TEXAS WATER DEVELOPMENT BOARD

REPORT 55

STUDY AND INTERPRETATION OF CHEMICAL QUALITY OF SURFACE WATERS IN THE BRAZOS RIVER BASIN, TEXAS

Ъy

Jack Rawson

Prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board and the Brazos River Authority

July 1967

TEXAS WATER DEVELOPMENT BOARD

Mills Cox, Chairman Robert B. Gilmore Milton T. Potts Marvin Shurbet, Vice Chairman Groner A. Pitts W. E. Tinsley

Joe G. Moore, Jr., Executive Director

Authorization for use or reproduction of any material contained in this publication, i.e., not obtained from other sources, is freely granted without the necessity of securing permission therefor. The Board would appreciate acknowledgement of the source of original material so utilized.

> Published and distributed by the Texas Water Development Board Post Office Box 12386 Austin, Texas 78711

TABLE OF CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	5
Purpose and Scope	5
Previous Investigations	5
THE BRAZOS RIVER BASIN AND ITS ENVIRONMENT	6
Physical Features	6
Cultural Features and Economic Development	8
SURFACE-WATER DISTRIBUTION	9
Precipitation	9
Runoff	11
Streamflow Records	11
Variation in Runoff from Sub-Basins	11
SURFACE-WATER RESOURCES DEVELOPMENT	12
CHEMICAL QUALITY OF THE WATER	16
Chemical-Quality Records	16
Factors Affecting Chemical Quality of Water	16
Geology	17
Streamflow	25
Activities of Man	27
Daily Variation of Chemical Quality	31
Salt Yields	38
Upper Brazos River Basin	38
Middle Brazos River Basin	39

TABLE OF CONTENTS (Cont'd.)

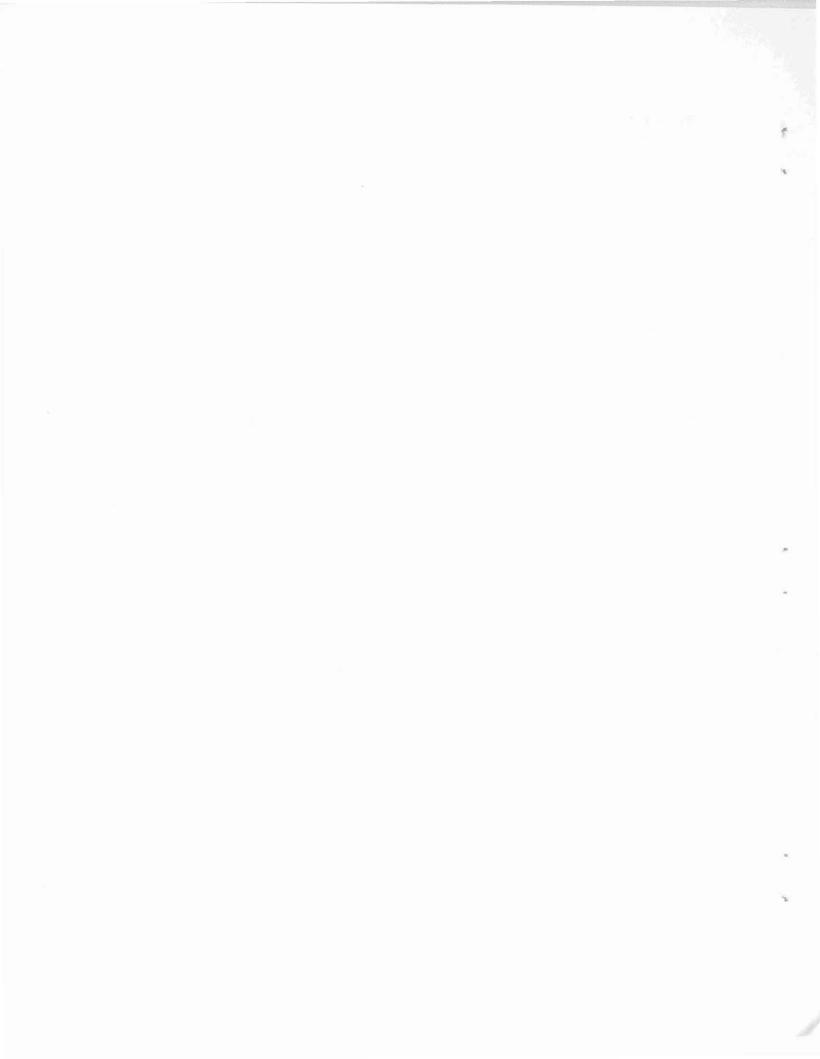
ŕ

	Page
Lower Brazos River Basin	41
Water Quality in Reservoirs	42
Water Quality at Potential Reservoir Sites	45
POTENTIAL IMPROVEMENT OF WATER QUALITY IN THE BRAZOS RIVER	48
Integrated Operation of Reservoirs	48
Reduction of Natural Salt Contamination	50
RELATION OF WATER QUALITY TO USE	50
Domestic Purposes	51
Industrial Use	53
Irrigation	54
REFERENCES	59

TABLES

1.	Index of surface-water records for selected sites in the Brazos River basin	63
2.	Reservoirs with capacities of 5,000 acre-feet or more in the Brazos River basin	69
3.	Summary of chemical analyses at daily stations on streams in the Brazos River basin, Texas	71
4.	Chemical analyses of streams and reservoirs in the Brazos River basin for locations other than daily stations	87
5.	Concentrations of selected constituents (in parts per million) that were equaled or exceeded for indicated percentage of days of flow	101
6.	Annual summaries of water discharge and dissolved solids, chloride, and sulfate at selected stations in the Brazos River basin	105
7.	Summary of estimated yields of dissolved solids, chloride, and sulfate for selected drainage areas, 1949-64 water years	109
8.	Observed average concentrations and loads of dissolved solids, chloride, and sulfate at selected sites on the Brazos River for the 1957-64 water years and hypothetical averages based on partial control of natural salinity	110

TABLE OF CONTENTS (Cont'd.)


9.	Source and significance of dissolved-mineral constituents and properties of water	111
10.	Water-quality tolerances for industrial applications	112
11.	Suitability of waters for irrigation	113

FIGURES

1.	Index Map Showing River Basins in the State and Physiographic Sections of the Brazos River Basin	7
2.	Map and Graphs Showing Precipitation and Runoff	10
3.	Map Showing Location of Selected Streamflow and Chemical-Quality Data-Collection Sites and Major Reservoirs and Potential Damsites	<u>1</u> 3
4.	Flow-Duration Curves of Daily Flows at Selected Sites, 1943-64	15
5.	Geologic Map and Chemical Composition of Base Flow of Streams	19
6.	Graphs Showing Relation of Concentration of Dissolved Solids to Water Discharge for Selected Tributaries of the Brazos River	26
7.	Map Showing Approximate Area of Major Oil Production	28
8.	Duration Curve of Dissolved Solids for the Double Mountain Fork Brazos River near Aspermont, 1949-51 and 1957-64	32
9.	Duration Curves of Dissolved Solids for the Brazos River at Richmond	37
10.	Classification of Irrigation Waters	56

v

Page

STUDY AND INTERPRETATION OF CHEMICAL QUALITY OF SURFACE WATERS IN THE BRAZOS RIVER BASIN, TEXAS

ABSTRACT

The Brazos River basin, which begins in New Mexico and extends to the Gulf of Mexico, has a total drainage area of about 45,000 square miles. Of this area about 9,000 square miles in the upper reaches normally does not contribute to streamflow. Ninety-six percent of the basin is in Texas. Included in the basin are parts of four physiographic provinces--the High Plains and the Central Texas section of the Great Plains Province, the Osage Plains section of the Central Lowlands Province, and the West Gulf Coastal Plain section of the Coastal Plain Province. The topography is characterized by the nearly flat elevated surface of the High Plains; the gently sloping plain dissected by entrenched streams in the Osage Plains; and the hilly, gently rolling country of the West Gulf Coastal Plain, which merges with the nearly flat land along the Gulf of Mexico.

In 1960 the population of the basin was about 1,300,000, more than half of which was urban. Twenty-nine cities had more than 5,000 inhabitants in 1960, the largest city being Lubbock with a 1960 population of 128,691. A rapid urban growth has been accompanied by an evolution of the economy of the basin from a base predominantly agricultural to a base that blends agriculture, oil and gas production, and diversified industry.

Precipitation and runoff with the Brazos River basin are unevenly distributed both areally and seasonally. Average precipitation ranges from less than 18 inches per year in the upper portions of the basin to about 48 inches on the coastal plain. Runoff follows the precipitation trend and increases from west to east. During the 1943-64 period, annual runoff from sub-basins ranged from less than 1 inch in the upper part of the basin to more than 4 inches in the lower part.

