35	157
Moore	654	35	70	352	705	705	705	705	3,171
Ochiltree	2,337	118	237	1,184	2,368	2,368	2,368	2,368	10,657
Oldham	0	0	0	0	0	0	0	0	0
Potter	0	0	0	0	0	0	0	0	0
Randall	0	0	0	0	0	0	0	0	0
Roberts	0	0	0	0	0	0	0	0	0
Sherman	2	0	0	1	3	3	3	3	12
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	13,203	505	1,010	5,048	10,097	10,097	10,097	10,097	45,436

Table 14. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated soybeans to soybeans under LESA using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated Acres	Annual Savings, 75 %acres converted	Annual Savings, 95 %acres converted	2010	2020	2030	2040	2050	Total for 50 years
Armstrong	0	0	0	0	0	0	0	0	0
Carson	2,635	153	306	1,529	3,057	3,057	3,057	3,057	13,757
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	0	0	0	0	0	0	0	0	0
Dallam	208	15	30	150	300	300	300	300	1,348
Donley	19	1	2	9	19	19	19	19	84
Gray	867	38	77	384	769	769	769	769	3,460
Hall	0	0	0	0	0	0	0	0	0
Hansford	6,032	136	271	1,357	2,715	2,715	2,715	2,715	12,216
Hartley	25	2	3	17	35	35	35	35	157
Hemphill	0	0	0	0	0	0	0	0	0
Hutchinson	379	34	67	336	671	671	671	671	3,021
Lipscomb	43	2	4	19	38	38	38	38	170
Moore	654	38	77	383	766	766	766	766	3,446
Ochiltree	2,337	129	257	1,285	2,571	2,571	2,571	2,571	11,568
Oldham	0	0	0	0	0	0	0	0	0
Potter	0	0	0	0	0	0	0	0	0
Randall	0	0	0	0	0	0	0	0	0
Roberts	0	0	0	0	0	0	0	0	0
Sherman	2	0	0	1	3	3	3	3	13
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	13,203	547	1,094	5,471	10,942	10,942	10,942	10,942	49,240

Table 15. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated soybeans to soybeans under LEPA using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow	Annual	Annual	Annual		2020		2040	2050	Total
	Irrigated	Savings,	Savings,	Savings,						for
	Acres	5 % acres	10 % acres	15 % acres						50
		converted	converted	converted						years
Armstrong	0	0	0	0	0	0	0	0	0	0
Carson	2,635	41	81	122	405	810	1,216	1,216	1,216	4,862
Childress	0	0	0	0	0	0	0	0	0	0
Collingsworth	0	0	0	0	0	0	0	0	0	0
Dallam	208	4	8	12	40	79	119	119	119	475
Donley	19	0	0	1	2	5	7	7	7	30
Gray	867	10	20	31	102	204	306	306	306	1,223
Hall	0	0	0	0	0	0	0	0	0	0
Hansford	6,032	36	72	108	359	719	1,078	1,078	1,078	4,313
Hartley	25	0	1	1	5	9	14	14	14	55
Hemphill	0	0	0	0	0	0	0	0	0	0
Hutchinson	379	9	18	27	89	178	267	267	267	1,068
Lipscomb	43	0	1	1	5	10	15	15	15	60
Moore	654	10	20	30	101	203	304	304	304	1,217
Ochiltree	2,337	34	68	102	340	680	1,020	1,020	1,020	4,078
Oldham	0	0	0	0	0	0	0	0	0	0
Potter	0	0	0	0	0	0	0	0	0	0
Randall	0	0	0	0	0	0	0	0	0	0
Roberts	0	0	0	0	0	0	0	0	0	0
Sherman	2	0	0	0	0	1	1	1	1	5
Wheeler	0	0	0	0	0	0	0	0	0	0
Total Region A	13,203	145	290	435	1,449	2,898	4,347	4,347	4,347	17,386

Table 16. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated soybeans to soybeans under DRIP using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated	Annual Savings,	Annual Savings,	2010	2020	2030	2040	2050	Total for
	Acres	75 %acres	95 %acres						50 years
		converted	converted						2
Armstrong	3,805	84	167	837	1,674	1,674	1,674	1,674	7,535
Carson	25,713	741	1,483	7,414	14,828	14,828	14,828	14,828	66,726
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	407	25	51	253	506	506	506	506	2,275
Dallam	28,622	1,116	2,232	11,162	22,325	22,325	22,325	22,325	100,462
Donley	29	0	1	4	8	8	8	8	34
Gray	11,504	176	353	1,764	3,528	3,528	3,528	3,528	15,876
Hall	0	0	0	0	0	0	0	0	0
Hansford	68,282	1,935	3,869	19,346	38,693	38,693	38,693	38,693	174,118
Hartley	549	21	41	206	412	412	412	412	1,853
Hemphill	350	4	7	36	72	72	72	72	325
Hutchinson	2,695	63	127	633	1,267	1,267	1,267	1,267	5,699
Lipscomb	341	4	8	39	77	77	77	77	348
Moore	15,810	458	917	4,585	9,170	9,170	9,170	9,170	41,264
Ochiltree	12,482	293	587	2,933	5,866	5,866	5,866	5,866	26,399
Oldham	16,875	723	1,446	7,228	14,456	14,456	14,456	14,456	65,054
Potter	22,307	825	1,651	8,254	16,507	16,507	16,507	16,507	74,283
Randall	13,257	479	959	4,795	9,589	9,589	9,589	9,589	43,151
Roberts	633	10	20	102	205	205	205	205	921
Sherman	2,452	93	186	932	1,864	1,864	1,864	1,864	8,386
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	226,112	7,052	14,105	70,523	141,047	141,047	141,047	141,047	634,709

Table 17. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated wheat to wheat under surge flow using PET irrigation water requirements that incorporates application efficiencies.

County	Furrow Irrigated Acres	Annual Savings, 75 %acres converted	Annual Savings, 95 %acres converted	2010	2020	2030	2040	2050	Total for 50 years
Armstrong	3,805	131	263	1,313	2,626	2,626	2,626	2,626	11,816
Carson	25,713	1,161	2,323	11,614	23,228	23,228	23,228	23,228	104,524
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	407	40	79	396	792	792	792	792	3,563
Dallam	28,622	1,746	3,492	17,459	34,918	34,918	34,918	34,918	157,132
Donley	29	1	1	6	12	12	12	12	54
Gray	11,504	278	556	2,780	5,560	5,560	5,560	5,560	25,021
Hall	0	0	0	0	0	0	0	0	0
Hansford	68,282	3,027	6,054	30,272	60,543	60,543	60,543	60,543	272,444
Hartley	549	32	65	323	646	646	646	646	2,907
Hemphill	350	6	11	57	114	114	114	114	514
Hutchinson	2,695	99	199	993	1,985	1,985	1,985	1,985	8,933
Lipscomb	341	6	12	61	122	122	122	122	547
Moore	15,810	719	1,439	7,194	14,387	14,387	14,387	14,387	64,742
Ochiltree	12,482	460	919	4,597	9,195	9,195	9,195	9,195	41,377
Oldham	16,875	1,131	2,261	11,306	22,613	22,613	22,613	22,613	101,757
Potter	22,307	1,294	2,588	12,938	25,876	25,876	25,876	25,876	116,443
Randall	13,257	751	1,502	7,512	15,024	15,024	15,024	15,024	67,610
Roberts	633	16	32	159	319	319	319	319	1,434
Sherman	2,452	146	292	1,459	2,918	2,918	2,918	2,918	13,130
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	226,112	11,044	22,088	110,439	220,878	220,878	220,878	220,878	993,950

Table 18. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated wheat to wheat under LESA using PET irrigation water requirements that incorporate application efficiencies.

County	Furrow Irrigated Acres	Annual Savings, 75 %acres converted	Annual Savings, 95 %acres converted	2010	2020	2030	2040	2050	Total for 50 years
Armstrong	3,805	142	284	1,421	2,841	2,841	2,841	2,841	12,786
Carson	25,713	1,260	2,520	12,599	25,199	25,199	25,199	25,199	113,395
Childress	0	0	0	0	0	0	0	0	0
Collingsworth	407	43	86	430	859	859	859	859	3,868
Dallam	28,622	1,894	3,788	18,938	37,876	37,876	37,876	37,876	170,441
Donley	29	1	1	6	13	13	13	13	58
Gray	11,504	301	602	3,010	6,020	6,020	6,020	6,020	27,092
Hall	0	0	0	0	0	0	0	0	0
Hansford	68,282	3,289	6,578	32,889	65,778	65,778	65,778	65,778	296,001
Hartley	549	35	70	350	701	701	701	701	3,154
Hemphill	350	6	12	62	124	124	124	124	556
Hutchinson	2,695	108	216	1,078	2,156	2,156	2,156	2,156	9,701
Lipscomb	341	7	13	66	132	132	132	132	593
Moore	15,810	780	1,560	7,800	15,599	15,599	15,599	15,599	70,197
Ochiltree	12,482	499	999	4,993	9,986	9,986	9,986	9,986	44,935
Oldham	16,875	1,226	2,453	12,263	24,525	24,525	24,525	24,525	110,363
Potter	22,307	1,402	2,803	14,016	28,033	28,033	28,033	28,033	126,147
Randall	13,257	815	1,631	8,153	16,306	16,306	16,306	16,306	73,376
Roberts	633	17	35	173	346	346	346	346	1,558
Sherman	2,452	158	316	1,582	3,163	3,163	3,163	3,163	14,234
Wheeler	0	0	0	0	0	0	0	0	0
Total Region A	226,112	11,983	23,966	119,829	239,657	239,657	239,657	239,657	1,078,457

Table 19. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated wheat to wheat under LEPA using PET irrigation water requirements that incorporate application efficiencies.

County	Furrow Irrigated	Annual Savings,	Annual Savings,	Annual Savings,	2010	2020	2030	2040	2050	Total for
	Acres		10 % acres	15 %acres						50 years
	110105	converted		converted						so years
Armstrong	3,805	38	75	113	377	755	1,132	1,132	1,132	4,528
Carson	25,713	334	669	1,003	3,343	6,685	10,028	10,028	10,028	40,113
Childress	25,715	0	00)	1,005	0,545	0,005	10,020	0	10,020	40,115
Collingsworth	407	11	23	34	114	227	341	341	341	1,364
Dallam	28,622	502	1,004		5,021	10,041	15,062	15,062	15,062	60,248
Donley	29	0	1,001	1,000	2	3	5	5	5	20
Gray	11,504		159	239	796	1,591	2,387	2,387	2,387	9,548
Hall	0	0	0	0	0	0	0	0	0	0
Hansford	68,282	871	1,741	2,612	8,706	17,412	26,118	26,118	26,118	104,471
Hartley	549	9	19	28	93	185	278	278	278	1,112
Hemphill	350	2	3	5	16	33	49	49	49	196
Hutchinson	2,695	29	57	86	285	570	856	856	856	3,422
Lipscomb	341	2	3	5	17	35	52	52	52	210
Moore	15,810	207	414	621	2,068	4,137	6,205	6,205	6,205	24,822
Ochiltree	12,482	132	264	396	1,321	2,642	3,963	3,963	3,963	15,852
Oldham	16,875	325	650	975	3,248	6,497	9,745	9,745	9,745	38,982
Potter	22,307	372	744	1,115	3,718	7,436	11,154	11,154	11,154	44,614
Randall	13,257	216	432	648	2,160	4,319	6,479	6,479	6,479	25,917
Roberts	633	5	9	14	46	92	138	138	138	551
Sherman	2,452	42	84	126	419	838	1,257	1,257	1,257	5,027
Wheeler	0	0	0	0	0	0	0	0	0	0
Total Region A	226,112	3,175	6,350	9,525	31,750	63,500	95,249	95,249	95,249	380,998

Table 20. Estimated water savings in acre-feet by county by decade when shifting furrow irrigated wheat to wheat under DRIP using PET irrigation water requirements that incorporate application efficiencies.

