Draft Study Design

Instream Flow Study of the Lower San Antonio River and Lower Cibolo Creek

Draft Study Design

Prepared for Lower San Antonio River Sub-Basin Study Design Workgroup

Prepared by TEXAS INSTREAM FLOW PROGRAM AND SAN ANTONIO RIVER AUTHORITY

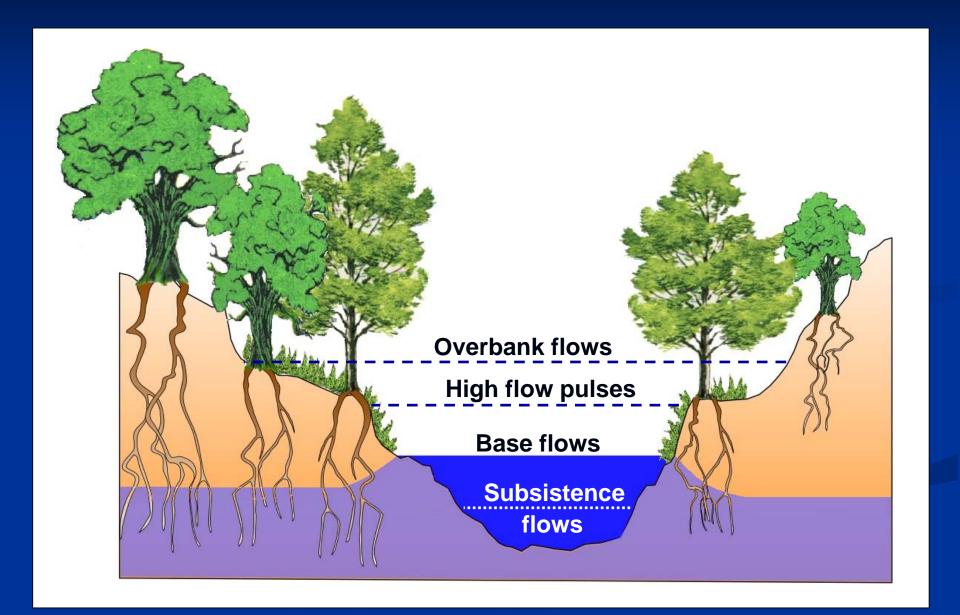
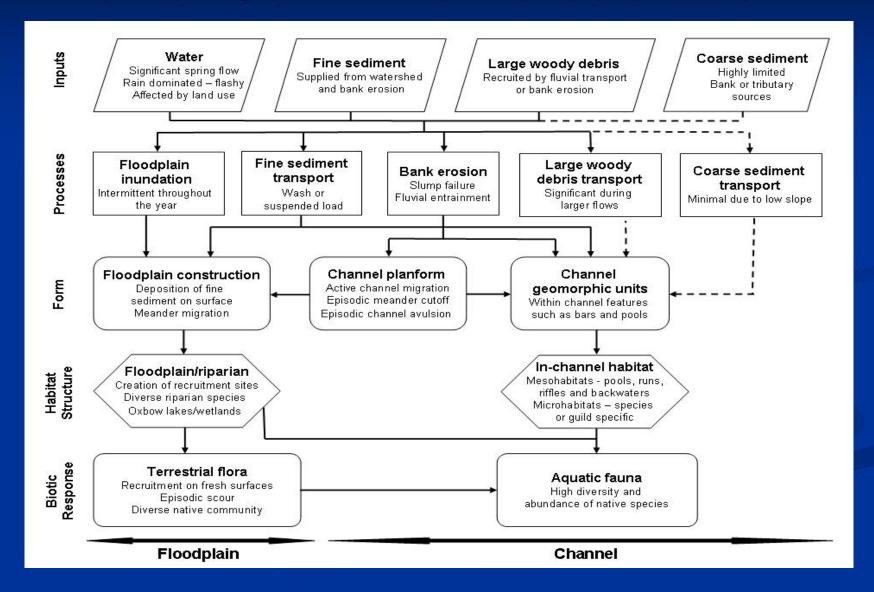