Because precipitation and runoff in the basin are highly variable with regard to time, many of the streams are frequently dry or nearly dry. Therefore, storage projects are required to make surface water available in dependable quantities for municipal or industrial use. At the end of the 1964 water year, each of 30 reservoirs, either existing or under construction, had a conservation-storage capacity of 5,000 acre-feet or more. Most of these are located on tributaries. Only two reservoirs, Possum Kingdom and Whitney Reservoirs, are located on the main-stem Brazos River.

F

The dissolved-mineral content and chemical character of surface waters in the Brazos River basin differ widely from one stream to another, from location to location on the same stream, and from time to time at any specified location. Geologic factors, runoff and streamflow characteristics, and activities of man largely determine the nature and amount of dissolved minerals transported by the Brazos River and its tributaries.

Rocks that crop out in the basin range in age from Early Ordovician to Recent and consist of many lithologic types. In the semiarid western part of the basin, many rocks contain large quantities of halite, gypsum, limestone, or dolomite. However, the chemical composition of the rocks, and thus the water of streams that drain from them, varies with local conditions. Base flow in many of these streams usually is non-existent. However, seeps and springs in Permian rocks that crop out in the drainage areas of Croton and Salt Croton Creeks flow much of the time and account for much of the salinity of the Salt Fork Brazos River and thus of the main-stem Brazos River. In the lower part of the basin, where precipitation is heavier, the well-leached rocks and soils usually yield water of low mineralization.

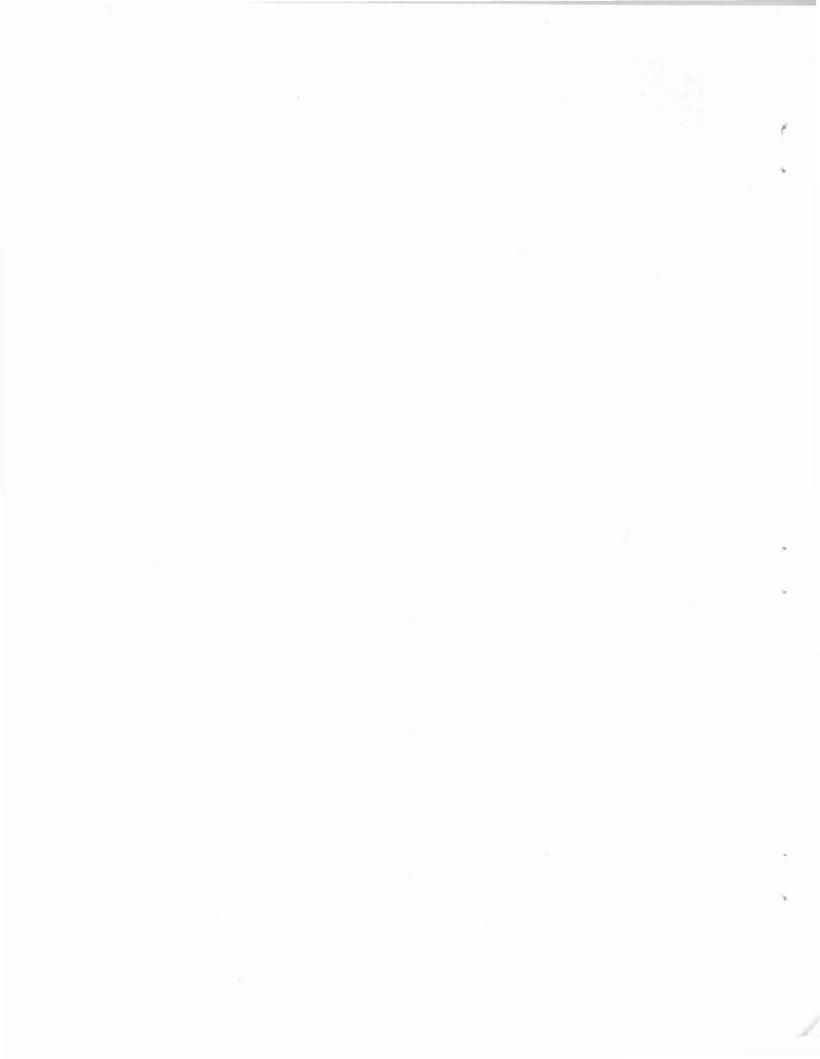
In many streams of the basin not appreciably regulated by upstream reservoirs, concentrations of dissolved minerals usually are minimum during periods of high flow when most of the water is surface runoff. Concentrations usually increase during low flow when the proportion of ground-water inflow to total surface-water outflow is maximum. However, the mineral content of many streams varies over wide ranges at all rates of water discharge. Much of this variation is related to the diverse geology and patterns of runoff from sub-basins. However, the intermittent inflow of brine from oil fields has modified the general streamflow-quality pattern for some streams.

Oil is produced throughout the Brazos River basin, and the disposition of oil-field brine in some areas has worsened the quality of surface streams. Intensified efforts to control disposition of the brine have resulted in the improvement of the quality of water in some streams. However, the quality of water in other streams has improved only slightly, or not at all.

Although minerals are being dissolved and removed from all parts of the Brazos River basin, the rates at which this process is proceeding are far from uniform. Differences in yields of dissolved minerals are caused by a combination of factors--principally, difference in precipitation, geology, and proportion of ground-water inflow to surface-water outflow. Computations for the 1949-64 period show that yields are highest in the upper Brazos River basin, where many of the rocks contain large quantities of soluble material. However, yields from different parts of the upper basin are highly variable because of local differences in the chemical composition of rocks and in the small, but variable, quantities of highly mineralized influent ground water. Highest yields of dissolved minerals are from the drainage area of the Salt Fork Brazos River, which receives inflow of highly mineralized water from seeps and springs in the Croton Creek-Salt Croton Creek area. Yields from the middle Brazos River basin are uniformly low. Yields of dissolved minerals from the lower Brazos River basin are generally low also; highest yields are from the drainage area of the Navasota River where oil-field brines are contributing to the salinity of the surface streams.

Many reservoirs on tributaries in the Brazos River basin store water of good quality. Waters of Possum Kingdom and Whitney Reservoirs on the main-stem Brazos River usually are undesirable for public supply and many industrial uses, but are suitable for irrigation of salt-tolerant crops; water in Whitney Reservoir is of better quality than that in Possum Kingdom.

The concentrations of dissolved minerals in most streams of the Brazos River basin vary over a wide range. Waters in many of the tributaries upstream from Possum Kingdom usually contain excessive concentrations of dissolved solids, chloride, sulfate, and hardness, and therefore often are undesirable for domestic and most industrial uses. However, some of the waters are suitable for irrigation of salt-tolerant crops on land where drainage is good, provided that an excess of water is applied. Although some tributaries downstream from Possum Kingdom Reservoir occasionally contain undesirable concentrations of dissolved minerals, principally during low-flow periods, the waters generally are suitable for all beneficial uses.


The quality of water in the main-stem Brazos River is usually poor in the upstream reaches but progressively improves in the downstream direction. Throughout much of the middle and upper reaches, the main stem contains undesirable concentrations of dissolved minerals. In the upstream reaches, water of the Brazos River is usually unsuitable for most domestic, industrial, and irrigation uses. Although the main-stem water in the reach immediately downstream from Whitney Reservoir is often unsuitable for municipal and some industrial uses, downstream from the mouth of Little River the water is usually suitable for the irrigation of rice (the principal irrigated crop) and other crops, as well as for controlled municipal and industrial use.

Many sites in the Brazos River basin are being studied as potential reservoir sites. Storage of water in some of these proposed reservoirs would decrease the range of dissolved minerals and thus would improve the quality of the water for municipal, irrigation, and many industrial uses. However, water in some of the proposed reservoirs, principally those on the main-stem Brazos River and on the Salt and Double Mountain Forks, would be unsuitable for domestic, industrial, and irrigation use.

Storage of flood waters in proposed reservoirs on tributaries downstream from Whitney Reservoir should make feasible the improvement of the quality of water in the lower reach of the main stem by integrating releases from the proposed and existing reservoirs on tributaries with the more saline releases from Whitney Reservoir. Integrating releases from these reservoirs would narrow the range of dissolved minerals in the main-stem water, thus making the water more suitable for domestic and industrial use. However, because of the large percentage of flow that would not be controlled by this proposed reservoir system, and because of the limited water resources available for quality control, the integration of reservoir releases would be only partly effective in the reduction of water-quality variations.

For any plan to be effective in the improvement of water quality throughout the main-stem Brazos River, it must provide for a reduction of natural salt contamination in the upper part of the basin. Partial control of natural salinity in the drainage areas of Salt Croton Creek and several smaller sources would result in a substantial improvement of water quality throughout the main stem. This reduction of salinity, supplemented by the integrated operation of reservoirs, would greatly improve the quality of the water in the lower Brazos River.