Water User Group:	City of Claud	le - Armstrong	County						
	2000	2010	2020	2030	2040				
Population (number of persons)	1,253	1,335	1,410	1,476	1,478				
Water Demand (ac-ft/yr)	265	266	267	274	268				
Current Supply (ac-ft/yr)	265	266	267	124	0				
Supply - Demand (ac-ft/yr)	0	0	0	-150	-268				
Recommended Short Term Strategy - Install new wells (ac-ft/yr)	0	0	0	150	268				
Long Term Strategy (ac-ft/yr)		None identified							

Water User Group:	City of Groon	n - Carson Co	unty						
	2000	2010	2020	2030	2040				
Population (number of persons)	655	658	648	600	545				
Water Demand (ac-ft/yr)	180	173	163	149	132				
Current Supply (ac-ft/yr)	180	173	163	149	81				
Supply - Demand (ac-ft/yr)	0	0	0	0	-51				
Recommended Short Term Strategy (ac-ft/yr)		None identified							
Long Term Strategy - Install new well (ac-ft/yr)	0	0	0	0	51				

Water User Group:	City of Panha	ndle - Carson	County						
	2000	2010	2020	2030	2040				
Population (number of persons)	2,469	3,750	4,104	4,281	4,401				
Water Demand (ac-ft/yr)	589	844	879	902	913				
Current Supply (ac-ft/yr)	589	844	879	902	175				
Supply - Demand (ac-ft/yr)	0	0	0	0	-738				
Recommended Short Term Strategy (ac-ft/yr)		None identified							
Long Term Strategy - Install new wells (ac-ft/yr)	0	0	0	0	738				

Water User Group:	City of Skellytown - Carson County							
	2000	2010	2020	2030	2040			
Population (number of persons)	666	667	650	572	564			
Water Demand (ac-ft/yr)	88	83	76	64	61			
Current Supply (ac-ft/yr)	88	83	32	0	0			
Supply - Demand (ac-ft/yr)	0	0	-44	-64	-61			
Recommended Short Term Strategy - Install new well (ac-ft/yr)	0	0	44	64	61			
Long Term Strategy (ac-ft/yr)		None identified						

Water User Group:	City of White	City of White Deer - Carson County						
	2000	2010	2020	2030	2040			
Population (number of persons)	1,231	1,341	1,391	1,445	1,477			
Water Demand (ac-ft/yr)	266	275	271	275	276			
Current Supply (ac-ft/yr)	266	275	271	275	228			
Supply - Demand (ac-ft/yr)	0	0	0	0	-48			
Recommended Short Term Strategy (ac-ft/yr)	None identified							
Long Term Strategy - Install new wells (ac-ft/yr)	0	0	0	0	45			

2050	
501	
121	
0	
-121	
121	

2050
4,523
933
0
-933

933

T:\TWDB Tables\[Summary Table]Carson (4c).xls

2	2050
	556
	59
	0
	-59
	59

2050
1,510
281
0
-281

267

Water User Group:	Irrigation -	Irrigation - Dallam County						
	2000	2010	2020	2030	2040	2050		
Population								
(number of persons)								
Water Demand	386,403	386,403	286 402	386,403	386,403	386,403		
(ac-ft/yr)	380,403	380,403	386,403	380,403	380,403	380,403		
Current Supply	386,403	386,403	386,403	112,427	5,432	5,440		
(ac-ft/yr)	380,403	380,403	380,403	112,427	5,452	5,440		
Supply - Demand	0	0	0	-273,976	-380,971	-380,963		
(ac-ft/yr)	0	0	0	-273,970	-380,971	-380,903		
Recommended Short Term Strategy (ac-ft/yr)	0	71,091	104,236	104,236	104,236	104,236		
Long Term Strategy (ac-ft/yr)		1	None ic	lentified	L	I		

Water User Group:	Livestock - l	Livestock - Dallam County						
	2000	2010	2020	2030	2040	2050		
Population (number of persons)								
Water Demand (ac-ft/yr)	6,973	10,737	12,234	13,799	15,590	17,644		
Current Supply (ac-ft/yr)	6,973	10,737	12,234	13,799	848	848		
Supply - Demand (ac-ft/yr)	0	0	0	0	-14,742	-16,796		
Recommended Short Term Strategy - Develop water rights as needed (ac-ft/yr)	0	0	0	0	14,742	16,796		
Long Term Strategy (ac-ft/yr)	None identified							

Water User Group:	Manufactur	Manufacturing - Dallam County						
	2000	2010	2020	2030	2040	2050		
Population								
(number of persons)								
Water Demand	235	235	235	235	235	235		
(ac-ft/yr)	233	233	233	233	233	233		
Current Supply	235	235	235	235	3	3		
(ac-ft/yr)	233	233	235	233	5	5		
Supply - Demand	0	0	0	0	-232	-232		
(ac-ft/yr)	0	0	0	0	-232	-232		
Recommended Short Term Strategy - Purchase additional water rights (ac-ft/yr)	0	0	0	0	232	232		
Long Term Strategy (ac-ft/yr)			None ic	lentified				

Water User Group:	City of Lefors	City of Lefors - Gray County						
	2000	2010	2020	2030	2040			
Population (number of persons)	638	603	559	517	500			
Water Demand (ac-ft/yr)	120	107	95	85	80			
Current Supply (ac-ft/yr)	120	88	0	0	0			
Supply - Demand (ac-ft/yr)	0	-19	-95	-85	-80			
Recommended Short Term Strategy - Install new well (ac-ft/yr)	0	19	95	85	80			
Long Term Strategy (ac-ft/yr)			None ic	lentified				

Water User Group:	Manufacturing - Gray County						
	2000	2010	2020	2030	2040		
Population							
(number of persons)							
Water Demand	3,947	4,225	4,332	4,407	4,692		
(ac-ft/yr)	5,947	4,225	4,552	4,407	4,092		
Current Supply	3,947	4,225	4,332	4,407	4,692		
(ac-ft/yr)	3,947	4,223	4,332	4,407	4,092		
Supply - Demand	0	0	0	0	0		
(ac-ft/yr)	0	0	0	0	0		
Recommended Short Term Strategy (ac-ft/yr)	None identified						
Long Term Strategy - Supply provided by Pampa's Ogallala well field (ac-ft/yr)	0	0	0	0	0		

Water User Group:	City of McCl	City of McClean - Gray County						
	2000	2010	2020	2030	2040			
Population (number of persons)	891	931	970	868	850			
Water Demand (ac-ft/yr)	266	266	265	232	226			
Current Supply (ac-ft/yr)	266	266	19	0	0			
Supply - Demand (ac-ft/yr)	0	0	-246	-232	-226			
Recommended Short Term Strategy - Install new wells (ac-ft/yr)	0	0	246	232	226			
Long Term Strategy (ac-ft/yr)		1	None ic	lentified	1			

2050
488
78
0
-78
78

2050	
4,967	
4,910	
-57	

57

Water User Group:	City of Gruver - Hansford County							
	2000	2010	2020	2030	2040			
Population (number of persons)	1,216	1,280	1,297	1,278	1,247			
Water Demand (ac-ft/yr)	377	381	372	361	346			
Current Supply (ac-ft/yr)	377	86	0	0	0			
Supply - Demand (ac-ft/yr)	0	-295	-372	-361	-346			
Recommended Short Term Strategy - Develop existing water rights and Palo Dura Reservoir (ac-ft/yr)	0	295	372	361	346			
Long Term Strategy (ac-ft/yr)	None identified							

Vater User Group: City of Canadian - Hemphill County							
	2000	2010	2020	2030	2040		
Population (number of persons)	2,604	2,757	2,789	2,725	2,665		
Water Demand (ac-ft/yr)	683	692	669	641	615		
Current Supply (ac-ft/yr)	683	692	470	0	0		
Supply - Demand (ac-ft/yr)	0	0	-199	-641	-615		
Recommended Short Term Strategy - Install new wells (ac-ft/yr)	0	0	199	641	615		
Long Term Strategy (ac-ft/yr)	None identified						

Water User Group:	City of Cactus - Moore County						
-	2000	2010	2020	2030	2040	2050	
Population (number of persons)	2,500	2,871	3,279	3,921	4,717	5,673	
Water Demand (ac-ft/yr)	445	476	511	592	703	838	
Current Supply (ac-ft/yr)	445	476	511	0	0	0	
Supply - Demand (ac-ft/yr)	0	0	0	-592	-703	-838	
Recommended Short Term Strategy - Install new wells and Palo Duro Reservoir (ac-ft/yr)	0	0	0	400	500	500	
Long Term Strategy (ac-ft/yr)	None identified						

Water User Group:	County Other - Moore County						
	2000	2010	2020	2030	2040	2050	
Population (number of persons)	1,879	1,969	2,017	1,996	1,991	2,053	
Water Demand (ac-ft/yr)	453	452	441	427	419	430	
Current Supply (ac-ft/yr)	453	452	441	0	0	0	
Supply - Demand (ac-ft/yr)	0	0	0	-427	-419	-430	
Recommended Short Term Strategy - Supplied by Sunray and Dumas (ac-ft/yr)	0	0	0	427	419	430	
Long Term Strategy (ac-ft/yr)	None identified						

Water User Group:	City of Dum	City of Dumas - Moore County								
	2000	2010	2020	2030	2040	2050				
Population (number of persons)	14,620	16,451	18,312	19,942	21,443	23,057				
Water Demand (ac-ft/yr)	2,833	3,022	3,200	3,418	3,603	3,848				
Current Supply (ac-ft/yr)	2,833	3,022	3,200	0	0	0				
Supply - Demand (ac-ft/yr)	0	0	0	-3,418	-3,603	-3,848				
Recommended Short Term Strategy - Install new wells and Palo Duro Reservoir (ac-ft/yr)	0	0	0	858	1,043	1,288				
Long Term Strategy (ac-ft/yr)	None identified									

Water User Group:	Irrigation -	Moore Coun	nty			
	2000	2010	2020	2030	2040	2050
Population (number of persons)						
Water Demand (ac-ft/yr)	200,579	200,579	200,579	200,579	200,579	200,579
Current Supply (ac-ft/yr)	200,582	200,582	179,184	3	3	3
Supply - Demand (ac-ft/yr)	3	3	-21,395	-200,576	-200,576	-200,576
Recommended Short Term Strategy - No strategy identified (ac-ft/yr)	0	39,529	56,202	56,202	56,202	56,202
Long Term Strategy (ac-ft/yr)	None identified					

Water User Group:	Livestock -	Moore Coun	ty				
	2000	2010	2020	2030	2040	2050	
Population							
(number of persons)							
Water Demand	3,510	7,158	8,105	9,059	10,146	11,386	
(ac-ft/yr)	,	,	,	,	,	,	
Current Supply (ac-ft/yr)	3,510	7,158	8,893	1,600	1,600	1,600	
Supply - Demand (ac-ft/yr)	0	0	0	-7,459	-8,546	-9,786	
Recommended Short Term Strategy - Develop water rights or import water from nearby counties (ac-ft/yr)	0	0	0	7,459	8,546	9,786	
Long Term Strategy (ac-ft/yr)		None identified					

Water User Group:	Manufactur	ing - Moore	County				
	2000	2010	2020	2030	2040	2050	
Population							
(number of persons)							
Water Demand (ac-ft/yr)	7,238	7,712	8,035	8,269	8,863	9,429	
Current Supply (ac-ft/yr)	7,238	7,712	8,035	0	0	0	
Supply - Demand (ac-ft/yr)	0	0	0	-8,269	-8,863	-9,429	
Recommended Short Term Strategy - Groundwater, Palo Duro Reservoir, and Treated Effluent (ac-ft/yr)	2,000	2,000	2,205	8,269	8,863	9,429	
Long Term Strategy (ac-ft/yr)	None identified						

Water User Group:	Steam Elect	Steam Electric Power - Moore County								
	2000	2010	2020	2030	2040	2050				
Population										
(number of persons)										
Water Demand	200	200	200	200	200	200				
(ac-ft/yr)	200	200	200	200	200	200				
Current Supply	200	200	200	0	0	0				
(ac-ft/yr)	200	200	200	0	0	0				
Supply - Demand	0	0	0	-200	-200	-200				
(ac-ft/yr)	0	0	0	-200	-200	200				
Recommended Short Term Strategy - Purchase water rights (ac-ft/yr)	0	0	0	200	200	200				
Long Term Strategy (ac-ft/yr)		None identified								

Water User Group:	City of Sum	ay - Moore	County					
	2000	2010	2020	2030	2040	2050		
Population (number of persons)	1,902	2,271	2,678	3,022	3,267	3,532		
Water Demand (ac-ft/yr)	492	560	630	701	750	807		
Current Supply (ac-ft/yr)	492	560	630	0	0	0		
Supply - Demand (ac-ft/yr)	0	0	0	-701	-750	-807		
Recommended Short Term Strategy - Install new wells and Palo Duro Reservoir (ac-ft/yr)	0	0	0	701	750	807		
Long Term Strategy (ac-ft/yr)		None identified						

Water User Group:	City of Perry	City of Perryton - Ochiltree								
	2000	2010	2020	2030	2040					
Population (number of persons)	8,071	8,566	8,863	8,824	8,708					
Water Demand (ac-ft/yr)	2,468	2,504	2,482	2,432	2,370					
Current Supply (ac-ft/yr)	2,468	986	0	0	0					
Supply - Demand (ac-ft/yr)	0	-1,518	-2,482	-2,432	-2,370					
Recommended Short Term Strategy - Install new wells (ac-ft/yr)	0	1,518	2,482	2,432	2,370					
Long Term Strategy (ac-ft/yr)		None identified								

2050
8,594
2,320
0
-2,320
2,320

Water User Group:	County O	ther - Oldh	am County	y		
	2000	2010	2020	2030	2040	2050
Population (number of persons)	1,462	1,538	1,529	1,476	1,402	1,302
Water Demand (ac-ft/yr)	2,496	2,492	2,479	2,467	2,450	2,439
Current Supply (ac-ft/yr)	2,496	2,492	2,479	2,467	2,450	144
Supply - Demand (ac-ft/yr)	0	0	0	0	0	-2,295
Recommended Short Term Strategy (ac-ft/yr)			None id	lentified		
Long Term Strategy - Adrian (ac-ft/yr)	0	0	0	0	0	2,295

Water User Group:	Irrigation	- Oldham	County			
	2000	2010	2020	2030	2040	2050
Population (number of persons)						
Water Demand (ac-ft/yr)	26,497	26,497	26,497	26,497	26,497	26,497
Current Supply (ac-ft/yr)	26,497	26,497	26,497	26,497	24,069	549
Supply - Demand (ac-ft/yr)	0	0	0	0	-2,428	-25,948
Recommended Short Term Strategy (ac-ft/yr)	None identified					
Long Term Strategy (ac-ft/yr)	0	8,549	13,075	13,075	13,075	13,075