JUNE 2009

Table of Contents


Contents

1.0	INT		CTION						
	1.1 Summary of available information and results of preliminary analysis and								
		reconn	naissance surveys						
		1.1.1	Hydrology						
		1.1.2	Biology	2					
		1.1.3	Physical Processes	2					
		1.1.4	Water Quality						
		1.1.5	SARA Preliminary Instream Flow Assessment Summary	2					
		1.1.6	Surface Water / Groundwater Interaction Study	2					
	1.2	Assess	ment of Current Conditions	2					
		1.2.1	Hydrology						
		1.2.2	Biology	2					
		1.2.3	Physical Processes	2					
		1.2.4	Water Quality.	2					
	1.3	Conce	ptual Model						
2.0	STA	STAKEHOLDER INVOLVEMENT AND STUDY DESIGN							
	DEVELOPMENT2								
	2.1	Stakeh	older Involvement	2					
	2.2	Study	Goal and Objectives	2					
		2.2.1	Hydrology	2					
		2.2.2	Biology						
		2.2.3	Physical Processes						
			Water Quality						
		2.2.5	Connectivity						
	2.3	Study	Indicators						
3.0	DES		TION OF TECHNICAL STUDIES						
	3.1		Site Selection						
	3.2	_	Components						
		3.2.1	Hydrology and Hydraulics.						
		3.2.2	Biology						
		3.2.3							
		3.2.4	Water Quality						
4.0	COL		ED STAKEHOLDER INVOLVMENT AND FUTURE						
			ES	2					
5.0			CES						
200	LLLI		C 2.5						

Statewide Conceptual Model

Conceptual Model of lower San Antonio sub-basin

Ecological Processes/Flow Regime of lower San Antonio sub-basin

Component	Hydrology	Geomorphology	Biology	Water Quality	Connectivity
Subsistence flows Infrequent, low flows (typically during summer)	Spring flow (especially from the Edwards Aquifer) and return flows (such as wastewater discharge) make up a large portion of flow	Increase deposition of fine and organic particles	Provide limited aquatic habitat Maintain populations of organisms capable of repopulating system when favorable conditions return	Maintain adequate levels of dissolved oxygen, temperature, and constituent concentrations (particularly nutrients)	Provide limited lateral connectivity along the length of the river Affected by groundwater/ surface water interactions Maintain longitudinal connectivity
Base flows Average flow conditions, including variability.	Elevated in recent years partially due to increased groundwater use (with return flow) in the basin May vary by season and year	Maintain soil moisture and groundwater table in riparian areas Maintain a diversity of habitats	Provide suitable aquatic habitat for all life stages of native species	Provide suitable in- channel water quality Edwards Aquifer spring flow contributes to nitrate levels	Provide connectivity along channel corridor Groundwater / surface water connectivity plays an important role.

Eco. Proc./Flow Regime (continued)

Component	Hydrology	Geomorphology	Biology	Water Quality	Connectivity
High flow pulses In-channel, short duration, high flows	Increased development in the basin (increasing impervious cover) may have increased the magnitude and frequency of these events	Maintain channel and substrate characteristics Flush sediment Prevent encroachment of riparian vegetation Play an important role in recovery of channel after extreme flood events	Provide spawning cues for organisms	Restore in-channel water quality after prolonged low flow periods	Provide connectivity to near-channel water bodies
Overbank flows Infrequent, high flows that exceed the channel	Occur more frequently due to natural climate, geography, and geology of the Hill Country	Provide lateral channel movement and floodplain maintenance Form new habitats Flush organic material into channel Recruit and transport large woody debris Deposit nutrients in floodplain	Provide spawning cues for organisms Maintain diversity of riparian vegetation	Restore water quality in floodplain water bodies	Provide connectivity to floodplain Provide large volumes of freshwater to San Antonio Bay