- 3 -

STUDY AND INTERPRETATION OF CHEMICAL QUALITY OF SURFACE WATERS IN THE BRAZOS RIVER BASIN, TEXAS

INTRODUCTION

Purpose and Scope

This investigation of the chemical quality of surface waters of the Brazos River basin was made by the U.S. Geological Survey in cooperation with Texas Water Development Board and the Brazos River Authority as part of a continuing program to determine the nature and concentrations of mineral constituents in surface waters of the basin; the geologic, hydrologic, and cultural factors that influence the chemical quality of the waters; and the suitability of the waters for irrigation, domestic, and industrial uses. In addition, the investigation will provide data and interpretations that will aid in the management of existing and proposed reservoirs to reduce water-quality variations in the lower reaches of the Brazos River, making the water more suitable for domestic and industrial uses.

A network of daily and periodic chemical-quality stations on many streams in the Brazos River basin has been operated by the U.S. Geological Survey in cooperation with Texas Water Development Board, the Brazos River Authority, and various Federal and local agencies. To supplement data obtained from this network, water-quality data were collected at many existing reservoirs, at the sites of a number of proposed reservoirs, and at many other sites on streams where water-quality data were meager or lacking.

Because concentrations of dissolved minerals are likely to be highest during low flows, the analyses of low-flow samples often indicate where pollution and salinity problems exist. Data collected during medium and high flows usually are indicative of the quality of water that will be stored in reservoirs. Therefore, sampling sites were selected at streamflow stations wherever possible; at other sites the water discharge usually was measured when samples were collected.

Previous Investigations

Chemical-quality data for surface streams in the Brazos River basin collected by the U.S. Geological-Survey before 1960 were summarized by Irelan and Mendieta (1964).

- 5 -

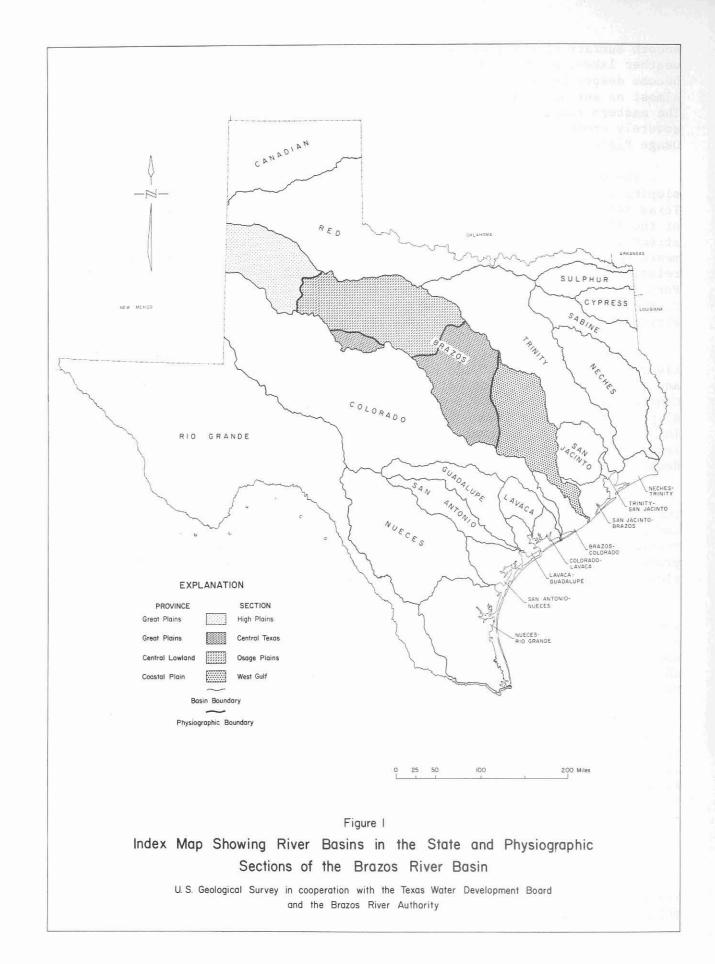
Preliminary results of chemical-quality and stratification surveys of Belton, Whitney, and Possum Kingdom Reservoirs made by the Geological Survey from October 1961 to March 1962 were described by Mendieta and Blakey (1963). A more comprehensive report concerning the chemical quality and stratification of these and other major reservoirs in the basin is in preparation.

Many other publications have described the chemical quality of surface waters, geology, or hydrology of various areas in the Brazos River basin. Many of the studies were directed toward finding the sources of salinity in the area upstream from Possum Kingdom Reservoir. Blank (1955), in cooperation with the Brazos River Authority, studied parts of the drainage area of the Salt Fork and Double Mountain Fork of the Brazos River. McMillion (1958) studied the groundwater geology and salt-water seepage in parts of the drainage basins of Salt Croton and Croton Creeks. Baker, Hughes, and Yost (1964) studied the natural sources of salinity in the upper Brazos River basin, with particular emphasis on the Salt Croton Creek and Croton Creek basins.

Currently the U.S. Geological Survey is making detailed studies in the upper Brazos River basin to determine the origin of the salt springs and seeps and the factors that control their discharge and salinity (Stevens and Hardt, 1965).

The Geological Survey in cooperation with the U.S. Army Corps of Engineers is continuing its study to locate additional sources of salinity in the upper Brazos River basin and to furnish data that will aid in designing remedial measures to improve the quality of surface waters (Hughes, 1965).

THE BRAZOS RIVER BASIN AND ITS ENVIRONMENT


Physical Features

The Brazos River drains an area of about 45,000 square miles--about 2,000 square miles in New Mexico and about 43,000 square miles in Texas. Of the total area about 9,000 square miles in the upper reaches normally does not contribute to streamflow. The Texas part of the basin is more than 600 miles long, ranges from 1 to 120 miles wide, extends from the New Mexico state line to the Gulf of Mexico, and includes all or part of 69 counties. The basin is bounded on the north by the Red River basin, on the south and southeast by the Colorado River basins, and on the east and northeast by the Trinity and San Jacinto River basins (Figure 1).

In its southeastward course across Texas, the Brazos River basin slopes from an elevation of about 4,400 feet in the headwaters to sea level and includes parts of four physiographic sections--the High Plains and the Central Texas sections of the Great Plains Province, the Osage Plains section of the Central Lowlands Province, and the West Gulf Coastal Plain section of the Coastal Plain Province (Figure 1).

The High Plains section within the Brazos River basin is a high, nearly flat, upland plain that slopes southeastward from an elevation of about 4,400 feet in the western part to about 3,000 feet in the east. Local relief rarely exceeds 20 feet per mile, except in the vicinity of major stream valleys such as the White River and the North Fork Double Mountain Fork Brazos River. The

- 6 -

- 7 -

smooth surface of the plain is broken by many undrained depressions or wet weather lakes, a few large water-table lakes, and shallow stream valleys that become deeper toward the eastern edge of the region. Much of the area has almost no surface drainage and normally does not contribute to surface runoff. The eastern edge of the High Plains is defined by the Cap Rock Escarpment, a severely eroded belt of rugged and broken land that slopes abruptly down to the Osage Plains near Post.

The Osage Plains section within the Brazos River basin is an eastward sloping upland plain that adjoins the High Plains on the west and the Central Texas section of the Great Plains Province on the east and south. The surface of the plain is flat to rolling, becoming more broken along the entrenched streams. In places, the gently sloping surface is interrupted by low escarpments formed by beds of gypsum, sandstone, and dolomite. Stream gradients are relatively steep; bluffs along the Salt Fork, Double Mountain Fork, and Clear Fork of the Brazos River range from 100 to 200 feet high. In the eastern part of the area the main-stem Brazos River is deeply entrenched and meanders in a series of almost complete loops in a narrow valley with almost no flood plain.

The Central Texas section of the Great Plains Province within the Brazos River basin adjoins the Osage Plains on the west and north near Mineral Wells and is bounded by the West Gulf Coastal Plains on the east near Waco. The Central Texas section is a region of great topographic variety. The general slope of the land is from northwest to southeast, and most of the streams flow in that direction. However, the section has been dissected heavily by erosion, leaving plateau remnants parallel to and between the deeply entrenched streams. Rough hillsides and valleys border most of the streams in this section.

The West Gulf Coastal Plain section of the Coastal Plain Province within the Brazos River basin adjoins the Central Texas section on the north and west and extends southeastward to the Gulf of Mexico. In this section the gently rolling country of the interior merges with the level, nearly featureless prairie of the Gulf Coast. In the rolling country of the interior, stream slopes are moderately steep; toward the coast they are very flat.

The Brazos River is formed by the confluence of the Double Mountain Fork and Salt Fork of the Brazos River in northeastern Stonewall County near the Stonewall-Haskell County line. From this confluence, the Brazos River flows northeastward across Knox and Baylor Counties, then generally southeastward about 800 river miles (an airline distance of about 400 miles) to the Gulf of Mexico.

Principal tributaries to the Brazos River, in downstream order, are the Clear Fork Brazos River; the Bosque River; the Little River, including its tributaries (the Leon, Lampasas, and San Gabriel Rivers); Yegua Creek; and the Navasota River. Most of these tributaries drain the western side of the Brazos River basin, flow generally southeastward, and join the Brazos River downstream from Whitney Reservoir.