Water User Group:	Mining - (Oldham Co	ounty (Red	Basin Only	y)	
	2000	2010	2020	2030	2040	2050
Population						
(number of persons)						
Water Demand	271	279	287	296	305	314
(ac-ft/yr)	271	21)	207	270	303	514
Current Supply	271	279	287	296	305	3
(ac-ft/yr)	271	21)	207	270	505	5
Supply - Demand	0	0	0	0	0	-311
(ac-ft/yr)	v	0	0	0	0	511
Recommended Short Term Strategy (ac-ft/yr)	None identified					
Long Term Strategy - Install new wells (ac-ft/yr)	0	0	0	0	0	311

Water User Group:	City of Ve	City of Vega - Oldham County							
	2000	2010	2020	2030	2040	2050			
Population (number of persons)	931	1,000	1,034	1,055	1,016	978			
Water Demand (ac-ft/yr)	265	273	269	270	255	245			
Current Supply (ac-ft/yr)	265	273	269	270	255	0			
Supply - Demand (ac-ft/yr)	0	0	0	0	0	-245			
Recommended Short Term Strategy (ac-ft/yr)		None identified							
Long Term Strategy - Install new wells (ac-ft/yr)	0	0	0	0	0	245			

							*						T T	
Nape Neurofice States (2) Applicable	Name Teaching Street	New York (FIRE Spectrate) New York (Spectra	Report Role Realing Streptures	Fighted a Teaching Teaching Real Participants (Teaching Re	Restaur Parts Index Care Restaur Care	Specific Sector Statistics	Next Spath laws had spath at	han Markan And And And And And And And And And An	hardin hardin (hardin) Earline	ha Mili ha Will ha Wildow (balay) ha Wildow (bal	ney hardeline/harbagi.harbagi (ad) (ad) (ad) (ad) (ad) (ad) (ad) (ad)	* r===	Tank Tan	
		an tau					5/00. 2020					No wind from which with a final of the	and the second s	-
	2 000	10/00 1000 1000					140 16.1 50 16.1 50 17.5					to a surface with with a fly a surface as and with fly a surface with with a fly a surface with with a fly		(internet in the second
					A		Bellanda N Distanta	-				Company Report Marken Com	-	- tomas
		_			A 20 H	101	Lon A N					4.5 September 2019 - Stephen Stephe	and a second sec	shates
		100			· · · ·		Tak B MA				15 00 00 00 16 00 00	1.0 Spin Rape. WH E. S. Spin Rape. 101	10.00 Di	distant distant
	ulah ulah				· · · ·		RecTraciates H Ford D September 2010				0 0 0 0	Um light Single - Nap 8.7 a light Single - Augista Manual	-	anators anators
		and the second se		8 N I I	1 R I	-	1980 - 1000		* *	5 10 B		3.75 Variage sets light is world it reput new linearity varias		diameter (
		anna an anna an anna an anna an anna an an				-	nyan birin nyan bi	1				Te de palee alfred en de paleite de calque pale		and and a second
						-	ayan .					Page, water products, Page's splittered bit for all y development or disk to determine at the split		and the second se
												Bandhay shada 1 kas		-
	4	1000					Addentiation 2005 Sector 2005 Addentiation 2005					in the first derivation of the second se	-	Contract of Contra
				· · · ·	1 1 1		Modelses 100 Modelses 110 Modelses 110 April 320		1 I I I	un un un		Na an tai fanina Na antifica cultur cha postelo potenci antificatego	-	alastas
-	17.0100		· -			-	Millebare					19 app) products, there, and these free strategies for some the only observables and with the distance on the ough,		relation
							Spino						-	
								1				Bit spip productly, here, Takes, Take, and an and address and a discussion of a solid conditions of the spip.		
			: =				Alexan Area Alexan Alex					Ultraditional Unique lingto destination	and and a second	- Andreas Television
					A 8 8 4	81	Berlandske				0 0 0 0 0 0	Coll Superior Standards Stand Standards Standards S		-matters
-							Next Table State					R2 September Steelyn - SN1 102 Sentember Steelyn - SN1	- inn	
	-					-	Rath City Biol Contact Register Contact					Contraction of the second seco	-	
140		August Au					Tank 17 R Rylin V POUR	1				 K. S. Specific strains, interpretent deletion. K. S. Sandy and A. Sandy and A. Sandy and S. Sandy and S. Sandy. 	E	
						11	Maketan Ayan Ayan					Con Constanting Co		Terrer
			· –		· · ·		Nor-Index 2017	1				10 marks that participantly and bit monitorial discupping marks the sense of Warns on Education (Lynn		and an
	2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						NAN NEW CONTRACTOR					 A star string to the string to	-	-Autors
												10 Million de la contra de la contra della	- Contraction of the Contraction	and and a second se
			· · · · · · · · · · · · · · · · · · ·			-	New York Conception of Concept					a de la constante de	and a	atuma .
1	and the second se				1 1		Park W. Barrison B. Barrison B					Tayata Bangar, Bark Karal ya Bi ngana Sangar, Sad Karal yajita		in and
					1 1		No. Second Secon	-				Designing Stangers - Start Second Seglers Designing Stangers - Stagned Second Seglers	- Const	all contacts
	and the second se				A		And		8			2 open Neger Super State Manual State State And State Sta	and a second sec	an a
-					· · ·		Annual An	-				An and a second s	-	-
	and a second				· · ·		Test N					Group Serger 10 Group 10	anna an	and and a second
					1 1		Northeasteine N Face Northeasteine Face Northeasteine	-		1 1 1		Na Apple States - May Support States - May	- Const	atomic and a second sec
					· · · · ·		Reproduced to the second secon					1.0 September Respondent Aussissed		
			-			-	And Yang					1 Million of the Holdson specific		<u></u>
-					· · ·	-	internet int					in a high factor has to story	inter a	-
August 44		NU 1000			1 5 1		lipite biographic biog					Control of any all for the samples of All Control of Co	-	and and a second
1000 C 000							Network Network					Resolution and address to the second se		- commo
100		Page Page Page Page Page Page Page Page	1 1				igini Bala and and and and and and and and and an					120 Staffer for etc. etc. 12 is the Transition Tendenties in Annual		(and the second
	Charles and Charle	28 222					ann Ann Beile Beileanna Ann B					1 Mar André Alex (1997) Mar André Angel (1997) A angel (1997) André Angel (1997)	- Contraction of the Contraction	and and a second
					· · · · ·		Belleville - Call Belleville Belleville		a			a nyana Nangun Nari kasari an Na nyana Nangun Nari kasaringkan		an a
	and and				1		Reflectedar Facilită Reflectedar					Chapter Needer - Need Association	-	-
	and a second						Factor and Control of		-			a nyana kangan sayan sa kangan sayan A nyana Sangan Sayad Yao kangan bagian	ing and a second s	-
							Tanj B Kat	1	1			Compare Magazine Marco	F	-
	ana a				· · ·		Nellandas 2.000 Tati B. Nellandas Tati B.					Um Septembergen Alder Belgeber Stergen Alder		anana ana ana ana ana ana ana ana ana a
					2 2	-	Reference Sec 9 Reference			1 1 1		M Septem Steeper . Shep	-	-total
							And the second s					10 Specific and Specific and		stration
2000 C	0 4 7 4 7 4					1	100 0 10 10 10 10 10 10 10 10 10 10 10 1					 a paper ange a paper dental b a paper a pape	1	-
							kin kini					17 De Arte Wang under ben Kristing. 18 Die sonne die ander die bei kentlik.	-	in the second se
2000 M		1400 140			1 1 1							A MARK AND		g
							944					at and find that who is lead to.		Andreas Martine
		-	: 2		1 1	2	And					Na kalendari (M.) Na kalendari (M.)	ordens of	strature
	alah alah						Factor 20 Research 20 Factor 20	1 1	1			Column Singles, Star Second and Column Singles, Star Second approx	- Constant	a la como
			:		1 1 1		Reference Sector 2 Reference Sector 2					1 Superior Stanger, Star Channel Superior Star Star Star Star Star Star Star Sta		-
	artisti.				: : :		Reference Reference Reference		1			A Sequence Nampino - Nampino E Sek to Nampino Regiment	and	finance in the second s
	adah		. –			-	Tank 10 Maria Bachandan Tank 10	-				1 Apple Support	orman a	-
	unters				1 1 1		Tanj 0 V.N./h Reference Tanj 0		n n 1 1			12 September Margan - Adda 2 September Margan - Adda		distant m
						-	Technology B Technology B Te	+				13 Spinistings-Step Spinistings-Step		and and a second
			-				Reparation Streams Transp. 10 Reparation Streams					(2) Space Responder Statement	and a second sec	and an and a second sec
	The second s	I NARN I NARN					146.0 5/5 5/6 5/6 5/6 5/6	+				 spenti straju o suje su o dela listi Bio Million de la Regularia del strajul sub Researdy castin Saring subsidie a subdi el regularia de Researdy castin 		an a
						-	5m					(2) Analysis optice and a coppi and homolysistic	and an	c
							10					 A rest of a second bit 	1	€