Hydrology and Hydraulics

<u>Indicators</u>

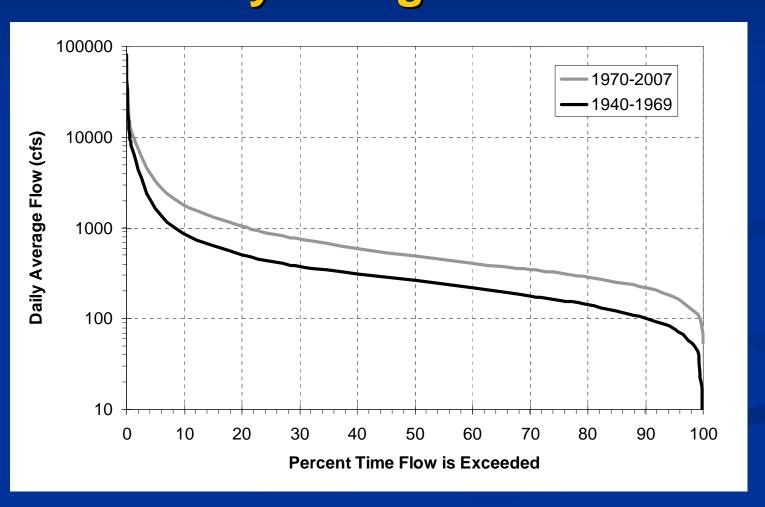
and

Activities

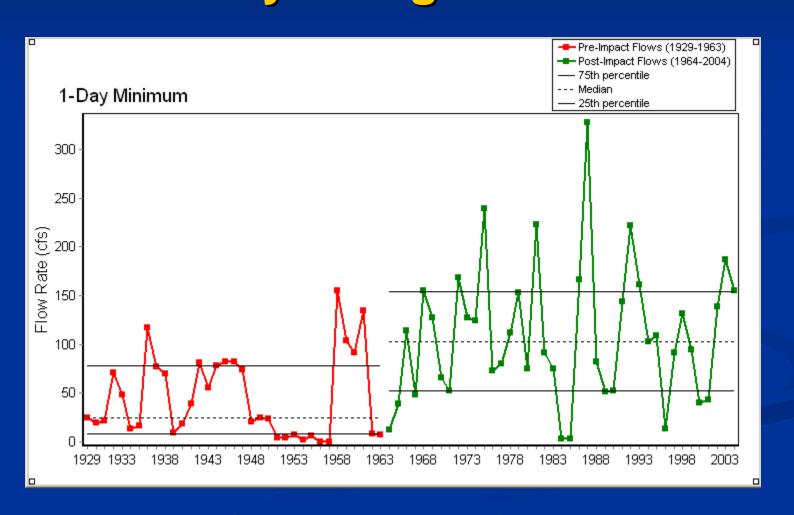
Flow regime components (frequency, timing, duration, rate of

Hydrologic evaluation

Natural variability


change, magnitude)