Cultural Features and Economic Development

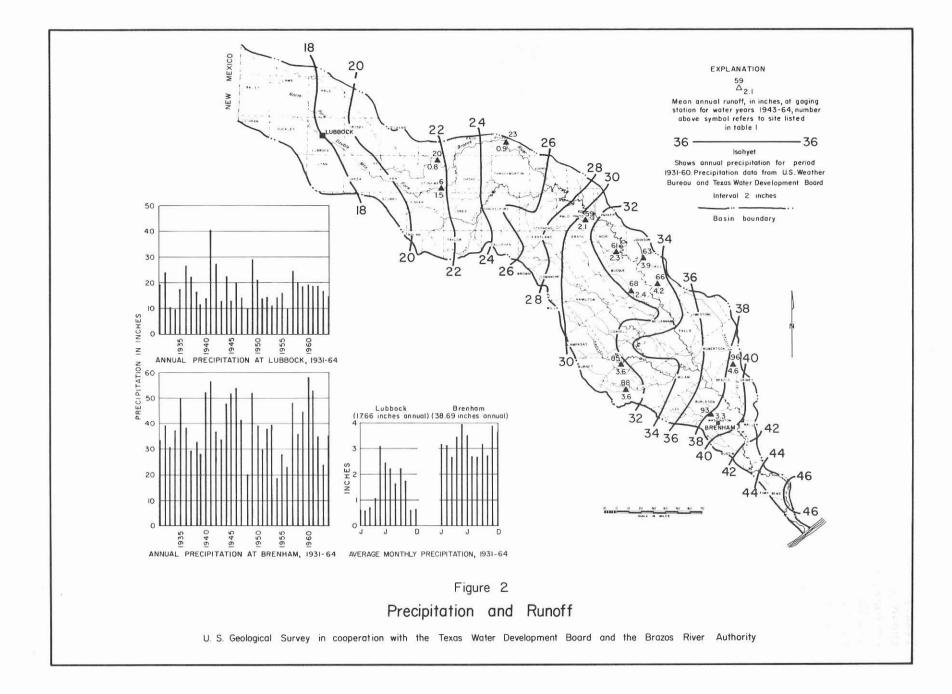
The Brazos River basin constitutes about 16 percent of the total area of Texas and has more than 13 percent of the State's population. In 1960 the population of the basin was about 1,300,000, more than half of which was urban.

- 8 -

Twenty-nine cities had more than 5,000 inhabitants in 1960. The largest of these are Lubbock in the High Plains, with a population of 128,691 (1960 census); Abilene in the central part of the basin, with a population of 90,368; and Waco and Temple in the eastern part, with populations of 97,808 and 30,419 respectively. During the period 1940-60, the population increased in most of the High Plains counties and in the counties where the larger cities are located. However, the population decreased in most of the other counties, due partly to the migration of people to the large cities. This urban growth was accompanied by an evolution of the Brazos River basin from a predominantly agricultural economy to an economy which blends oil and gas production, diversified industry, and agriculture.

The petroleum industry is the principal industry in the basin. Oil was discovered as early as 1917 at Ranger in Eastland County, and subsequently oil fields have been discovered throughout the basin (Figure 7).

Other industrial activities concerned with the production and processing of mineral products are also important to the economy of the Brazos River basin. These include the operation of sand and gravel plants and stone quarries; the production of cement materials and manufacture of cement; the production of clay and manufacture of brick, tile, and other clay products; the mining and processing of gypsum; and the production of salt and sulphur.


The principal manufacturing plants in the basin are concentrated in or near the large cities. In Waco and Temple, the principal manufacturing centers in the eastern part of the basin, products include automobile tires, insecticides, furniture, textiles, clothing, shoes, glass, rock-wool insulation, cement, clay products, cottonseed oil, and food. Lubbock, in the western part of the basin, is one of the largest inland cotton markets in the world and is the largest cottonseed processing center in the world.

Although the Brazos River basin has undergone rapid industrialization, agriculture contributes substantially to the economy. The rapidly growing population has stimulated agricultural production by creating a large market for local farm produce; and large-scale irrigation, especially in the High Plains and Osage Plains sections, has greatly increased agricultural production. Cotton, grain sorghums, and wheat are the principal crops in the western part of the basin; in the eastern part, cotton and grain sorghums are the principal crops. Beef cattle are raised throughout much of the basin.

SURFACE-WATER DISTRIBUTION

Precipitation

Precipitation within the Brazos River basin is unevenly distributed, both areally and seasonally. Average precipitation ranges from less than 18 inches per year in the western, semiarid part of the basin to about 48 inches in the eastern, subhumid part. Mean annual precipitation in the basin for the 1931-60 period and annual and average monthly precipitation at two U.S. Weather Bureau stations for the 1931-64 period are shown in Figure 2. These data indicate that in the upper part of the basin precipitation is usually minimum during the winter and maximum in late spring and early summer. In the lower part of the basin, precipitation, though usually minimum in the summer, is more uniformly

10

- 10 -

5

2.

distributed throughout the year. However, precipitation throughout the basin fluctuates much more than is indicated by the monthly averages. During the 1931-64 period, for example, precipitation at Lubbock ranged from 0.00 inches in several months to 13.93 inches in September 1936. Similarly, precipitation at Brenham ranged from 0.03 inches in July 1955 to 14.22 inches in November 1940. Precipitation so unevenly distributed in time does not sustain streamflow. Therefore, storage projects are required to provide dependable quantities of surface water for municipal or industrial use.

Runoff

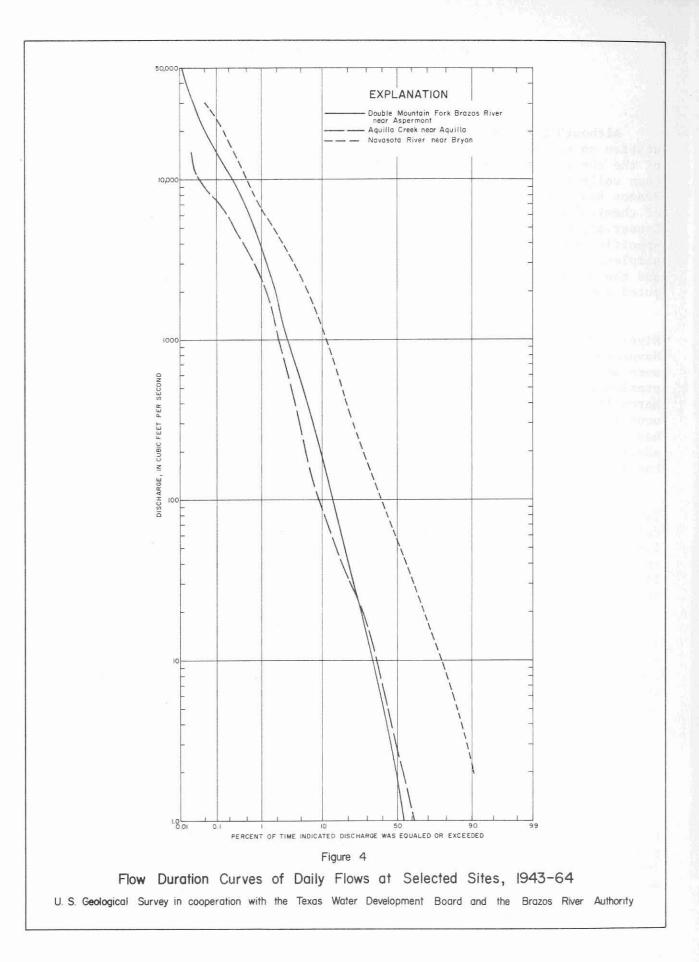
Streamflow Records

Flow of the Brazos River was measured by the U.S. Geological Survey as early as 1898, when a gaging station was established at Waco. Records for this station are continuous from October 1898 to date. In 1916 a gaging station was established on the Little River at Cameron; the record for this station is also continuous. Although streamflow records were obtained at a few other stations for short periods before 1923, systematic collection of streamflow data was greatly expanded in 1923 and 1924, when 22 gaging stations were established on the main stem and tributaries. More than 40 years of continuous discharge records are available for several of these stations. In 1964 the Geological Survey operated 10 streamflow stations on the main-stem Brazos River, 65 stations on tributaries, 12 reservoir-content stations, and 32 low-flow partialrecord stations. The periods of record for selected streamflow stations operated by the Geological Survey before October 1965 are given in Table 1; locations for these stations are shown in Figure 3.

Records of discharge and stage of streams and contents and stage of lakes or reservoirs from 1903 to 1907 and from 1924 to 1960 have been published in the annual series of U.S. Geological Survey water-supply papers. (See list of references.) Beginning with the 1961 water year, streamflow records have been released by the Geological Survey in annual reports on a state-boundary basis (U.S. Geol. Survey, 1961, 1962, 1963, 1964b). Summaries of discharge records giving monthly and annual totals have been published by the U.S. Geological Survey (1939, 1960, 1964a) and the Texas Board of Water Engineers (1958).