Α	В	С	D	E	F	G	Н	I	J	K	L	М	Ν	0	Р	Q	R	S	T	U	V	W	X		
Water User Group Name	Water User Group Identifier	Regional Water Planning Group Letter	Sequence Number for Water User Group	City Number for Water User Group	County Number for Water User Group	Basin Number for Wate User Group	Name of Water Management Strategy	Type of Water Supply	Major Water Provider Number (TWDB Alpha	Regional Water Planning Group of Source	County Number of Source	Basin Number of Source	Specific Source Identifier	Name of Specific Source	Total Capital Cost	Year 2000 Value of Total Supply from	Year 2010 Value of Total Supply from	Year 2020 Value of Total Supply from	Year 2030 Value of Total Supply from	Year 2040 Value of Total Supply from	Year 2050 Value of Total Supply from	Exception from Meeting Needs	Scenario Number for Meeting Long g Term Needs (Blank if only on- listed)	County Nam	ne Basin
CLAUDE	010173000	A	0173	0114	006	2	Install 2 new wells within 3 miles of City	4j8		A	006	02	00621	Ogallala	\$1,585,990	0	0	0	150	268	267			ARMSTRONG	G RED
GROOM	010365000	А	0365	0875	033	2	Install one new well within City	4j9		А	033	02	03321	Ogallala	\$299,207	0	0	0	0	51	121			CARSON	RED
PANHANDLE	010675000	А	0675	0453	033	2	Install 2 new wells within City	4j10		А	033	02	03321	Ogallala	\$888,170	0	0	0	0	738	933			CARSON	RED
SKELLYTOWN	010834000	А	0834	0960	033	1	Install one new well within City	4j11		А	033	01	03321	Ogallala	\$299,412	0	0	44	64	61	59			CARSON	CANADIAN
WHITE DEER	010962000	А	0962	0647	033	1	Install 2 new wells within City	4j12		А	033	01	03321	Ogallala	\$714,206	0	0	0	0	45	267			CARSON	CANADIAN
WHITE DEER	010962000	А	0962	0647	033	2	Install 2 new wells within City	4j12		А	033	02	03321	Ogallala		0	0	0	0	3	14			CARSON	RED
COUNTY-OTHER	010996056	А	0996	0757	056	1	Supply provided by Dalhart	4j13		А	103	01	10321	Ogallala		0	0	0	121	173	172			DALLAM	CANADIAN
IRRIGATION	011004056	А	1004	1004	056	1	Irrigation Strategies - Short Season Corn	4a1		А	056	01	38056	Other Conservation County 056	\$0	0	7,850	15,700	15,700	15,700	15,700	а	DAI-1	DALLAM	CANADIAN
IRRIGATION	011004056	А	1004	1004	056	1	Irrigation Strategies - NPET	4a3		А	056	01	38056	Other Conservation County 056	\$17,075	0	23,716	33,202	33,202	33,202	33,202	а	DAI-4	DALLAM	CANADIAN
IRRIGATION	011004056	А	1004	1004	056	1	Irrigation Strategies - LEPA	4a4		А	056	01	38056	Other Conservation County 056	\$10,432,928	0	11,066	22,132	22,132	22,132	22,132	а	DAI-5	DALLAM	CANADIAN
IRRIGATION	011004056	А	1004	1004	056	1	Irrigation Strategies - Tillage	4a6		А	056	01	38056	Other Conservation County 056	\$0	0	4,743	9,486	9,486	9,486	9,486	а	DAI-6	DALLAM	CANADIAN
IRRIGATION	011004056	А	1004	1004	056	1	Irrigation Strategies - Precipitation Enhancemen	41		А	056	01	37056	Precipitation Enhancement County 056	\$0	0	23,716	23,716	23,716	23,716	23,716	а	DAI-7	DALLAM	CANADIAN
LIVESTOCK	011005056	А	1005	1005	056	1	Develop water rights as needed or import water from nearby counties	4k		А	056	01	37056	Ogallala	\$15,503,746	0	0	0	0	14,742	16,796			DALLAM	CANADIAN
MANUFACTURING	011001056	А	1001	1001	056	1	Texline purchases additional water rights to protect their existing supplies	4j26		А	056	01	05621	Ogallala	\$293,576	0	0	0	0	232	232			DALLAM	CANADIAN
LEFORS	010515000	А	0515	0898	090	2	Installed new well this year - no new strategy needed	4j		А	090	02	09021	Ogallala	\$0	0	19	95	85	80	78			GRAY	RED
MANUFACTURING	011001090	А	1001	1001	090	1	Supply assumed provided by Pampa"s Ogallala well fielc	4j		А	090	01	09021	Ogallala		0	0	0	0	0	57			GRAY	CANADIAN
MCLEAN	010578000	А	0578	0380	090	2	Install 2 new wells within 1.5 miles	4j14		А	090	02	09021	Ogallala	\$1,277,140	0	0	246	232	226	220			GRAY	RED
GRUVER	010368000	А	0368	0256	098	1	develop existing water rights and additional water rights (2 wells)	4j3		А	098	01	09821	Ogallala	\$768,821	0	295	372	161	146	134			HANSFORD	CANADIAN
GRUVER	010368000	А	0368	0256	098	1	Palo Duro Reservoir Install 2 new wells	4d		A	098	01	09821	Ogallala	\$1,872,376	0	0	0	200	200				HANSFORD	CANADIAN
CANADIAN	010142000	A	0142	0093	106	1	within 5 miles Palo Duro Reservoir	4j15		A	106	01	10621	Ogallala	\$2,467,508	0	0	199	641	615	601			HEMPHILL	CANADIAN
CACTUS CACTUS	010134000 010134000	A	0134	0762	171	1	project Install 4 new wells (will also provide for portion	4d 4j6		A	171	01	01020	Palo Duro Reservoir Ogallala	\$18,723,763 \$5,232,510	0	0	0	400	203	338	а		MOORE	CANADIAN
COUNTY-OTHER	010996171	А	0996	0757	171	1	of manufacturing) supply provided by Sunray and Dumas. See strategies for source	4e1		А	171	01	01020	Palo Duro Reservoir		0	0	0	150	150	150	а	MOC-1	MOORE	CANADIAN
COUNTY-OTHER	010996171	А	0996	0757	171	1	supply provided by Sunray, Dumas, Fritch, and new rural wells if needed.	4e2		А	171	01	17121	Ogallala		0	0	0	277	269	280	а	MOC-2	MOORE	CANADIAN
DUMAS	010255171	А	0255	0170	171	1	Palo Duro Reservoir project	4d		А	171	01	01020	Palo Duro Reservoir	\$23,966,417	0	0	0	2,510	2,510	2,510			MOORE	CANADIAN
DUMAS	010255171	А	0255	0170	171	1	Install 3 new wells	4j5		А	171	01	17121	Ogallala	\$3,919,408	0	0	0	908	1,093	1,338	а		MOORE	CANADIAN
IRRIGATION	011004171	А	1004	1004	171	1	Irrigation Strategies - Short Season Sorghum	4a5		А	171	01	38171	Other Conservation County 171	\$0	0	1,100	2,200	2,200	2,200	2,200	а	MOI-2	MOORE	CANADIAN
IRRIGATION	011004171	А	1004	1004	171	1	Irrigation Strategies - NPET	4a3		А	171	01	38171	Other Conservation County 171	\$10,284	0	14,284	19,997	19,997	19,997	19,997	а	MOI-4	MOORE	CANADIAN
IRRIGATION	011004171	А	1004	1004	171	1	Irrigation Strategies - LEPA	4a4		А	171	01	38171	Other Conservation County 171	\$7,492,758	0	7,004	14,007	14,007	14,007	14,007	а	MOI-5	MOORE	CANADIAN
IRRIGATION	011004171	А	1004	1004	171	1	Irrigation Strategies - Tillage	4a6		А	171	01	38171	Other Conservation County 171	\$0	0	2,857	5,714	5,714	5,714	5,714	а	MOI-6	MOORE	CANADIAN
IRRIGATION	011004171	А	1004	1004	171	1	Irrigation Strategies - Precipitation Enhancemen	41		А	171	01	38171	Other Conservation County 171	\$0	0	14,284	14,284	14,284	14,284	14,284	а	MOI-7	MOORE	CANADIAN

A	В	С	D	E	F	G	Н	I	J	к	L	М	Ν	0	Р	Q	R	S	T	U	V	W	X		
Water User Group Name	Water User Group Identifier	Regional Water Planning Group	Sequence Number for Water User	City Number for Water User	County Number for Water User	Basin Number for Wate User		Type of Water Supply	Provider Number P	Regional Water Planning N Group of	County Number of Source	Basin Number of Source	Specific Source Identifier	Name of Specific Source	Total Capital Cost	Year 2000 Value of Total Supply	Vear 2010 Value of Total Supply	Year 2020 Value of Total Supply	Year 2030 Value of Total Supply	Year 2040 Value of Total Supply	Year 2050 Value of Total Supply	Exception from Meeting Needs	Scenario Numbe for Meeting Lon Term Needs (Blank if only on	County Name	Basin
		Letter	Group	Group	Group	Group	B		Alpha	Source				1		from	from	from	from	from	from		listed)		
LIVESTOCK	011005171	А	1005	1005	171	1	Develop water rights as needed or import water from nearby counties	4j40		А	171	01	37171	Precipitation Enhancement County 171	\$7,972,527	0	0	0	7,459	8,546	9,786			MOORE	CANADIAN
MANUFACTURING	011001171	А	1001	1001	171	1	Palo Duro reservoir via	4d		А	171	01	01020	Palo Duro Reservoir	91,712,321	0	0	0	1,100	1,300	1,500		MOM-1	MOORE	CANADIAN
MANUFACTURING	011001171	А	1001	1001	171	1	Cactus Groundwater via new	4j29		А	171	01	17121	Ogallala	\$9,469,879	0	0	0	2,938	3,083	3,174		MOM-2	MOORE	CANADIAN
MANUFACTURING	011001171			1001	171	1	supplies Groundwater via Cactus				171	01				-	0		1,800		1,800		MOM-3	MOORE	CANADIAN
MANUFACTURING	011001171	A	1001	1001	1/1	1		4j6		A	1/1	01	17121	Ogallala		0	0	0	1,800	1,800	1,800		MOM-5	MOORE	CANADIAN
MANUFACTURING	011001171	А	1001	1001	171	1	treated effluent (currently used, but was not included in supply) assume 5% increase of TE use every 5 years.	4b1		А	171	01	36012	Reuse: BaZoCou 01- 02-171	\$0	2,000	2,000	2,205	2,431	2,680	2,955		MOM-4	MOORE	CANADIAN
STEAM ELECTRIC POWER	011002171	А	1002	1002	171	1	purchase additional	4j33		А	171	01	17121	Ogallala	\$334,320	0	0	0	200	200	200			MOORE	CANADIAN
SUNRAY	010872000	А	0872	0588	171	1	water rights Install 2 new wells	4j7		А	171	01	17121	Ogallala	\$2,587,114	0	0	0	701	750	807			MOORE	CANADIAN
SUNRAY	010872000	А	0872	0588	171	1	Palo Duro Reservoir project	4d		А	171	01	01020	Palo Duro Reservoir	\$4,680,941	0	0	0	400	400	400			MOORE	CANADIAN
PERRYTON	010689000	А	0689	0461	179	1	Install 5 new wells correction with Boys	4j22		А	179	01	17921	Ogallala	\$5,462,979	0	1,518	2,482	2,432	2,370	2,320			OCHILTREE	CANADIAN
COUNTY-OTHER	010996180	Α	0996	0757	180	1	Ranch	4e3		А	180	01		no strategy needed	\$0	0	0	0	0	0	2,273		OLC-1	OLDHAM	CANADIAN
COUNTY-OTHER	010996180	A	0996	0757	180	2	Adrian	4e3		А	180	02	18021	Ogallala	\$0	0	0	0	0	0	22		OLC-2	OLDHAM	RED
IRRIGATION	011004180	А	1004	1004	180	1	Irrigation Strategies - Short Season Sorghum	4a5		А	180	01	38180	Other Conservation County 180	\$0	0	499	998	998	998	998	а	OLI-2	OLDHAM	CANADIAN
IRRIGATION	011004180	А	1004	1004	180	2	Irrigation Strategies - Short Season Sorghum	4a5		А	180	02	38180	Other Conservation County 180 Other Conservation		0	26		53	53	53	а	OLI-2	OLDHAM	RED
IRRIGATION	011004180	Α	1004	1004	180	1	Irrigation Strategies - NPET	4a3		А	180	01	38180	County 180	\$1,811	0	2,389	3,345	3,345	3,345	3,345	а	OLI-4	OLDHAM	CANADIAN
IRRIGATION	011004180	А	1004	1004	180	2	Irrigation Strategies - NPET	4a3		А	180	02	38180	Other Conservation County 180		0	126	176	176	176	176	а	OLI-4	OLDHAM	RED
IRRIGATION	011004180	А	1004	1004	180	1	Irrigation Strategies - LEPA	4a4		А	180	01	38180	Other Conservation County 180	\$3,532,215	0	2,491	4,983	4,983	4,983	4,983	а	OLI-5	OLDHAM	CANADIAN
IRRIGATION	011004180	А	1004	1004	180	2	Irrigation Strategies - LEPA	4a4		А	180	02	38180	Other Conservation County 180		0	125	249	249	249	249	а	OLI-5	OLDHAM	RED
IRRIGATION	011004180	А	1004	1004	180	1	Irrigation Strategies -	4a6		А	180	01	38180	Other Conservation	\$0	0	478	956	956	956	956	а	OLI-6	OLDHAM	CANADIAN
IRRIGATION	011004180	А	1004	1004	180	2	Tillage Irrigation Strategies - Tillage	4a6		А	180	02	38180	County 180 Other Conservation County 180			25		50	50	50	а	OLI-6	OLDHAM	RED
IRRIGATION	011004180	А	1004	1004	180	1	Irrigation Strategies - Precipitation	41		А	180	01	37180	Precipitation Enhancement	\$0	0	2,389	2,389	2,389	2,389	2,389	а	OLI-7	OLDHAM	CANADIAN
IRRIGATION	011004180	А	1004	1004	180	2	Enhancement Irrigation Strategies - Precipitation	41		А	180	02	37180	County 180 Precipitation Enhancement			126	126	126	126	126	а	OLI-7	OLDHAM	RED
MINING	011003180	А	1003	1003	180	2	Enhancement Additional wells in	4j36		А	180	NA	18026	County 180 Dockum	\$510,833	0	0	0	0	0	311			OLDHAM	RED
VEGA	010928000	А	0928	0622	180	1	Dockum aquifer Install new well in Deaf	4j16		А	059	01	05921	Ogallala	\$1,727,357	0	0	0	0	0	61			OLDHAM	CANADIAN
	010928000						Smith County See Vega Canadian	-							1,121,121	0	0	0	0	0	184			OLDHAM	RED
VEGA		A	0928	0622	180	2	Basin for strategy Roberts County well	4j16		Α	059	02	05921	Ogallala		0	0	0	0	0					
AMARILLO	010020000	Α	0020	0014	188	1	field	4j1	17600	А	197	01	19721	Ogallala	\$154,829,940	0	0	0	0	8,400	8,400			POTTER	CANADIAN
AMARILLO	010020000	А	0020	0014	188	2	See Amarillo Canadian Basin for strategy	4j1	17600	А	197	01	19721	Ogallala		0	0	0	0	6,300	6,300			POTTER	RED
AMARILLO	010020000	А	0020	0014	188	1	Roberts County well field	4j2	17600	А	197	01	19721	Ogallala		0	0	0	0	10,694	10,083			POTTER	CANADIAN
AMARILLO	010020000	А	0020	0014	188	2	Roberts County well field	4j2	17600	А	197	01	19721	Ogallala		0	0	0	0	8,021	7,563			POTTER	RED
COUNTY-OTHER	010996188	А	0996	0757	188	1	Roberts County well field	4j2	17600	А	197	01	19721	Ogallala		0	0	0	0	1,094	1,260			POTTER	CANADIAN
COUNTY-OTHER	010996188	А	0996	0757	188	2	Roberts County well field	4j2	17600	А	197	01	19721	Ogallala		0	0	0	0	270	268			POTTER	RED
COUNTY-OTHER	010996188	А	0996	0757	188	1	Install ten new well:	4j23		А	188	01	18821	Ogallala	\$3,057,133	0	0	0	169	545	1,375			POTTER	CANADIAN
COUNTY-OTHER	010996188	А	0996	0757	188	2	See Potter County- Other Canadian Basin for strategy	4j23		А	188	02	18821	Ogallala		0	0	0	19	61	153			POTTER	RED
IRRIGATION	011004188	А	1004	1004	188	1	Irrigation Strategies - Short Season Sorghum	4a5		А	188	01	38188	Other Conservation County 188	\$0	0	68	135	135	135	135		POI-2	POTTER	CANADIAN
IRRIGATION	011004188	А	1004	1004	188	2	Irrigation Strategies - Short Season Sorghum	4a5		А	188	02	38188	Other Conservation County 188		0	8	15	15	15	15		POI-2	POTTER	RED
IRRIGATION	011004188	А	1004	1004	188	1	Irrigation Strategies - NPET	4a3		А	188	01	38188	Other Conservation County 188	\$1,693	0	2,117	2,963	2,963	2,963	2,963		POI-4	POTTER	CANADIAN