Hydrologic evaluation


Losses/gains

USGS studies

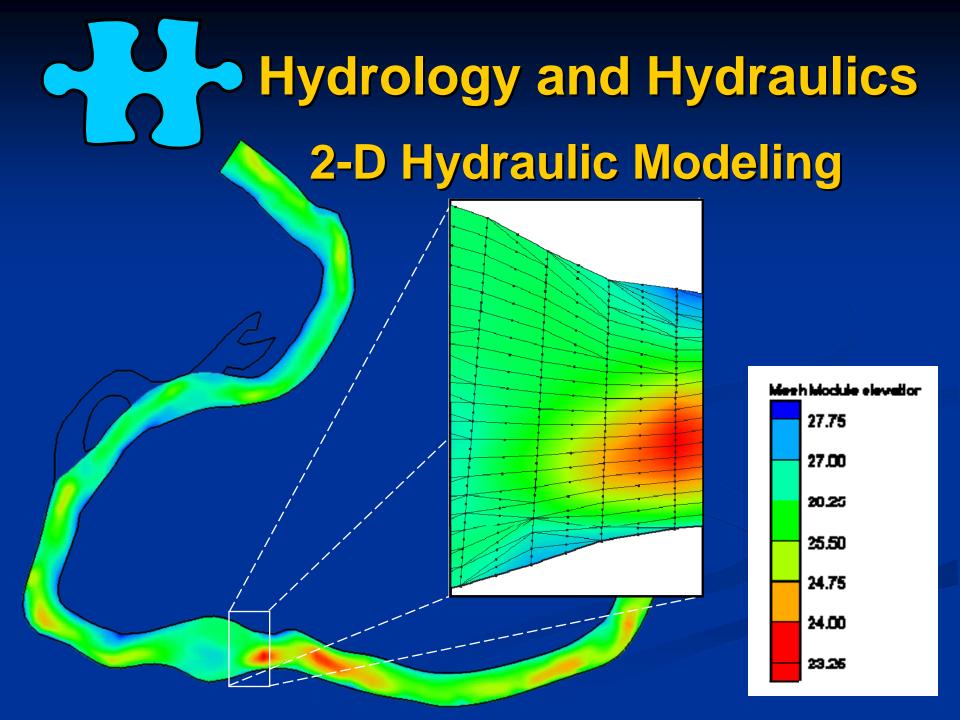
Hydrologic Evaluation

Hydrologic Evaluation

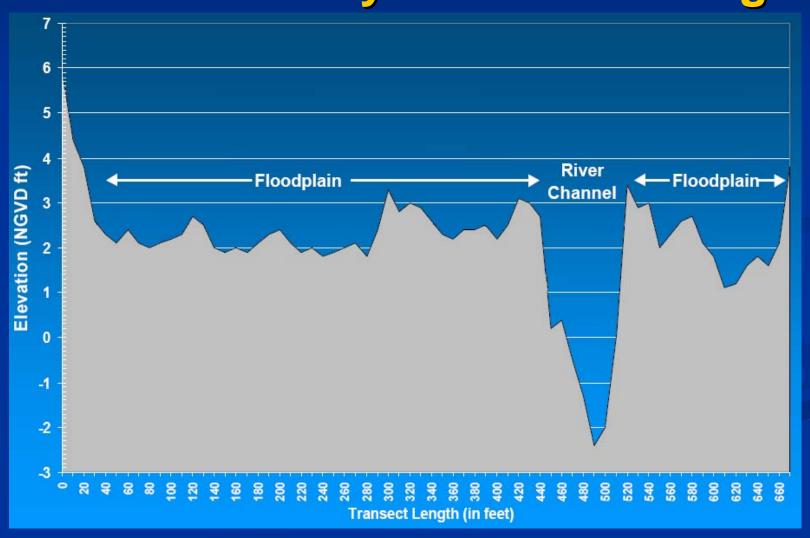
Hydrology and Hydraulics

Activities to support Other disciplines

2-d hydraulic modeling


Biology (habitat modeling)

Physical Processes (sediment transport)


Other (recreation modeling)

1-d hydraulic modeling

Biology (riparian studies)

Hydrology and Hydraulics 1-D Hydraulic Modeling

Physical Processes (Geomorphology)

Indicators

and

Activities

Channel migration

(lateral migration, channel avulsion, bank erosion rates)