Variation in Runoff from Sub-Basins

Runoff is that part of precipitation that appears in surface streams. It is the same as streamflow unaffected by artificial diversions, storage, or other works of man in or on stream channels. However, the two terms are not synonomous for regulated flow. Flow of the main-stem Brazos River is regulated by Possum Kingdom and Whitney Reservoirs. Similarly, many of the tributaries are regulated by reservoirs, flood-retarding structures, and farm ponds. Therefore, if historical streamflow records from these streams are to be used for computing runoff, they must first be adjusted for the effects of regulation and consumptive water use. Lockwood, Andrews, and Newnam (1960) have computed runoff from Texas watersheds and sub-basins for the 1940-57 period by adjusting historical streamflow records to the 1957 conditions of regulation and use. Such detailed adjustments were beyond the scope of the present study. However, some streams in the Brazos River basin are not yet regulated by reservoirs of appreciable size. In the following summary of runoff, historical streamflow records for these streams were used to show the general pattern of areal runoff within the basin. Because most of the chemical-quality data for streams in the Brazos River basin have been collected since 1942, the 1943-64 period was selected as the base for computing average runoff. Records of streamflow from most of the stations for which runoff data were computed were continuous for the entire base period. For those stations whose records were not complete, runoff data for the missing period of record were estimated by correlating the available data for each station with data for stations in nearby drainage areas (Searcy, 1960, p. 79-84).


Average annual runoff from contributing areas within the Brazos River basin, as measured or estimated at 11 streamflow stations, is shown on the map in Figure 2. These data show that average annual runoff from sub-basins has ranged from less than 1 inch to more than 4 inches. Lowest annual runoff is from the upper part of the basin, where precipitation averages less than 22 inches annually. Although both runoff and precipitation generally increase from the upper to the lower parts of the basin, the progressive increase of runoff from the upper to the lower parts is less uniform than that of precipitation. Part of this inconsistency undoubtedly is due to small but variable amounts of water diverted from some of the streams; other contributing factors include differences in temperature, types and density of vegetation, surface slope, soils, and permeability of aquifers.

Runoff data in Figure 2 show only a measure of the central tendency of streamflow at each selected station. The magnitude and frequency of the high and low flows can best be shown by flow-duration curves. The shape of a flowduration curve is an index of the variability of flow. A curve with a steep slope throughout indicates a highly variable stream whose flow is largely from direct runoff, whereas a curve with a flat slope shows the presence of surfacewater or ground-water storage. Flow-duration curves for three stations on streams in the Brazos River basin for the 1943-64 period are shown in Figure 4. The steep slope of each curve shows that the flow of streams throughout the basin are highly variable. Consequently, storage projects are required to make surface water available in dependable quantities for municipal or industrial use.

SURFACE-WATER RESOURCES DEVELOPMENT

Because precipitation and runoff in the Brazos River basin are highly variable, considerable development of surface-water resources has occurred. Thirty reservoirs, either existing or under construction during the 1964 water year, have conservation-storage capacities of 5,000 acre-feet or more. The capacity, owner, location, and use of these reservoirs are listed in Table 2; the locations also are shown in Figure 3. Most of these reservoirs are primarily for water conservation. Six reservoirs--Whitney, Waco, Proctor, Belton, Stillhouse Hollow, and Somerville--have the additional purpose of flood control; Possum Kingdom and Whitney Reservoirs also generate hydroelectric power.

- 12 -

- 15 -

CHEMICAL QUALITY OF THE WATER

Chemical-Quality Records

Although the U.S. Geological Survey operated a daily chemical-quality station on the Brazos River at Waco from December 1906 to November 1907, most of the chemical-quality data on surface waters of the Brazos River basin have been collected since 1940. In 1941 a sampling station was established on the Brazos River at Richmond. Data obtained from this station until 1945 consisted of chemical analyses of the filtrate from samples collected by the U.S. Soil Conservation Service for the determination of suspended matter. Usually only specific conductance and chloride determinations were made on these filtered samples. Since October 1945, chemical analyses have been more comprehensive, and the discharge-weighted averages of analyses for the station have been computed annually.

In 1942 daily sampling stations were established on the main-stem Brazos River near South Bend and below Possum Kingdom Dam near Graford, and on the Navasota River near Easterly. (Only specific conductance and chloride content were determined on most of the samples from the Easterly station.) The Easterly station was discontinued in December 1942, as was the South Bend station in March 1948; however, records for the station at Possum Kingdom Dam are continuous to date. Since 1942, the U.S. Geological Survey, for varying periods, has collected chemical-quality data at 32 other daily sampling stations. In addition, periodic or miscellaneous chemical-quality data are available for hundreds of additional sites in the Brazos River basin.

The periods of record for selected data-collection sites are given in Table 1; the locations are shown in Figure 3. Chemical-quality data for the daily stations are summarized in Table 3, and the complete records are published in an annual series of U.S. Geological Survey Water-Supply Papers and in reports of the Texas Water Development Board and predecessor agencies. (See list of references.) Results of selected periodic and miscellaneous analyses are given in Table 4.

The Texas State Health Department since 1957 has maintained a statewide stream-sampling program, which includes the periodic determination of pH, biochemical oxygen demand, total solids, dissolved oxygen, chloride, chlorine demand, and sulfate at 36 sites in the Brazos River basin. Data from this program were made available to the U.S. Geological Survey and were studied during the preparation of this report.

Factors Affecting Chemical Quality of Water

All water from natural sources contains dissolved minerals, but the chemical character and concentrations of dissolved constituents in surface waters may fluctuate widely. Some of the environmental factors that affect the chemical quality of surface waters are variation in climate; geology; patterns and characteristics of streamflow; and activities of man, such as impoundment and diversion, disposition of municipal and industrial wastes, and irrigation. Waters usually are classified in various ways to demonstrate similarities and differences of composition. In the following discussion, which relates chemical quality of water to environmental factors, water is classified on the basis of dissolved-solids content, principal chemical constituents, and hardness. On the basis of dissolved-solids content, waters are classified as fresh, slightly saline, moderately saline, very saline, or brines as follows:

Classification	Dissolved solids (ppm)
Fresh	. <1,000
Slightly saline	. 1,000 - 3,000
Moderately saline	. 3,000 - 10,000
Very saline	. 10,000 - 35,000
Brines	. > 35,000

As to geochemical types, waters are classified on the basis of the predominant cations and anions in equivalents per million. For example, a water is referred to as a sodium chloride water if the sodium and chloride ions constitute 50 percent or more of the cations and anions respectively. Waters in which one cation and one anion are not clearly predominant are recognized as mixed types and are identified by the names of all the important cations and anions.

On the basis of hardness, waters are classified as soft, moderately hard, hard, or very hard. (See tabulation on page 53.)

Geology

The amounts and kinds of minerals dissolved in water that drains from areas where municipal and industrial influences are small depend principally on the chemical composition and physical structure of rocks and soils traversed by the water and on the length of time the water is in contact with the rocks and soils. The amount of minerals in the rocks and soils available for solution is decreased by leaching; therefore, in areas of high rainfall, rocks that originally contained large quantities of readily soluble minerals have been leached by circulating water until the mantle rock and residual soil contain relatively small amounts of readily soluble minerals. These rocks usually yield water of low mineralization. However, in arid or semiarid regions most soils, and the rocks from which they originated, are incompletely leached and still contain large amounts of readily soluble material; water in contact with these rocks and soils may become highly mineralized. In the semiarid upper part of the Brazos River basin, some rocks and soils contain large quantities of halite, gypsum, limestone, or dolomite. Waters draining from these rocks and soils usually are highly mineralized. In the lower part of the basin, where precipitation is more abundant, the well-leached rocks and soil usually yield waters of low mineralization.

Most streams in the Brazos River basin traverse more than one geologic formation; therefore, water in these streams usually is a composite of waters from several formations. The chemical character and mineralization of these streams often vary, depending upon the relative quantity of water contributed by each source. Similarly, the mineral composition of a particular formation may differ from area to area; and in some areas the chemical composition of water in the formation may be altered by highly mineralized effluent from another formation with which it is hydraulically connected. For example, detailed explorations (Stevens and Hardt, 1965) indicate that the Croton Creek-Salt Croton Creek area is underlain by two distinct bodies of ground water. Although the waters are in hydraulic continuity, their chemical composition is vastly different. The shallow water contains from 2,000 to 5,000 ppm dissolved solids and is the calcium sulfate type. In contrast, the underlying body of water is a nearly saturated sodium chloride brine. Data from scattered localities and in miscellaneous reports suggest that this brine body extends many miles beneath the High Plains (Stevens and Hardt, 1965, p. 16). Therefore, the mineralization and chemical character of water contributed to surface streams by a particular formation may differ from place to place in the outcrop. In other areas the chemical composition of ground water and surface water is altered by pollution from municipal or industrial wastes. For these reasons the following discussion which relates chemical composition of surface water in the Brazos River basin to geology is very general.