A	В	C Regional	D Sequence	E City	F County	G Basin	Н	I	J Major Water		L	М	Ν	0	Р	Q Year 2000	R Year 2010	S Year 2020	T Year 2030	U Year 2040	V Year 2050	W X Scenario Num		
Water User Group Name	Water User Group Identifier	Water Planning Group	Number for Water User	Number for Water User	Number for Water User	r for Water User	r Name of Water Management Strategy	Type of Water Supply	Provider Number (TWDB	Water Planning Group of	County Number of Source	Basin Number of Source	Specific Source Identifier	Name of Specific Source	Total Capital Cost	Value of Total Supply		Exception for Meeting Lo om Meeting Term Needs Needs (Blank if only	County Name	e Basin				
		Letter	Group	Group	Group	Group	Irrigation Strategies -		Alpha	Source				Other Conservation		from	from	from	from	from	from	listed)		
IRRIGATION	011004188	Α	1004	1004	188	2	NPET	4a3		Α	188	02	38188	County 188		0	235	329	329	329	329	POI-4	POTTER	RED
IRRIGATION	011004188	А	1004	1004	188	1	Irrigation Strategies - LEPA	4a4		А	188	01	38188	Other Conservation County 188	\$3,503,913	0	2,183	4,363	4,363	4,363	4,363	POI-5	POTTER	CANADIAN
IRRIGATION	011004188	А	1004	1004	188	2	Irrigation Strategies - LEPA	4a4		А	188	02	38188	Other Conservation County 188		0	243	485	485	485	485	POI-5	POTTER	RED
IRRIGATION	011004188	А	1004	1004	188	1	Irrigation Strategies - Tillage	4a6		А	188	01	38188	Other Conservation County 188	\$0	0	423	847	847	847	847	POI-6	POTTER	CANADIAN
IRRIGATION	011004188	А	1004	1004	188	2	Irrigation Strategies - Tillage	4a6		А	188	02	38188	Other Conservation County 188		0	47	94	94	94	94	POI-6	POTTER	RED
IRRIGATION	011004188	А	1004	1004	188	1	Irrigation Strategies - Precipitation Enhancemen	41		А	188	01	37188	Precipitation Enhancement County 188	\$0	0	2,117	2,117	2,117	2,117	2,117	POI-7	POTTER	CANADIAN
IRRIGATION	011004188	А	1004	1004	188	2	Irrigation Strategies - Precipitation Enhancemen	41		А	188	02	37188	Precipitation Enhancement County 188		0	235	235	235	235	235	POI-7	POTTER	RED
MANUFACTURING	011001188	А	1001	1001	188	1	Install two new well: Roberts County well	4b2		Α	188	01	18821	Ogallala	\$701,773	0	0	0	0	402	719		POTTER	CANADIAN
MANUFACTURING	011001188	Α	1001	1001	188	1	field	4j2	17600	А	197	01	19721	Ogallala		0	0	0	0	602	777		POTTER	CANADIAN
MINING	011003188	A	1003	1003	188	1	Dockum aquifer See Potter Mining	4j37		A	188	NA	18826	Dockum	\$852,070	0	0	0	0	193	231		POTTER	CANADIAN
MINING	011003188	А	1003	1003	188	2	Canadian Basin for strategy	4j37		А	188	NA	18826	Dockum		0	0	0	124	158	179		POTTER	RED
STEAM ELECTRIC POWER	011002188	А	1002	1002	188	1	Increase of wastewater effluent from Amarillo	4b4		А	188	01	36014	Reuse: BaZoCou 01- 02-188	\$9,659,623	0	7,700	8,900	10,500	12,300	15,859	POS-1	POTTER	CANADIAN
AMARILLO	010020000	А	0020	0014	188	2	See Amarillo Canadian Basin for strategy	4j1	17600	А	197	01	19721	Ogallala		0	0	0	0	15,300	15,300		RANDALL	RED
AMARILLO	010020000	А	0020	0014	191	2	Roberts County well field	4j2	17600	А	197	01	19721	Ogallala	\$208,124,865	0	0	0	0	19,478	18,366		RANDALL	RED
CANYON	010145000	А	0145	0096	191	2	Roberts County well field	4j2	17600	А	197	01	19721	Ogallala		0	0	0	0	479	772		RANDALL	RED
CANYON	010145000	А	0145	0096	191	2	Install three new wells	4j17		А	191	02	19121	Ogallala	\$2,728,454	0	0	107	248	479	772		RANDALL	RED
COUNTY-OTHER	010996191	А	0996	0757	191	1	Roberts County well field	4j2	17600	А	197	01	19721	Ogallala		0	0	0	0	543	629		RANDALL	CANADIAN
COUNTY-OTHER	010996191	А	0996	0757	191	2	Roberts County well field	4j2	17600	А	197	01	19721	Ogallala		0	0	0	0	3,671	5,109		RANDALL	RED
COUNTY-OTHER	010996191	А	0996	0757	191	1	Install 18 additional wells in Randall Co	4j24		А	191	01	19121	Ogallala	\$7,644,294	0	0	0	59	543	629		RANDALL	CANADIAN
COUNTY-OTHER	010996191	А	0996	0757	191	2	See County Other Randall Canadian Basin	4j24		А	191	02	19121	Ogallala		0	0	0	0	3,670	5,109		RANDALL	RED
IRRIGATION	011004191	А	1004	1004	191	1	Irrigation Strategies - Short Season Sorghum	4a5		А	191	01	38191	Other Conservation County 191	\$0	0	725	1,450	1,450	1,450	1,450	* RAI-2	RANDALL	CANADIAN
IRRIGATION	011004191	А	1004	1004	191	2	Irrigation Strategies - Short Season Sorghum	4a5		А	191	02	38191	Other Conservation County 191		0	15	30	30	30	30	* RAI-2	RANDALL	RED
IRRIGATION	011004191	А	1004	1004	191	1	Irrigation Strategies - NPET	4a3		А	191	01	38191	Other Conservation County 191	\$2,811	0	3,827	5,357	5,357	5,357	5,357	* RAI-4	RANDALL	CANADIAN
IRRIGATION	011004191	А	1004	1004	191	2	Irrigation Strategies - NPET	4a3		А	191	02	38191	Other Conservation County 191		0	78	109	109	109	109	* RAI-4	RANDALL	RED
IRRIGATION	011004191	А	1004	1004	191	1	Irrigation Strategies - LEPA	4a4		А	191	01	38191	Other Conservation County 191	\$4,236,576	0	3,778	7,557	7,557	7,557	7,557	* RAI-5	RANDALL	CANADIAN
IRRIGATION	011004191	А	1004	1004	191	2	Irrigation Strategies - LEPA	4a4		А	191	02	38191	Other Conservation County 191		0	77	154	154	154	154	* RAI-5	RANDALL	RED
IRRIGATION	011004191	А	1004	1004	191	1	Irrigation Strategies - Tillage	4a6		А	191	01	38191	Other Conservation County 191	\$0	0	765	1,531	1,531	1,531	1,531	* RAI-6	RANDALL	CANADIAN
IRRIGATION	011004191	А	1004	1004	191	2	Irrigation Strategies - Tillage	4a6		А	191	02	38191	Other Conservation County 191		0	16	31	31	31	31	* RAI-6	RANDALL	RED
IRRIGATION	011004191	А	1004	1004	191	1	Irrigation Strategies - Precipitation Enhancement	41		А	191	01	37191	Precipitation Enhancement County 191	\$0	0	3,827	3,827	3,827	3,827	3,827	* RAI-7	RANDALL	CANADIAN
IRRIGATION	011004191	А	1004	1004	191	2	Irrigation Strategies - Precipitation Enhancement	41		А	191	02	37191	Precipitation Enhancement County 191		0	78	78	78	78	78	* RAI-7	RANDALL	RED
LAKE TANGLEWOOD	010500000	А	0500	0895	191	2	Install three new wells	4j18		А	191	02	19121	Ogallala	\$1,058,356	0	12	305	303	294	282		RANDALL	RED
LIVESTOCK	011005191	А	1005	1005	191	1	Develop water rights as needed or import water from nearby counties	4j41		А	191	01	19121	Ogallala	\$9,653,252	0	0	0	2	31	34		RANDALL	CANADIAN
LIVESTOCK	011005191	А	1005	1005	191	2	Develop water rights as needed or import water from nearby counties	4j41		А	191	02	19121	Ogallala	47,000,202	0	0	0	0	2,570	3,373		RANDALL	RED
MANUFACTURING	011001191	А	1001	1001	191	2	Install one new wel	4b3		А	191	02	19121	Ogallala	\$307,360	0	0	0	0	149	182		RANDALL	RED

TWDB Table 12: Recommended Management Strategies by City and Category

Α	В	с	D	E	F	G	Н	I	J	к	L	M	N	0	Р	Q	R	s	Т	U	V	W	X		
Water User Group Name	Water User Group Identifier	Regional Water Planning Group Letter	Sequence Number for Water User Group	City Number for Water User Group	County Number for Water User Group	Basin Number for Water User Group	Name of Water Management Strategy	Type of Water Supply	Major Water Provider Number (TWDB Alpha	Water	County Number of Source	Basin Number of Source	Specific Source Identifier	Name of Specific Source	Total Capital Cost	Year 2000 Value of Total Supply from	Year 2010 Value of Total Supply from	Year 2020 Value of Total Supply from	Year 2030 Value of Total Supply from	Year 2040 Value of Total Supply from	Value of	Exception from Meeting	Scenario Number for Meeting Long Term Needs (Blank if only one listed)	County Name	e Basin
MANUFACTURING	011001191	А	1001	1001	191		Roberts County well field	4j2	17600	А	197	01	19721	Ogallala		0	0	0	0	148	173	;		RANDALL	RED
SHAMROCK	010822000	А	0822	0554	242	2	Two new wells in Ogallala	4j20		А	242	02	24221	Ogallala	\$3,177,861	0	0	0	0	252	321			WHEELER	RED
WHEELER	010961000	Α	0961	0646	242	2	Install one new wel	4j21		Α	242	02	24221	Ogallala	\$3,700,590	0	22	275	272	268	268	5		WHEELER	RED

Α	В	С	D	E	F	G	Н	I	J	К	L	М	N	0	Р	Q	R	S
Major Water Provider Name	Major Water Provider Number (TWDB Alpha Number)					Basin Number of Source	Name of Water Management Strategy	Specific Source Identifier	Name of Specific Source	Total Capital Cost	Year 2000 Value of Total Supply from Strategy	Year 2010 Value of Total Supply from Strategy	Year 2020 Value of Total Supply from Strategy	Year 2030 Value of Total Supply from Strategy	Year 2040 Value of Total Supply from Strategy	Year 2050 Value of Total Supply from Strategy	Exception from Meeting Needs	Scenario Number for Meeting Long-Term Needs (Blank if only one listed)
AMARILLO	17600	01	4j1	А	197	01	Roberts County well field	19721	Ogallala	\$208,207,294	0	0	0	0	8,400	8,400		
AMARILLO	17600	02	4j1	А	197	01	Roberts County well field	19721	Ogallala		0	0	0	0	6,300	6,300		
AMARILLO	17600	01	4j2	А	197	01	Roberts County well field	19721	Ogallala		0	0	0	0	10,694	10,083		
AMARILLO	17600	02	4j2	А	197	01	Roberts County well field	19721	Ogallala		0	0	0	0	8,021	7,563		
AMARILLO	17600	01	4j2	А	197	01	Roberts County well field	19721	Ogallala		0	0	0	0	1,094	1,260		
AMARILLO	17600	02	4j2	А	197	01	Roberts County well field	19721	Ogallala		(0 0	0	0	270	268		
AMARILLO	17600	01	4j2	А	197	01	Roberts County well field	19721	Ogallala		(0 0	0	0	602	777		
AMARILLO	17600	02	4j1	А	197	01	Roberts County well field	19721	Ogallala		0	0	0	0	15,300	15,300		
AMARILLO	17600	02	4j2	А	197	01	Roberts County well field	19721	Ogallala		0	0	0	0	19,478	18,366		
AMARILLO	17600	02	4j2	А	197	01	Roberts County well field	19721	Ogallala		0	0	0	0	479	772		
AMARILLO	17600	01	4j2	А	197	01	Roberts County well field	19721	Ogallala		0	0	0	0	543	629		
AMARILLO	17600	02	4j2	А	197	01	Roberts County well field	19721	Ogallala		0	0	0	0	3,671	5,109		
AMARILLO	17600	02	4j2	А	197	01	Roberts County well field	19721	Ogallala		c	0	0	0	148	173		