Analysis of aerial photos

Overbank flows

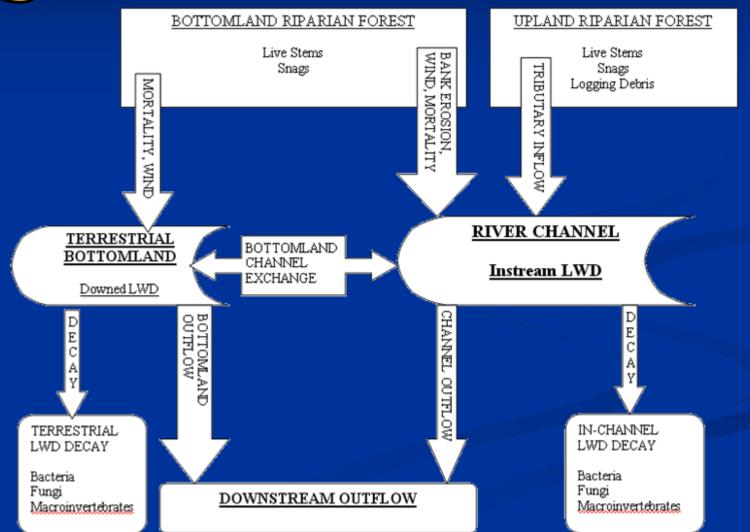
Woody-debris

Channel shape (in-channel bars, meander pools)

Hydraulic modeling

LWD budgeting

Sediment budgeting, transport modeling



Physical Processes Analysis of Aerial Photos

Physical Processes Large Woody Debris Budgeting

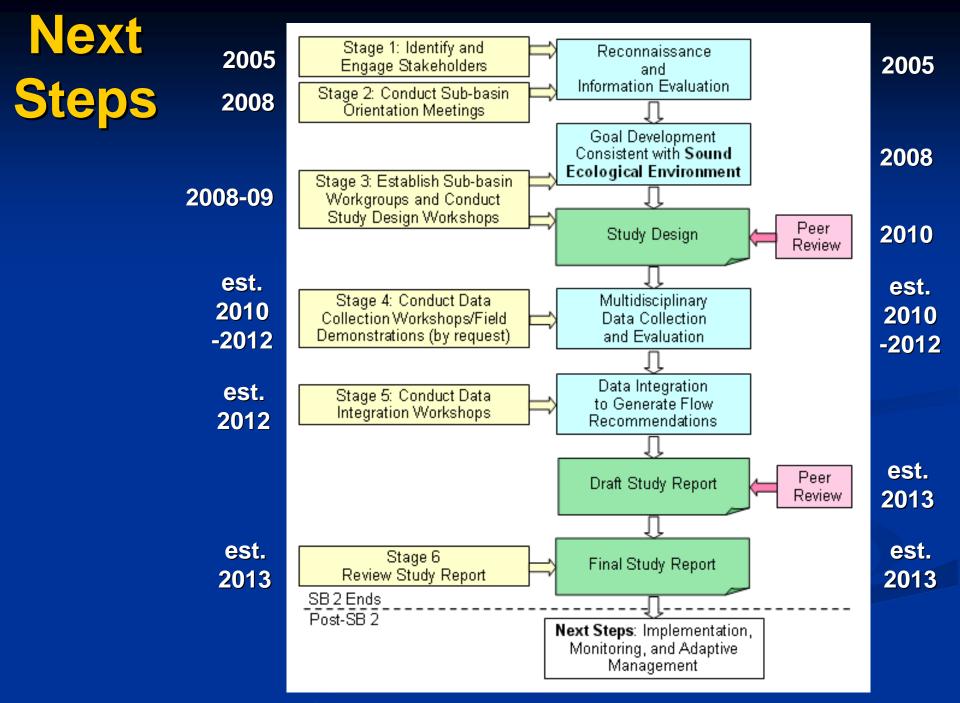
Connectivity

Indicators

Losses/gains

and

Activities


USGS studies

Connection to river (frequency, duration, timing)

Freshwater inflow (monthly/yearly volumes)

Monitoring

Calculate volumes

Comments on Draft Study Design

- Today's meeting
- Send comments by July 17, 2009
 - E-mail: tifp@twdb.state.tx.us
 - Mail: Texas Instream Flow Program

P.O. Box 13231

Austin, TX 78711-3231

How to stay involved

- Check website for updates
 - www.twdb.state.tx.us/instreamflows/
- Electronic/postal newsletter
- Contact TIFP if interested in seeing study activities in field
- Participate in Data Integration Workshops
- Review Study Report