The geology of the Brazos River basin has been described by Cronin and others (1963, p. 20-35). Rocks exposed in the basin consist of a thick series of sedimentary strata that range in age from Ordovician to Recent; the outcrop areas of the various geologic units are shown in Figure 5.

Chemical analyses of selected low-flow samples of surface waters are represented diagrammatically (Stiff, 1951) in Figure 5 to relate chemical composition of surface waters to geology. The shape of the diagram indicates the relative concentrations of the principal chemical constituents of the water (in equivalents per million), and the size of the diagram indicates roughly the relative degree of mineralization.

Headwater streams of the Brazos River rise in the Ogallala Formation of Tertiary age. The Ogallala consists of clay, silt, sand, gravel, and caliche. Some of the sand, gravel, and silt are consolidated; but some cementation occurs, chiefly by calcium carbonate. However, the cementation occurs irregularly throughout the formation. The individual beds or lenses of silt, sand, gravel, and clay are not continuous over wide areas. Because of these local differences, the chemical quality of water in the Ogallala differs from area to area in the outcrop. Chemical analyses of water from selected wells in the Ogallala (Cronin and others, 1963, p. 83) indicate that the water is fresh to slightly saline, very hard, and siliceous. Principal chemical constituents are magnesium, sodium, calcium, and bicarbonate. Water from some of the wells has a high fluoride content. Although most of the High Plains section of the Brazos River basin is underlain by the Ogallala, the effective drainage area of streams underlain by the formation is relatively small. Practically no runoff occurs from most of the outcrop, except after exceptionally heavy rains. Base flow generally is nonexistent in most of the streams that traverse the Ogallala outcrop. However, in the eastern part of the outcrop, seeps and springs contribute a small amount of flow to the North Fork Double Mountain Fork Brazos River and the White River. Low flow of the North Fork Double Mountain Fork downstream from Lubbock is sustained partly by return flow from

irrigation and by sewage effluent (Irelan, 1955, p. 12) and, therefore, is not representative of water from the Ogallala. However, water of the White River near Crosbyton that drains from the Ogallala generally contains less than 500 ppm dissolved solids and is very hard. Principal chemical constituents are magnesium, sodium, calcium, and bicarbonate (Figure 5, site 11).

Downstream from the Ogallala outcrop the drainage areas of both the Double Mountain and Salt Forks of the Brazos River, the two principal headwater streams, are underlain successively by rocks of Triassic and Permian age. The Dockum Group of Late Triassic age consists of clay, shale, sandstone, conglomerate, and some gypsum and anhydrite. No generalization can be made concerning the chemical quality of water contributed by the Dockum Group because the chemical composition varies with local conditions. Water from some wells that tap the Dockum Group in Scurry County is fresh, very hard, and the calcium bicarbonate or sodium bicarbonate type (Cronin and others, 1963, p. 58). In other outcrop areas of the Dockum Group, shallow wells yield water that is heterogeneous in chemical composition. However, when water yielded by the Dockum Group contains more than 5,000 ppm dissolved solids, it usually is the sodium chloride type. Data on the chemical quality of water in streams that traverse the Dockum Group are meager. Streams that drain the outcrop are intermittent, usually flowing for only a short time in response to a rain. However, chemical analyses of a few samples collected from these streams indicate seepage of saline water from some of the outcrop areas. Water of the Double Mountain Fork at Justiceburg is slightly to very saline during low flow. Principal dissolved constituents are sodium and chloride (Figure 5, site 1). Water of McDonald Creek, a tributary of the Salt Fork that drains the Dockum Group, is also very saline and the sodium chloride type.

Rocks of Permian age that crop out in the drainage areas of the Double Mountain and Salt Forks of the Brazos River include the Whitehorse, Pease River, and Clear Fork Groups. These rocks consists predominatly of shale, anhydrite, gypsum, limestone, dolomite, and sandstone. The chemical composition of water contributed to surface streams by these rocks varies. During periods of sustained low flow, water of the Double Mountain Fork at the daily chemical-quality station near Aspermont usually is moderately saline and very hard. However, the principal chemical constituents vary. Some low-flow waters are the calcium sulfate type; others are the sodium chloride type; and others are a mixture of the two types. The chemical composition of low-flow waters in Double Mountain Fork tributaries that drain Permian rocks also varies. Low-flow water of Rough Creek near Rotan is slightly saline, very hard, and gypsiferous. Low-flow water of Tank Creek near Rule is slightly saline, very hard, and of no distinct geochemical type (Table 4).

Water that drains from Permian rocks in the drainage area of the Salt Fork Brazos River generally is highly mineralized. Daily chemical-quality records show that water of the Salt Fork near Aspermont is usually a sodium chloride brine. Although sodium and chloride are the principal chemical constituents, the water also contains large quantities of calcium, magnesium, and sulfate (Figure 5, site 20). Baker, Hughes, and Yost (1964, p. CC 43-48) have shown that much of the salinity of the Salt Fork originates from salt springs and seeps in the drainage areas of Croton and Salt Croton Creeks, which are underlain by the Whitehorse and Pease River Groups. Chemical analyses of water from these streams (Table 4) show that though waters of both streams are highly mineralized and the sodium chloride type, water from Salt Croton Creek is a nearly saturated brine. As mentioned previously, explorations by Stevens and Hardt (1965) indicate that the entire Croton Creek-Salt Croton Creek area is underlain by a body of saturated brine.

Tributaries that drain Permian rocks and enter the main-stem Brazos River upstream from Seymour include North Croton and Mustang Creeks. Water of North Croton Creek near Knox City during low flow is slightly to very saline, very hard, and the sodium chloride type (Table 4). The chemical composition of water from Mustang Creek varies. At moderate flows, water of Mustang Creek near Knox City is fresh, very hard, and the calcium sulfate type. At very low flows the water is usually moderately saline, but the principal chemical constituents vary. Some low-flow waters are the sodium chloride type; others are the calcium sulfate type, and still others are a mixture of these two types (Table 4).

Water of the Brazos River at the daily chemical-quality station at Seymour is a composite of water from the Double Mountain and Salt Forks of the Brazos River plus inflow downstream from their confluence. Therefore, the chemical composition of the water in the main stem depends largely upon the relative amount of water contributed by the two forks. The chemical composition of water at the Seymour station varies; but during periods of sustained low flow, the water generally is moderately to very saline, very hard, and the sodium chloride type (Figure 5, site 23).

In the reach between the Seymour station and Possum Kingdom Reservoir, the Brazos River basin is underlain largely by rocks of Permian and Pennsylvanian age. Rocks of Pennsylvanian age that crop out in this reach consist of shale, sandstone, conglomerate, limestone, and beds of coal. The relation of chemical quality of water of the main stem to geology in this reach is obscured by the large concentrations of dissolved constituents contributed by areas upstream from the Seymour station. However, chemical analyses of water from tributaries show that water which drains from Permian rocks downstream from the Seymour station generally is less mineralized than water from Permian rocks in the headwaters. During low flow, water of Millers Creek, which drains largely from the Clear Fork and Wichita Groups of Permian age, ranges from fresh to slightly saline. Near Munday, for example, the water of Millers Creek generally contains less than 200 ppm dissolved solids, is moderately hard, and is the calcium bicarbonate type (Figure 5, site 24). Farther downstream, the water is more highly mineralized and is of no distinct geochemical type.

Much of the drainage area of the Clear Fork Brazos River is underlain by rocks of Permian and Pennsylvanian age. However, daily chemical-quality records for the Clear Fork at the Nugent, Fort Griffin, and Eliasville stations indicate that widespread oil-field brine pollution of surface streams is occurring in the drainage area. Daily chemical-quality records of Paint Creek near Haskell and California Creek near Stamford in the upstream part of the drainage area also show evidence of oil-field brine pollution. Similarly, most of the streams in the Hubbard Creek drainage area are being polluted. According to Hembree and Blakey (1964, p. 29) chloride contamination in streams of the Hubbard Creek watershed is so widespread that the quality of water of most of the streams has only a minor relation to surface geology. Therefore, the relation of quality of water of the Clear Fork Brazos River to geology is ill defined. Generally, however, the water is of much better quality than water that drains from Permian rocks in the drainage areas of the Double Mountain and Salt Forks of the Brazos River. Flow of the upper Brazos River is impounded and becomes mixed in Possum Kingdom Reservoir. Because flow of the main stem between Possum Kingdom and Whitney Reservoirs is partly sustained by releases from Possum Kingdom Reservoir, no direct relation exists between the geology of the intervening area and the chemical quality of the water. Therefore, the following discussion relates the chemical composition of water of tributaries in this reach to geology. Tributaries in this reach for which some chemical-quality data are available include Keechi, Palo Pinto, and Paluxy Creeks, and Nolands River.