Panhandle Water Planning Group Public Participation Activities

Event	Date	Notes	Presenter	Group Type
Chamber Outreach Tour	3/3/1998	SB 1 Education	PRPC	1
Desk and Derrick Club - Pampa	5/21/1998	Plan Education	CE	1
Pampa Rotary Club	10/16/1998	Plan Education	CE	1
Perryton Chamber @ Lobo	12/16/1998	Plan Education	PRPC	1
Pampa Rotary	1/6/1999	Plan Education	PRPC	1
Chamber Outreach Tour	1/12/1999	Plan Education	PRPC	1
Miami Lions Club	1/12/1999	Plan Education	VC	1
Perryton Rotary	2/18/1999	Plan Education	PRPC	1
Spearman Rotary	5/30/1999	Plan Education	PRPC	1
Panhandle Rotary Club	6/8/1999	Plan Education	CE	1
Chamber Legislative Affairs		Plan Education	PRPC	1
Chamber Outreach Tour		Plan Education	PRPC	1
Follett Lions Club		Plan Education	VC	1
League of Women Voters		Plan Education	CE	1
Pampa Rotary Club		Plan Education	CE	1
Chamber Outreach Tour		Plan Education	PRPC	1
Panhandle Lions Club		Plan Education	CE	1
Perryton Lions Club		Plan Education	PRPC	1
Chamber Committee Mtg		Plan Education	PRPC	1
Golden K Kiwanis		Plan Education	PRPC	1
		Plan Education	PRPC	1
Pampa Rotary Club	12/20/2000	Plan Education	PRPG	I
McLean City Council		Plan Education	PRPC	2
PDRA Board Mtg	9/14/1999	Plan Education	PRPC	2
Childress Co. Commissioners Ct	10/12/1999	Plan Education	PRPC	2
GMIWA	12/16/1999	Plan Education	PRPC	2
PDRA Board Mtg	2/8/2000	Plan Education	PRPC	2
Perryton City Council	5/2/2000	Plan Education	PRPC	2
CRMWA Board Mtg	7/12/2000	Plan Education	PRPC	2
Panhandle City Council	10/12/2000	Plan Education	CE	2
USDA-ARS Ag-Day - Bushland	8/12/1998	Plan Education	CE	3
Carson County Extension		Plan Education	CE	3
Roberts County Range Tour		Plan Education	VC	3
Oldham County Extension Planning Committee		Plan Education	VC	3
Dumas Trip		Plan Education	PRPC	3
Panhandle Agricultural Council - TAMU		Plan Education	CE	3
-			PRPC	3
North Rolling Plains Field Day		Plan Education Plan Education	CE	3
TSCRA Conference			CE	3
Gray County Extension Service		Plan Education		
Extension Area Wheat Producers Meeting		Plan Education	VC	3
Roberts County Extension - Ag. Comm.		Plan Education	CE	3
Range and Pasture Field Day - Roberts County		Plan Education	VC	3
Panhandle Farm Mgmt. Symposium		Plan Education	PRPC	3
Moore Co. Ag. Day		Plan Education	PRPC	3
WTAMU Ag. Appraisal Students		Plan Education	CE	3
Regional Farm Bureau Conference		Plan Education	CE	3
Texas Cattle Feeders Ass'n Meeting		Plan Education	CE	3
Gray County Farm Bureau Convention		Plan Education	CE	3
Gray-Roberts Ag. Committee	9/8/2000	Plan Education	CE	3
Carson County Farm Bureau	9/27/2000	Plan Education	CE	3
Randall County Extension	11/14/2000	Plan Education	PRPC	3
Moore Co. Ag. Day	12/5/2000	Plan Education	PRPC	3
Dalhart Area Chamber Ag Presentation	12/7/2000	Plan Education	PRPC	3
Potter County Extension Service		Plan Education	PRPC	3

- Codes 1 Civic Group 2 Gov't Entity 3 Ag Group 4 Media Event 5 Special Interest 6 Public Info 7 Public Hearing 8 Workshops

21

8

24

Panhandle Water Planning Group Public Participation Activities

Event	Date	Notes	Presenter	Group Type
VII - TV Interview	11/4/1998	Plan Education	CE	4
hae Dodson (Channel7)		Media Education	PRPC	4
EYE Radio		Media Education	PRPC	4
GNC AM		Formal Public Meeting - PWPG	PRPC	4
evin Welch - AGN		Formal Public Meeting - PWPG	PRPC	2
GNC AM		Formal Public Meeting - PWPG	PRPC	2
hip Kanelis		Media Education	PRPC	
lews of Texas		Plan Education	PRPC	
ACV-TV		Media Education	PRPC	
GNC AM - Radio Interview		Plan Education	CE	
		Public Hearing/Plan Adoption	PRPC	2
GNC AM		Public Hearing/Plan Adoption	PRPC	2
GNC AM		Public Hearing/Plan Adoption	PRPC	2
/C Water Conference		Plan Education	PRPC	4
GWA - New Orleans		Plan Education	PRPC	4
GNC AM	12/12/2000	Plan Adoption	PRPC	2
anhandle Conference of Mayors	1/22/1998	SB 1 Education	PRPC	5
orth Rolling Plains RC&D Directors	6/11/1998	Plan Education	VC	5
ural Development Outreach - Miami	8/25/1998	SB 1 Education	PRPC	5
orth Rolling Plains RC&D Directors		Plan Education	VC	5
airy Day - Pampa		Plan Education	CE	5
ML Quarterly Mayors Mtg		Plan Education	PRPC	5
ounty Judges & Comm. Meeting		Plan Education	PRPC	5
heeler County Extension Planning Committee		Plan Education	VC	5
oberts County Extension - Planning Committee		Plan Education	VC	5
andall County Extension Planning Committee		Plan Education	VC	5
otter Futures Forum		Public Participation	PRPC	5
heeler County Extension Planning Committee		Plan Education	VC	5
arson County Extension Planning Committee		Plan Education	VC VC	5
,				
RP - Pampa		Plan Education	PRPC	5
orth Rolling Plains RC&D Directors		Plan Education	VC	5
AEX - Focus Group - Futures Forum		Public Participation	PRPC	5
CMA Presentation		Plan Education	PRPC	5
onference of mayors		Plan Education	PRPC	5
anhandle Conference of Mayors		SB 1 Education	PRPC	5
orth Rollng Plains RC&D Directors		Plan Education	VC	5
igh Plains RC&D Directors - Amarillo		Plan Education	VC	5
marillo College Water Forum		Plan Education	PRPC	5
ounty Judges & Comm. Meeting	9/22/2000	Plan Education	PRPC	5
ıblic Part. Mtg - PIN	6/15/1999	Formal Public Meeting - PWPG	PRPC	6
ublic Part Mtg-Dumas		Formal Public Meeting - PWPG	PRPC	e
ublic Part Mtg-Pampa		Formal Public Meeting - PWPG	PRPC	e
ublic Part. Mtg - PIN		Formal Public Meeting - PWPG	PRPC	6
		C C		
Iblic Hearing-Scope of Work		Public Hearing - Scope of Work		7
Public Hearing	9/19/2000	Public Hearing/Plan Adoption	PRPC	7
NRCC Drought Management Workshop	5/18/1999	Workshop	PRPC	8
WWA Mtg	5/20/1999	•	PRPC	8
epserados (emmett autrey	1/13/2000	•	PRPC	6
rought Contingency Workshop		Workshop	PRPC	6
WPG Workshop		Plan Education		
	7/0/2000	Plan Education	PRPC	8

Codes 1 Civic Group 2 Gov't Entity 3 Ag Group 4 Media Event 5 Special Interest 6 Public Info 7 Public Hearing

Codes

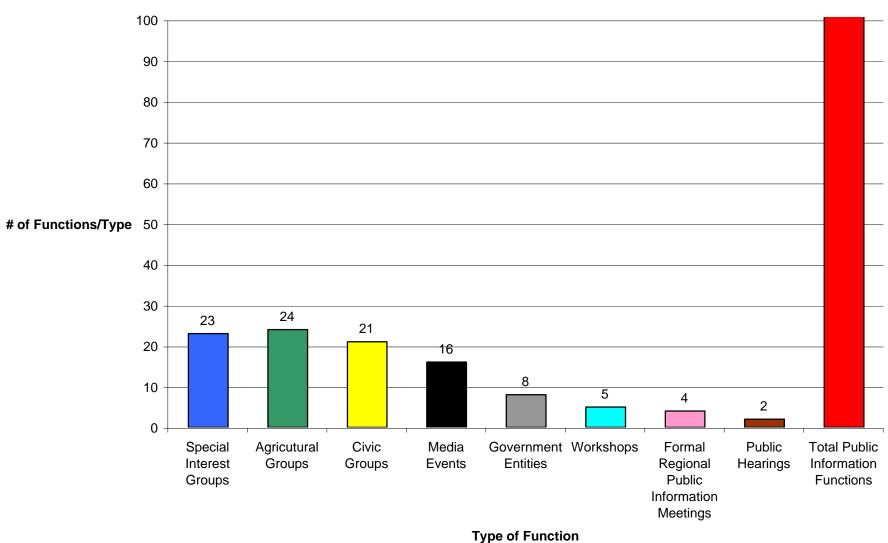
- 7 Public Hearing8 Workshops

16

4 2

5

23


Data S	Set
--------	-----

Special Interest Groups	23
Agricutural Groups	24
Civic Groups	21
Media Events	16
Government Entities	8
Workshops	5
Formal Regional Public Information Meetings	4
Public Hearings	2
Total Public Information Functions	103

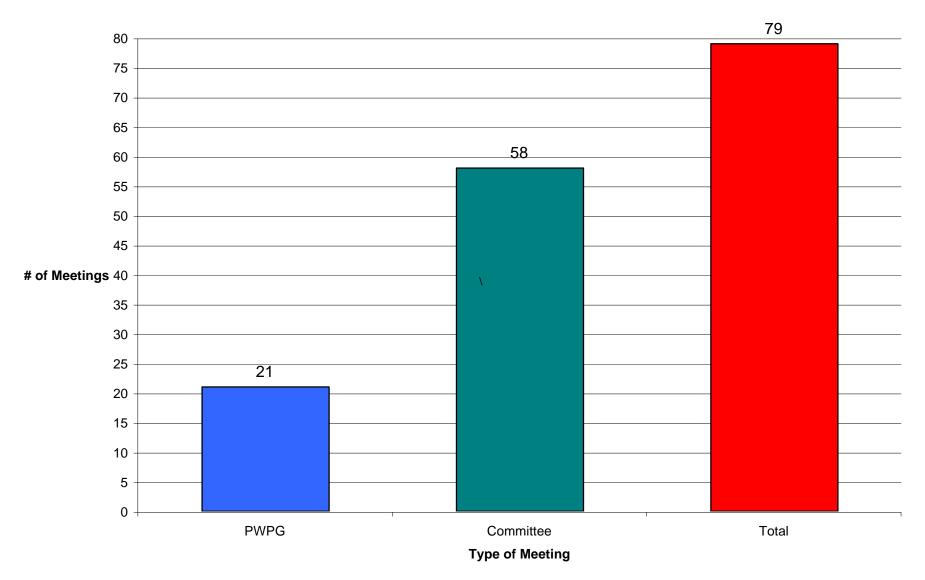
count

103

PWPG Public Information Functions

103

PWPG and Committee Meetings


Date	Meeting	Туре	
4/20/1998	Executive Committee	1	Codes
7/17/1998	Funding Committee	1	1 PWPG
	Scope Committee	1	2 Committee
9/15/1998	Scope Committee	1	3 Other
9/18/1998	Scope Committee	1	
11/12/1998	Consultant Committee	1	
11/12/1998	Contact Committee	1	
1/5/1999	Consultant Committee	1	
1/18/1999	Public Participation Committee	1	
2/12/1999	Consultant Committee	1	
2/22/1999	Consultant Committee	1	
3/1/1999	Consultant Committee	1	
3/5/1999	Consultant Committee	1	
3/11/1999	Consultant Committee	1	
4/7/1999	Public Participation Committee	1	
	Municipal and Industrial Demands & Projections		
4/27/1999	Committee	1	
5/6/1999	Modeling Committee	1	
5/12/1999	Agricultural Demands & Projections Committee	1	
	Public Participation Committee	1	
7/8/1999	Agricultural Demands & Projections Committee	1	
	Municipal and Industrial Demands & Projections		
7/8/1999	Committee	1	
9/8/1999	Agricultural Demands & Projections Committee	1	
	Municipal and Industrial Demands & Projections		
9/8/1999	Committee	1	
9/13/1999	Modeling Committee	1	
10/21/1999	Agricultural Demands & Projections Committee	1	
	Municipal and Industrial Demands & Projections		
10/21/1999	Committee	1	
11/15/1999	Ag and Model Committee	1	
12/15/1999	Modeling Committee	1	
1/11/2000	Modeling Committee	1	
2/3/2000	Executive Committee	1	
2/18/2000	Agricultural Demands & Projections Committee	1	
	Municipal and Industrial Demands & Projections		
2/18/2000	Committee	1	
2/29/2000	Modeling Committee	1	
2/29/2000	Public Participation Committee	1	
3/15/2000	Public Participation Committee	1	
4/11/2000	Agricultural Demands & Projections Committee	1	
	Municipal and Industrial Demands & Projections		
4/13/2000	Committee	1	
4/14/2000	Modeling Committee	1	
4/25/2000	Executive Committee	1	
4/26/2000	Agricultural Demands & Projections Committee	1	
	Municipal and Industrial Demands & Projections		
4/27/2000	Committee	1	
5/5/2000	Agricultural Demands & Projections Committee	1	
	Municipal and Industrial Demands & Projections		
	Committee	1	
	Modeling Committee	1	
6/6/2000	Agricultural Demands & Projections Committee	1	

