

The Texas Instream Flow Program was created by the Texas Legislature in 2001 to assess how much water rivers need to remain healthy. TIFP is administered by 3 agencies:

• Texas Commission on Environmental Quality

- Texas Parks and Wildlife Department
- Texas Water Development Board

Program Purpose

For the first time state agencies and the public will collaborate on scientific studies to determine how much water should flow in rivers for a healthy environment.

What is an Instream Flow?

An instream flow is the amount of water running in a river, usually measured by the volume moving down the channel in a specified amount of time. A variety of instream flows are required to maintain a healthy river.

The Context of Instream Flows

Acknowledgment of the importance of water flowing in a stream to fish, wildlife and people

Recognition that competition for water is increasing and resulting in degraded river ecosystems **Study Areas**

Studies will be conducted on priority river segments.

Study Topics

Technical studies will assess how water flow affects river characteristics, such as:

- Aquatic life and habitat
- Water quality.....
- Relationships between rivers and surrounding habitats
- Movement of nutrients and organisms

THE SCIENCE OF INSTREAM FLOWS

A Review of the Texas Instream Flow Program

 State methodology peer reviewed by NRC panel
 Members included

Texas scientists

Favorable report published in 2005

Hot off the press!

Texas Instream Flow Studies: Technical Overview

Report 369 May 2008 Texas Commission on Environmental Quality Texas Parks and Wildlife Department Texas Water Development Board

Instream Flow Components

(recommended by National Research Council 2005)

Simple Conceptual Model

Synopsis of Study Process

Study Design

Develop conceptual model

- Determine geographic study boundaries
- Prioritize data needs consistent with agreed upon goals and objectives
 Develop river study plan for Sabine

Primary Disciplines

Biology

Biodiversity

Habitat Diversity

Water Quality

Dissolved oxygen
pH
Temperature
Total dissolved solids
Turbidity/clarity
Nutrients

Hydrology and Hydraulics

Habitat Modeling

Habitat changes with flow

Physical Processes (Geomorphology)

Examine bed, banks, and floodplains
Assess channel adjusting and overbank flow behavior
Develop sediment budgets
Identify habitat features

Hydrologic connectivity
 Upstream to down
 Channel to floodplain
 Groundwater/surface water interactions

Instream Flow Components

(recommended by National Research Council 2005)

Subsistence Flows

Base Flows

High Flow Pulses

Overbank Flows

Integration to Generate a Flow Regime

Integration of Flow Components

Overbank Flows	4,000-10,000 cfs for 2-3 days Once every 3-5 years Channel Maintenance Riparian Connectivity, Seed dispersal Flooplain habitat			Wet year Average year Dry year
High Flow Pulses	700-1500 cfs 2-3 X per yea Sediment Lateral co Fish sp	s for 2-3 days ar every year transport onnectivity awning	1800 cfs for 2 days 1 X per yr every other yea "Big River fish" spawning between Jul 15 - Aug 15	ır
	300-450 cfs maintain biodiversity and longitudinal connectivity			
Base Flows	100-150 cfs Fish habitat	150-300 cfs Spring spawning	40-50 cfs g Fish habitat	90-100 cfs Fish habitat
Subsistence Flows	35 - 55 cfs Maintain water quality (35 cfs) and key habitats in May (55 cfs)			
	JAN FEB MAR APR MAY JUN JUL AUG SEP <u>OCT NOV DEC</u>			