Most of the area drained by Keechi and Palo Pinto Creeks is underlain by the Canyon and Strawn Groups of Pennsylvanian age. These rocks consist of limestone, shale, and minor amounts of sandstone and conglomerate. During low flows, water of Keechi Creek near Graford and Palo Pinto Creek near Santo is generally fresh, very hard, and the calcium bicarbonate type (Figure 5, sites 56 and 59).

The drainage area of Paluxy Creek is underlain by the Trinity Group of Early Cretaceous age, which consists of limestone, sand, shale, anhydrite, clay, and conglomerate. During low flow, water of Paluxy Creek at Glen Rose generally contains less than 300 ppm dissolved solids and is very hard. Principal chemical constituents are calcium, magnesium, and bicarbonate (Figure 5, site 61).

Nolands River, which empties into Whitney Reservoir, traverses outcrops of the Washita and Fredericksburg Groups, undifferentiated, of Early Cretaceous age. These rocks consist principally of fossiliferous limestone and marl with some shale, clay, shell agglomerate, and sand. Water of Nolands River at Blum usually contains less than 500 ppm dissolved solids, ranges from hard to very hard, and is the mixed calcium sodium bicarbonate type (Figure 5, site 63).

Downstream from Whitney Reservoir, streams for which some chemical-quality data are available include Aquilla Creek; Bosque River; Little River and its principal tributaries (Leon, Lampasas, and San Gabriel Rivers); Little Brazos River, Yegua Creek, and Navasota River.

The drainage area of Aquilla Creek is underlain largely by the Woodbine Formation of Late Cretaceous age, which consists of crossbedded ferruginous sandstone, clay, shale, and sandy clay interbedded with lignite and gypsiferous clay. Water of Aquilla Creek near Aquilla generally is fresh but very hard. During low flow, principal chemical constituents are calcium, sulfate, and bicarbonate (Figure 5, site 66).

Much of the drainage area of the North and Middle Bosque Rivers is underlain by the Washita and Fredericksburg Groups, undifferentiated. Waters of both the North Bosque River near Clifton and the Middle Bosque River near McGregor usually contain less than 300 ppm dissolved solids, range from hard to very hard, and are the calcium bicarbonate type (Figure 5, site 68).

The Little River, which has the largest drainage area of any Brazos River tributary, receives waters from three principal tributaries--the Leon, Lampasas, and San Gabriel Rivers. Water of each of these is a composite of waters from several formations. The Leon River, the longest of the three tributaries, heads in rocks of Pennsylvanian age, but most of the drainage area is underlain by the Trinity Group and the Washita and Fredericksburg Group, undifferentiated, of Cretaceous age. Records of the daily chemical-quality station on the Leon River near Eastland for the 1951-53 water years and analyses for Leon

- 23 -

Reservoir (1955-63) indicate that water contributed upstream from Eastland usually is low in dissolved solids, hard, and the calcium bicarbonate type. Although water at the Eastland station was generally low in both sodium and chloride, the sodium chloride content increased erratically in some samples, indicating that some brine from oil fields was reaching surface streams. Therefore, the relation of quality of water to geology is partly obscured.

Much of the drainage area of the Lampasas River is also underlain by the Trinity Group and the Washita and Fredericksburg Groups, undifferentiated. In a base-flow study of the Lampasas River, Mills and Rawson (1965) have shown that water draining from these rocks is low in dissolved solids, very hard, and the calcium bicarbonate type. However, much of the sustained flow in the upper reaches of the Lampasas River is contributed by springs in a small Marble Falls Limestone inlier of Pennsylvanian age that crops out in the drainage area of Sulphur Creek. At the surface the Marble Falls Limestone is chiefly a fossiliferous limestone containing thin beds of shale. Chemical analyses of samples from Sulphur Creek have shown that the Marble Falls Limestone yields water that is slightly saline, very hard, and the sodium chloride type (Figure 5, site 83). During low flow, water of the Lampasas River at the daily chemicalquality station at Youngsport, which is a composite of waters from the Marble Falls Limestone; the Trinity Group; and the Washita and Fredericksburg Groups, undifferentiated, usually contains less than 500 ppm dissolved solids and is very hard and the sodium chloride type (Figure 5, site 85).

Formations of the Trinity Group and the Washita and Fredericksburg Groups, undifferentiated, also crop out in the western half of the San Gabriel River drainage area. Water of the North and South Forks of the San Gabriel River, which drains from these rocks, is low in dissolved solids, ranges from hard to very hard, and is the calcium bicarbonate type. Water of the San Gabriel River at Georgetown, which is a composite of waters from the two forks, is similar in chemical character (Figure 5, site 88). Much of the eastern half of the San Gabriel drainage area is underlain by rocks of Late Cretaceous age, including the Eagle Ford Shale, Austin Chalk, rocks of Taylor age, and the Navarro Group, undifferentiated. These formations consist principally of marl, sandy marl, shale, chalky and marly limestone, and calcareous sandstone. Near the eastern limit of the drainage area, narrow bands of the Midway Group of Paleocene age and the Wilcox Formation of Eocene age crop out. The Midway Group consists of glauconitic sand, silt, calcareous and gypsiferous clay, and limestone. The Wilcox consists principally of sand, silt, clay, and lignite. Leifeste and Smith (1965) have shown that the base flow of streams that traverse these formations in the eastern half of the San Gabriel drainage area generally is low in dissolved solids, very hard, and the calcium bicarbonate type.

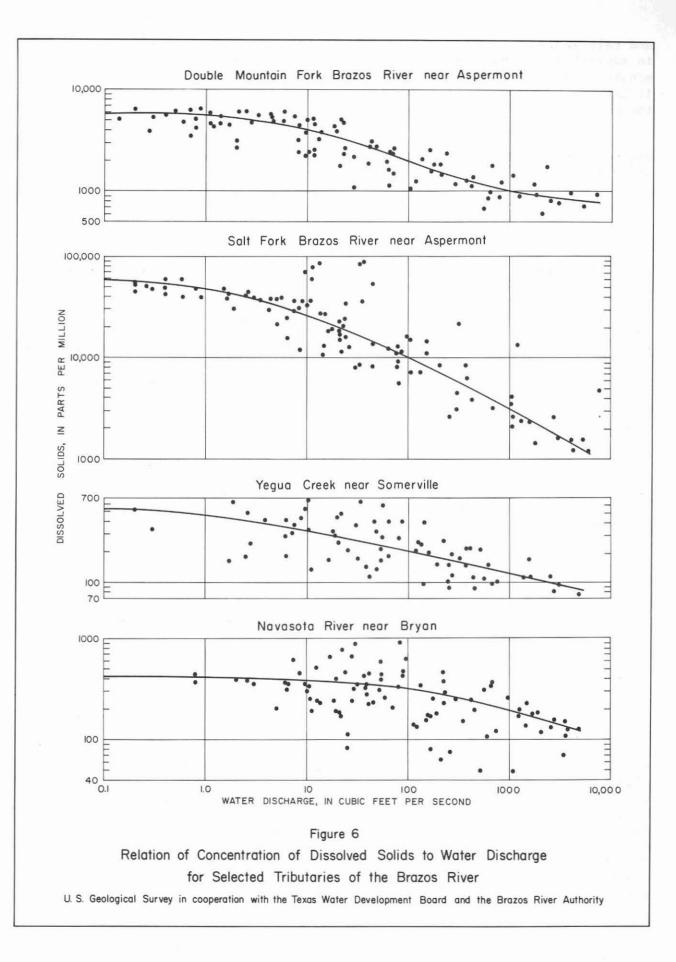
Water of the Little River at the daily chemical-quality station at Cameron, which is a composite of waters from the Leon, Lampasas, and San Gabriel Rivers, usually is low in dissolved solids, hard to very hard, and the sodium calcium bicarbonate type (Figure 5, site 89).

The drainage area of the Little Brazos River is underlain largely by the Midway Group of Paleocene age and Quaternary alluvium. Low flow of the Little Brazos River near Bryan probably is sustained largely by influent from the alluvium. No generalization can be made concerning the chemical character of water from the alluvium. The dissolved-solids content of water collected from the Little Brazos River near Bryan ranged from 275 ppm to 948 ppm. The water was usually hard or very hard but was of no distinct geochemical type. Sodium

- 24 -

and calcium usually were the principal cations and in some samples were present in approximately equivalent amounts. However, in some samples sodium predominated. Bicarbonate was the predominate anion in most of the samples; however, it usually totaled less than 50 percent of the anions. In a few of the samples the chloride content was equivalent to or greater than the bicarbonate content.

Rocks that crop out in the Yegua Creek drainage area in downstream order include the Wilcox Formation, Claiborne and Jackson Groups (all of Eocene age), and Quaternary alluvium. At the daily chemical-quality station near Somerville, water that drains from these rocks during low flow usually contains less than 500 ppm dissolved solids and is a mixed type. Sodium and calcium are the principal cations; sulfate, chloride, and bicarbonate are the principal anions (Figure 5, site 93).