PWPG and Committee Meetings

Date	Meeting	Туре	
	Municipal and Industrial Demands & Projections		
	Committee	1	Codes
6/21/2000	Public Participation Committee	1	1 PWPG
6/22/2000	Agricultural Demands & Projections Committee	1	2 Committee
7/5/2000	Agricultural Demands & Projections Committee	1	3 Other
	Municipal and Industrial Demands & Projections		
7/5/2000	Committee	1	
7/13/2000	Public Participation Committee	1	
8/29/2000	Executive Committee	1	
8/31/2000	Public Participation Committee	1	
9/25/2000	Executive Committee	1	
10/3/2000	Executive Committee	1	
10/30/2000	Executive Committee	1	
11/9/2000	Executive Committee	1	
12/12/2000	Modeling Committee	1	58
3/13/1998	ICB Meeting	2	
3/24/1998	ICB Meeting	2	
4/27/1998	PWPG Meeting	2	
6/16/1998	PWPG Meeting	2	
7/28/1998	PWPG Meeting	2	
10/27/1998	PWPG Meeting	2	
1/26/1999	PWPG Meeting	2	
3/23/1999	PWPG Meeting	2	
5/25/1999	PWPG Meeting	2	
7/15/1999	PWPG Meeting	2	
	PWPG Meeting	2	
11/23/1999	PWPG Meeting	2	
1/11/2000	PWPG Meeting	2	
	PWPG Meeting	2	21
		Total	79
PWPG		21	
Committee		58	

Committee	58
Total	79

PWPG Meetings & Committees

Panhandle Water Planning Group Cumulative Expense Record

Time/Mileage Expenses

	Hours Expended	Value of Hours Expended	Miles Traveled	Value of Miles Traveled	Total Meeting Expenses
Panhandle Water Planning Group Meetings	2276.80	\$ 85,380.00	48,583.07	\$ 13,603.26	\$ 98,983.26
Sub-Group (Committee Meetings)	1322.20	\$ 49,582.50	26,942.50	\$ 7,543.90	\$ 57,126.40
Cumulative Totals	3599.00	\$ 134,962.50	75,525.57	\$ 21,147.16	\$ 156,109.66

PWPG Total does not include ICB Meeting or 3/24/98 Meeting

PANHANDLE WATER PLANNING GROUP

REPRESENTATIVE	INTEREST GROUP	COUNTY OF
		RESIDENCE/INTEREST
Therese Abraham	PUBLIC	Hemphill
Judge Vernon Cook	COUNTY	Roberts
Dan Coffey	MUNICIPALITY	Potter/Randall
David Landis	MUNICIPALITY	Ochiltree
Bill Hallerberg	INDUSTRY	Gray
Mike Page	INDUSTRY	Hutchinson
Frank Simms	AGRICULTURAL	Carson
Rudie Tate	AGRICULTURAL	Collingsworth, Hall, Childress, Donley
Janet Tregellas	AGRICULTURAL	Lipscomb
B.A. Donelson	AGRICULTURAL	Sherman
Dr. Nolan Clark	ENVIRONMENTAL	Potter
Grady Skaggs	ENVIRONMENTAL	Oldham
Inge Brady	ENVIRONMENTAL	Randall
Rusty Gilmore	SMALL BUSINESS	Dallam
Gale Henslee	ELEC. GENERATOR	Potter
Jim Derington	RIVER AUTHORITIES	Hansford
Richard Bowers	WATER DISTRICTS	Moore & others
Bobbie Kidd	WATER DISTRICTS	Donley & others
C.E. Williams	WATER DISTRICTS	Carson & others
John Williams	WATER DISTRICTS	Hutchinson & others
Charles Cooke	WATER UTILITIES	Hutchinson
Dr. John Sweeten	HIGHER EDUCATION	Potter & Randall
Kent Satterwhite	NON-VOTING	
Mickey Black	NON-VOTING	
Stefan Schuster	NON-VOTING	
Charles Munger	NON-VOTING	
Ronald Bertrand	NON-VOTING	

PANHANDLE WATER PLANNING GROUP COMMITTEES

OFFICERS

Office	Member	Interest Group	Entity	County
Chairman	C.E. Williams	Water Districts	Panhandle Ground Water Conservation District	Carson
Vice-Chairman	Vernon Cook	Counties	Roberts County	Roberts
Secretary	Dan Coffey	Municipalities	City of Amarillo	Potter/Randall

EXECUTIVE COMMITTEE

Charge: As Defined in Bylaws

Office	Member	Interest Group	Entity	County
Chairman	C.E. Williams	Water Districts	Panhandle Ground Water Conservation District	Carson
Vice-Chairman	Vernon Cook	Counties	Roberts County	Roberts
Secretary	Dan Coffey	Municipalities	City of Amarillo	Potter/Randall
At-Large	John Williams	Water Districts	Canadian River Municipal Water Authority	Hutchinson
At-Large	Nolan Clark	Environmental	USDA/ARS	Potter

SCOPE OF WORK COMMITTEE

Charge: Revised and refine SOW and Budget in accordance with TWDB negotiations with PWPG approval

Member	Interest Group	County
C.E. Williams	Water Districts	Carson
Vernon Cook	Counties	Roberts
Dan Coffey	Municipalities	Potter/Randall
John Williams	Water Districts	Hutchinson
Nolan Clark	Environmental	Potter
Bobbie Kidd	Water Districts	Donley
Richard Bowers	Water Districts	Moore
Trish Neusch	Environmental	Potter
Gale Henslee	Elec. Generating	Potter
Jim Derington	River Authorities	Hansford

CONTACT COMMITTEE

Charge: Complete local funding proposal and initiate collection of funds as approved by PWPG

Member	Interest Group	County
Vernon Cook	Counties	Roberts
Dan Coffey	Municipalities	Potter/Randall
Richard Bowers	Water Districts	Moore
Bill Hallerberg	Industries	Gray
Charles Cooke	Water Utilities	Hutchinson
C.E. Williams	Water Districts	Carson

CONSULTANT SELECTION COMMITTEE

Charge: Design and issue RFQ's in accordance with PWPG instruction and approval

Member	Interest Group	County
C.E. Williams	Water Districts	Carson
Dan Coffey	Municipalities	Potter/Randall
John Williams	Water Districts	Hutchinson
Vernon Cook	Counties	Roberts
Nolan Clark	Environmental	Potter
Jim Derington	River Authorities	Hansford
Richard Bowers	Water Districts	Moore

MODELING COMMITTEE

Charge: Oversee daily development and integration of Regional Groundwater Model and present to PWPG for approval

Member	Interest Group	County
John Williams	Water Districts	Hutchinson
Charles Cooke	Water Utilities	Hutchinson
Rusty Gilmore	Small Business	Dallam
Gale Henslee	Elec. Generating	Potter/Randall
Frank Simms	Agriculture	Carson
Ben Weinheimer	Agriculture	Potter
Grady Skaggs	Environmental	Oldham
Richard Bowers	Water Districts	Moore
Dan Coffey	Municipalities	Potter/Randall
C.E. Williams	Water Districts	Carson
Mike Page	Industrial	Hutchinson

PUBLIC PARTICIPATION COMMITTEE

Charge: Oversee and implement approved public participation activities of the PWPG and its consultants, including PWPG website

Member	Interest Group	County
Vernon Cook	Counties	Roberts
Charles Cooke	Water Utilities	Hutchinson
Janet Tregellas	Agriculture	Lipscomb
Danelle Barber	Water Districts	Moore
John Sweeten	Higher Education	Potter
B.A. Donelson	Agriculture	Sherman
Jim Derington	River Authorities	Hansford
Kent Satterwhite	Water Districts	Hutchinson
Inge Brady	Environmental	Randall
Bill Hallerberg	Industrial	Gray

AGRICULTURAL DEMANDS & PROJECTIONS COMMITTEE

Charge: Oversee and provide review of ag-related demand, projection, and strategy data for presentation to PWPG

Member	Interest Group	County
Nolan Clark	Environmental	Potter
John Sweeten	Higher Education	Potter
Rusty Gilmore	Small Business	Dallam
Mickey Black	USDA/NRCS	Lubbock
Frank Simms	Agriculture	Carson
Richard Bowers	Water Districts	Moore
Rudie Tate	Agriculture	Collingsworth
C.E. Williams	Water Districts	Carson
Ben Weinheimer	TCFA	Potter

MUNICIPAL AND INDUSTRIAL DEMAND & PROJECTIONS COMMITTEE

Charge: Oversee and provide review of all non-ag related demand, projection and strategy data for presentation to PWPG

Member	Interest Group	County
Dan Coffey	Municipalities	Potter/Randall
John Williams	Water Districts	Hutchinson
David Landis	Municipalities	Ochiltree
Gale Henslee	Elec. Generating	Potter/Randall
Bobbie Kidd	Water Districts	Donley
Mike Page	Industrial	Hutchinson
C.E. Williams	Water Districts	Carson

Submitted By	General Topic	PWPG Approved Response	Action
•	Include Legislative Recommendation to provide state funded initiatives to improve irrigation efficiency; conservation tillage; precipitation enhancement; encourage water conservation reserve; funding for NPPET; (agreement with ag demand reduction strategies)	PWPG appreciates the comments from Commissioner Combs. Recommendations to provide state funded initiatives are included in Chapters 5 and 6 of the IPP.	No additional Action Required
Artho	Comment on ag water savings by converting crops and use of conservation tillage, Offer of resources to work on federal policy	Strategies to reduce demands for irrigated agriculture are included in Task 5. PWPG appreciates the support of the Grain Sorghum Producers Board in seeking legislation to implement proposed strategies.	No additional Action Required
Corcoran	Comment on decline of static water levels in his area, possibly due to increased irrigation	Your area of water level information was used by the PWPG and the Groundwater District. Decline is most likely due to increased irrigation.	No additional Action Required
Drake	Define How Much of the Ag \$ Benefit Stays in Panhandle	High Plains Trade area direct benefit of ag \$ = 3.249 billion (Amosson).	No additional Action Required
Drake	Define How Many people, companies, etc receive Ag \$ Benefit	All individuals in the region benefit. Direct income =\$3.249 billion, 12-13 billion in economic activity and 100,000 jobs (Amosson, 1996).	No additional Action Required
Drake	Justify Use of aquifer to feed cattle	Livestock activities provide over \$1.76 billion in cash receipts in High Plains trade area alone.	No additional Action Required
Huseman	Encourage use of Humic Acid to enhance effects of irrigation; consider switch from sprinkler to drip irrigation	Research through TAEX indicates that there is no benefit from adding humic acid at practical commercial rates. Conversion from sprinkler to drip irrigation is included in IPP, as is cost data. Other efficient irrigation methodology is also included in IPP.	No additional Action Required
Presley	Develop Water Bank to convert Irrigated Ag to dryland	This issue is generally addressed under Section 6.3 of the IPP requesting the creation of a water conservation reserve program. The benefits of this program are obvious and it is hoped that regional water planning groups would be included in the development of such a federal or state program.	No additional Action Required
Lindsey	Concern over ag requirements for water plan, especially 50 years below normal rainfall as relates to model and affect on results	Irrigation demands used in IPP were developed using average rainfall. Initial data from TWDB used dry year rainfall. Municipal and Industrial demands are dry year numbers as provided by TWDB.	No additional Action Required
Yanke/Yanke Farms	need value added crops for irrigation; add more drip systems (use checkoff money and water district to purchase drip equipment and maximize efficiency and minimize cost	See sections 6.1, 6.2, 6.3, 6.4 in Initially Prepared Plan. Recommendations are included to improve efficiency and minimize cost.	No additional Action Required

Submitted By	General Topic	PWPG Approved Response	Action
Yanke/Yanke Farms	question as to whether municipal conservation was included, i.e.: landscaping, total municipal use, reuse, etc. Mentioned systems for confined animal feeding systems, recycled water, etc. Written comment also submitted	All municipalities applying for state revolving loans will be required to develop and implement a conservation program. Municipalities utilize technology concerning irrigation and landscaping to more effectively use water. Reclaimed water is in use, PWPG recommends that regulations be revised to make effluent reuse easier in Task 6.	No additional Action Required
Claughton	Have on-going water saving plan to conserve municipal water use; include information on daily activities; adjust rates to encourage conservation;	Water savings plans are currently in practice throughout the region and are required of certain water suppliers. Several agencies currently promote and publicize conservation ideas and strategies. With 89% of the water in the region going to irrigation, municipal conservation will be addressed and encouraged simultaneously with irrigation and other uses. Recommendations re: this comment are in Task 6, IPP.	No additional Action Required
Micou	RWPG Provide educational tool on pollution and slow recharge of aquifer; education on steps by local and state officers to protect and restore disappearing wetlands and creeks; education on how recharge actually occurs; describe effects of existent and possible contracts to sell water to other areas	PWPG is requesting educational components in Task 6, IPP; Outside scope of IPP, will be examined in future updates; See section 6.3, IPP re: Local groundwater districts and PWPG evaluation of existent and possible contracts as presented.	No additional Action Required
Pitner/PRPC	Recommend that funding for public information outreach, including tech assistance; funding for ongoing maintenance and development of Website and other activities be included	Chapter 6, paragraph 6.3 is intended to cover the request. A more detailed request in 6.3 could be made by adding "and would include funds to continue public information efforts for website preparation, presentations, and coordination with other regions and parties. Type of funding requested is included under following legislative	No additional Action Required
EX	Include funding request for TAEX Agri-Partner program for collecting ag water use data	recommendations "data on agricultural water use"; "funding for implementation of water supply strategies"; Provide funding for NP-PET network and integration into statewide network". Task 6 recommendations in IPP cover funding for further data collection on Agricultural water usage.	No additional Action Required
EX	Include funding request for "Water on Wheels" education curriculum for approximately 7,000 4th grade students	Task 6, IPP recommendations note request for funding to further educational efforts.	No additional Action Required
Seewald	Education of public regarding detrimental effects of urban sprawl, particularly along watersheds; playas; and slow rate of recharge to Ogallala	Urban sprawl in the PWPG area is not currently an issue, especially regarding water sheds. Certain elements are outside scope of IPP. Recharge issues covered in IPP under description of Ogallala Aquifer, section 1 and 3 (Ogallala Groundwater Model).	No additional Action Required

Submitted By	General Topic	PWPG Approved Response	Action
Yanke/Yanke Farms	Develop education programs for schools and tv that run for free and specify that a % of all spots must run in normal day and evening tv	Education programs are currently available. Area Groundwater Districts sponsor education programs for public schools. TAMU system is working on water education. TV ads would be wide-reaching, lack authority to mandate participation by media. Comment V, October 9 letter to Pedersen address comment.	No additional Action Required
Claughton	wants municipal conservation to preserve water addressed, specifically education	PWPG has recommendations in Task 6, IPP to cover issues regarding conservation and education, see also above comment.	No additional Action Required
Cloud/ U.S. Fish & Wildlife Service	Offer of Assistance to determine potential effects of individual projects as a result of Federal fish and wildlife requirements; offer to provide tech assistance on avoidance of impacts on candidate species; note that no environmental impacts of Sweetwater Creek Reservoir or Lelia Lake Creek reservoir sites; recommend these impacts be considered; recommend figures 5-1 through 5-4 be corrected to avoid duplication	PWPG has no direct implementation authority and can not therefore implement strategies. Implementing agencies will obtain appropriate authorities and abide by appropriate regulations. PWPG appreciates offer of assistance and encourages implementing agencies to coordinate with USFWS. Feasibility studies of any potential reservoir project will include environmental impacts. Figures 5-1 through 5-4 will be removed from IPP.	Action as noted, No additional Action Required
Drake, S	Eliminate lagoon system at hog farms	Lagoon systems, in Confined Animal Feeding Operations are regulated by the Texas Natural Resource Conservation Commission.	No additional Action Required
Gramstorff	Potential hog farm contamination of aquifer (lagoons); help irrigators with wise use of water and low water use crops; legislation to prevent sale of water to other areas?	See Above. Second topic - Section 5.5.2 and 5.5.5 through 5.5.8 identify strategies to lower crop water application/use. PWPG supports local control of groundwater through locally controlled Groundwater Conservation Districts.	No additional Action Required
Seewald	Address Degradation of Water Shed	IPP does not address this issue specifically. Currently, issue is outside of the scope of work. Issue could be added to next planning cycle.	No additional Action Required
VanZandt	Add honey locust, eastern red cedar; chinaberry; western soapberry; Russian olive; Chinese elm; and hackberry to page I- 34, 1.5.2	PWPG will expand discussion on brush species contained in Task 1.5.2	Action as noted.
Yanke/Yanke Farms	Define water use for animal consumption and other uses - add systems to wastewater treatment, especially hog farms reference attached	Values for these numbers are included in Table 2, Appendix, IPP.	No additional Action Required
Yanke/Yanke Farms	designate monitor wells near each hog facility to test pathogens on quarterly basis	Authority to designate monitoring wells near confined animal feeding operations belongs to TNRCC.	No additional Action Required

Submitted By	General Topic	PWPG Approved Response	Action
Yanke/Yanke Farms	water conservation/land conservation conflict (streamflow & erosion)	Water conservation and soil conservation issues are not in conflict. Landowners may modify creek beds through brush removal. NRCS encourages grassed water ways. Less erosion = more water for streamflow or recharge. No-till practices increase stored water and runoff.	No additional Action Required
Charles Bowers	Comments on behalf of PGWD and support for all activities, not just agriculture. Support for efforts of PWPG, Recommends studies beyond 50 year planning horizon.	Comment appreciated. Plan will be reviewed and revised every five years resulting in a continuous plan.	No additional Action Required
VanZandt Yanke/Yanke Farms	Does Model include wells installed in Wheeler County during last three years? gather data on ogallala recharge	No, model uses estimates of distribution of irrigation pumpage from 1994 surveys. Future updates will include more up-to-date information. Available date to date was used in construction of Ogallala Groundwater Model. TWDB is further studying recharge and revised information will be included in future efforts.	No additional Action Required No additional Action Required
Yanke/Yanke Farms Sweeten, TAES	Define conservation measures for municipal use and make xeriscaping and conservation landscape engineering the norm Request to enter "Preliminary Economic Analysis of Brush Control Practices for Increased Water Yield in the Canadian Watershed"	Conservation measures are at the forefront of water planning. Municipal conservation is included by statute. PWPG recommends breaking conservation out for individual evaluation. (Task 6, IPP)	No additional Action Required No additional Action Required
Kent Camp	Is judicious containment and usage of water currently in region is in the structure of the Regional Water Plan? Concerns on water resources from without rather than within the region Delete Recommendation for Funding on Sweetwater Creek	Judicious usage of water in region is included in IPP. Containment of water is not in plan. Comment is noted and action would be under oversight of relevant Groundwater Conservation Districts. SB1 mandates identification of alternative water supplies. Evaluation of potential Sweetwater creek reservoir site is only method to determine if it	No additional Action Required No additional
Barnett/LAID Barnett/LAID	Feasibility Indicated concern on behalf of LAID regarding Sweetwater Creek Reservoir; Note that Wheeler County apparently has adequate groundwater for 50 years; therefore, concern on why Sweetwater Creek Reservoir Feasibility study is included. Concern over feasibility study prior to Compact issues being	is a potential supply. Wheeler County Surface Water Board has requested this feasibility because of water quality, not quantity. Compact issues are to be resolved between the states, which are the parties to the Compact.	Action Required No additional Action Required
Finsterwald	Support to work out Sweetwater Creek Reservoir Issue and to ensure adequate water for Wheeler County		

Submitted By	General Topic	PWPG Approved Response	Action
Hefley/Wheel er County Herd/City of Wheeler	Inclusion of Sweetwater Creek Reservoir in Regional Plan Importance of Sweetwater Creek Reservoir site to Wheeler	Comments Combined due to common issues. These issues are included in the IPP and the PWPG has recommended that funding to evaluate, among other, interstate coordination, etc., is also included.	No additional Action Required
Hill/Wheeler Water Supply District	Thank you to PWPG for including Sweetwater Creek Reservoir	PWPG recognizes limited surface water resources in the region and utilization of such water where available and in accordance with applicable regulations.	No additional Action Required
Jayroe/OK State	Recommend no action to adversely impact lake levels at Altus- Lugert beyond current conditions; ensure compliance with Red River Compact	Inclusion of potential project in IPP enables continued negotiations and possible development within bounds of Compact. Any potential reservoir will be in full compliance with Red River Compact and other regulatory authorities.	No additional Action Required
Kirby	Pleased with Red River Salinity Control support; Wants to protect LAID interests in water quality and quantity from Sweetwater & North Fork. Offer to share data on reverse osmosis plants and joint meetings to discuss Sweetwater Creek Reservoir. Pleased with recommendations to TNRCC	Water quantity and quality are vital aspects of water planning. These issues will be vital components of any future agreements. Planning and coordination of salinity control projects is outside the authority of the PWPG. PWPG recognizes importance of salinity control projects in Red basin.	No additional Action Required
Looper/City of Canadian	Expressed concern over potential influence from OK on Regional Water Planning Issues as related to water rights for municipalities, especially in light of Red River Compact	Comment appreciated. PWPG believes water rights issues re: Sweetwater Creek are in the purview of the Red River Compact Commission.	No additional Action Required
Mathis/OWR B	Pleased to See References to Canadian & Red River Compacts	PWPG appreciates the comments from Mr. Mathis/OWRB. PWPG recognizes role of Canadian & Red River Compacts in allocating surface water rights in the region.	No additional Action Required
Muller/LAID	Sweetwater Creek Reservoir Concern, work within R.R. Compact and with Oklahoma	Any permit issued for possible construction would comply with terms of the Red River Compact. Also, discussions are currently under-way between relevant parties to reach agreement on Compact provisions.	No additional Action Required
Muller/LAID	Protect Oklahoma interests in waters from Sweetwater Creek Sweetwater Creek Reservoir - Wants mutual cooperation	PWPG is required to identify future water sources and to evaluate and project demands and availability for 50 years. Any future reservoir sites will be in accordance with applicable contracts and agreements. PWPG encourages LAID to implement more conservation practices. Several items must occur before construction of any reservoir. PWPG requested funds to Sweetwater Creek site for feasibility study only. PWPG also requested reservation of all potential future reservoir sites in	No additional Action Required No additional
Robbins	between states-advance notice before construction of reservoir	the region.	Action Required

Submitted	Conorol Torrio	DWDC Approved Beenenee	Action
Ву	General Topic	PWPG Approved Response	Action
VanZandt	Support Sweetwater Creek Site	The PWPG has addressed the Potential Sweetwater Creek Reservoir Site in Tasks 5 and 6 of the IPP.	No additional Action Required
Wilson/TCFA	Reconsider all proposals for construction of pipelines serving communities; industries; and livestock feeding facilities in PWPG and LERWPG	See revised section 6.4, IPP. PWPG has continued consideration of proposals into next Planning Cycle.	No additional Action Required
Candler/ E.R.A.C.	Detailed info on items identified by Yanke (Comment 23), no actionable comment	No response necessary. Information added to Public Comment files	No additional Action Required
Drake	Define & Expose true beneficiaries of strip-mining on Ogallala	Groundwater is regulated by Groundwater Districts. Benefit to region is approximately \$3.249 billion per year. Further knowledge on subject is lacking.	No additional Action Required
Drake, S	consider local use of water rather than cities to the south of the Panhandle	Movement of surface water is regulated through the state of Texas. Movement of groundwater is regulated only by local groundwater districts. PWPG has no authority to regulate movement. PWPG has addressed the issue of groundwater and is reluctant to include in IPP due to the fact the Ogallala is finite and is only practical source of groundwater for large areas of the region. PWPG will consider all reasonable strategies to use water locally.	No additional Action Required
Martin	Regulate Domestic Wells on less than 5 acres	Domestic and Livestock wells <17.5 gpm are exempt from groundwater regulation. "Future of Groundwater Committee" has recommended removing exemptions on acreages <10 acres. If this occurs, groundwater districts could regulate referenced situations. Texas Department of Licensing & Regulations regulates domestic wells.	No additional Action Required
Yanke/Yanke Farms	note possible conflict with TNRCC on planning groups	PWPG believes that it is important to include Texas Natural Resource Conservation Commission on Regional Water Planning Groups to add coordination on relevant issues. Potential conflict is noted. TNRCC recommendation in Task 6, IPP.	No additional Action Required

WATER PLANNING - LOCAL CONTRIBUTIONS Contributing Entities Total Contributions Received - 115,382 Entities Contributing - 110

Cities	Counties	Groundwater Districts	Surface Water Districts	Water Utilities	Private Entities
RROUZETT	DALLAM	HIGH PLAINS	CANADIAN RIVER MUNICIPAL WATER AUTHORITY	CHERRY AVE MOBILE HOME PARK	PHILLIPS PETROLEUM
INETT	SHERMAN	NORTH PLAINS	GREENBELT MUNICIPAL AND INDUSTRIAL WATER AUTHORITY	TCW SUPPLY	AGRIUM
HELER DIGER DIGER JOSON WANDLE LINGTON LLINGTON LLINGTON LUNGTON AUDE UNICK AUDE UNICK AUDE UNICK AUDE UNICK AUDE UNICK AUDE AUDE AUDE AUDE AUDE AUDE AUDE AUDE	LIFSCOMB ROBERTS HALL HEMPHILL CARSON CCARSON COLTICINISON HUTCHINSON HUTCHINSON HARTLEY OLDHAM PUILDRESS OUILDRESS DOWLEY RANDALL	PANHANDLE DALIAM COLLINGSWORTH HEMPHILL	PALO DURO RIVER AUTHORITY	WARA WSC BEACON WEST LAKEVER WSC PALODURO TRAILER PART MOORTEX WATER SUPPLY RRG CAREF.NORTFIFTER SUPPLY RRG CAREF.NORTFIFTER SUPPLY RRA FARENCE STELLINE WS RRA TALEX SUPPLY SS. RRA CAREF.STELLINE WS RRA CAREF.STELLINE WS SINDAY CANYON WSC SUNDAY CANYON WSC SUNDAY CANYON WSC MORSE UTLITY COMP. CAL FARLEYS FAMILY PROGRAM FARNSWORTH WSC DOUBC CLUB RECOMMUNE TARES SINDAY DOUBLE DAMONG STATES - BRINSON HITEXAS WATER CORP.	ENGINEERED CARBONS TEXAS FARM INC. NEW CENTURY SERV. TEXAS CATLE FEEDERS CELANESE GRANN SORGHUM PRODUCERS PREMIUM STANDARD FARMS