The northern reach of the Navasota River traverses outcrops of the Navarro Group, rocks of Taylor age, Austin Chalk, and Eagle Fork Shale, undifferentiated, of Late Cretaceous age and the Midway Group of Paleocene age; but much of the drainage area is underlain by rocks of Eocene age that also crop out in the Yegua Creek drainage area. However, the chemical composition of water of the two streams differ. Water of the Navasota River at the daily chemical-quality station near Bryan usually contains less than 500 ppm dissolved solids and is the sodium chloride type. However, the dissolved-solids content sometimes increases erratically, mostly due to an increase in the sodium chloride content. These data indicate that pollution by oil-field brine is occurring; therefore, the relation of geology to quality of water of the Navasota River near Bryan is partly obscured.

Downstream from its confluence with the Navasota River, the Brazos River receives inflow from several minor tributaries, but chemical-quality data for these streams are meager or lacking. Therefore, no relation between geology and chemical quality of surface water of these streams is shown on Figure 5.

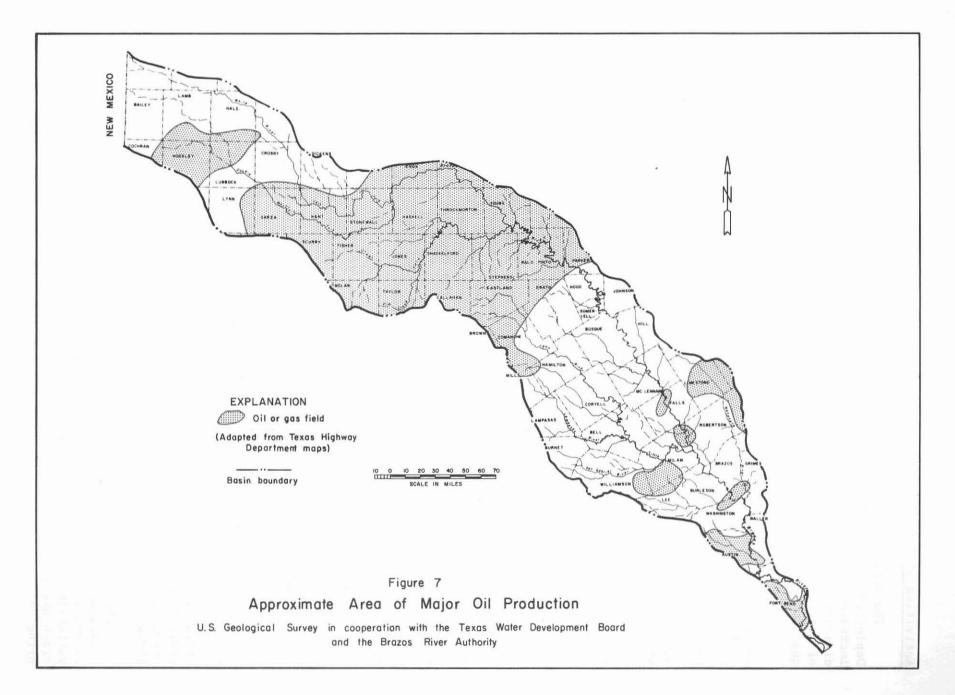
Streamflow

0

In many streams where the flow is not regulated by upstream reservoirs, the concentrations of dissolved minerals vary inversely with the water discharge. The concentrations usually are minimum during periods of high flow because most of the water is surface runoff that has been in contact with soluble minerals of the exposed rocks and soils for a relatively short time. Conversely, the concentrations usually are maximum during periods of low flow when the water is predominantly ground water that has been in contact with the rocks and soils for a sufficient time to leach from them more of their soluble mineral matter. Figure 6 shows this general relationship to be true for selected streams in the Brazos River basin, but the scatter of points in Figure 6 shows that the inverse relationship between streamflow and concentration of dissolved solids is not precise. Obviously, the salt content at each selected site has varied over relatively wide ranges at all rates of water discharge. Much of this variation is related to the diversified geology and patterns of runoff in the drainage basin. However, the intermittent inflow of brine from oil fields has modified the general streamflow-quality pattern at some sites. Therefore, the probability of obtaining accurate results by using water discharge to estimate chemical quality of water in many streams of the basin is poor.

- 26 -

Activities of Man


The activities of man often worsen the chemical quality of surface water. Depletion of flow by diversion and consumptive use, loss of water because of increased evaporation, and return flow of irrigation usually increase the dissolved-solids concentration of water in streams. Similarly the disposition of municipal and industrial wastes into a stream also degrades the chemical quality of water.

Reservoirs that impound water of good quality for municipal use have been constructed on many tributaries in the Brazos River basin. The resulting depletion of flow undoubtedly has caused higher average concentrations of dissolved solids in water of the main stem, because less water of good quality is now available for dilution of more saline flows. Also, much of the dissolved constituents in the diverted water eventually returns to the river system as municipal, agricultural, or industrial wastes in a volume of water that is greatly reduced by evaporation and consumptive use. Decreased flow as a result of diversion and an increase in the introduction of municipal wastes, resulting from continued municipal growth can be expected to increase the waste-disposal burdens of the stream system. This trend emphasizes the importance of providing the proper treatment of municipal wastes throughout the basin.

Use of both surface and ground water for irrigation may degrade the chemical quality of surface water in a stream system. Water of good quality removed from tributaries is no longer available for dilution of more saline water in the main stem. In addition, return flow from irrigation carries minerals dissolved from the irrigated land back to streams. During the past 25 years, irrigation has expanded rapidly in the Brazos River basin, especially in the High Plains and in the coastal rice belt. However, the use of water by irrigation is not yet a significant factor in the degradation of the quality of water in most streams of the Brazos River basin. Because very little drainage occurs in the High Plains, where most of the irrigation is from ground water, only minor amounts of dissolved solids are contributed to surface streams by return flow from irrigation.

Oil is produced in many areas in the Brazos River basin (Figure 7). Brine is produced in nearly all oil fields and if improperly handled eventually enters surface streams. According to an inventory by the Texas Railroad Commission in 1961, more than 93 percent of salt water produced in oil fields of the Brazos River basin was injected underground to prevent and abate pollution (Texas Water Commission and Texas Water Pollution Control Board, 1963). The remainder of the salt water was disposed of in open surface pits, some of which were unlined. From these so-called evaporation pits, much of the brine has percolated into the ground and has seeped, or eventually will seep, into streams of the basin; also some of it has been washed by surface runoff directly into streams. In addition, brine from abandoned wells and unplugged or improperly plugged test holes may contribute to the salinity of streams in some areas. Injected brine may move upward along fault zones and eventually reach surface streams.

The composition of oil-field brines varies, but the principal chemical constituents, in order of magnitude of their concentrations (in ppm), are generally chloride, sodium, calcium, and sulfate. Generally, an erratic variation of the sodium chloride content of surface water in streams that drain areas where oil fields are located is presumptive evidence that oil-field brine pollution is occurring. Because of the widespread contamination of

- 28 -

6

H.

.

×

streams in the upper Brazos River basin by naturally-occurring sodium chloride brines, distinction between natural contamination and man-made pollution is sometimes difficult. However, the saline water of many streams in the upper basin probably contains salts from both natural sources and oil fields. Daily chemical-quality records and reconnaissance investigations indicate that some brine is reaching surface streams in several parts of the basin. During the 1950-51 period, the erratic variation of the sodium chloride content of daily samples collected from Paint Creek near Haskell, a Clear Fork Brazos River tributary, indicated that pollution by oil-field brine probably was occurring. In July 1958, the Texas Board of Water Engineers conducted a reconnaissance investigation to determine the extent and nature of pollution in the drainage area of California Creek, a Paint Creek tributary. This investigation showed that brine probably was being contributed to surface waters of California Creek and thus to Paint Creek by subsurface leakage from wells tapping oil- and gasbearing strata, possibly augmented by the effects of brine-injection wells (Shamburger, 1958, p. 2). Daily chemical-quality records of California Creek near Stamford indicate that pollution still is occurring.

Oil-field brine is contributing to the salinity of streams in the drainage area of Hubbard Creek, a tributary to the lower reach of the Clear Fork Brazos River. A large number of dry holes and abandoned wells were not properly plugged and shallow ground-water aquifers in many parts of the watershed have been polluted by oil-field brines. Additional large amounts of salt water brought to or near the surface as a by-product of oil production reaches the streams over the surface or through the ground. Chemical-quality records collected from Hubbard Creek near Breckenridge before closure of Hubbard Creek Reservoir show a progressive increase of chloride content from 1955 to 1962, which indicates that increasing amounts of oil-field brine were reaching surface streams. In December 1961 the Geological Survey in cooperation with the West Central Texas Municipal Water District and the Texas Water Commission began a comprehensive study of the surface-water resources of the Hubbard Creek watershed. According to Hembree and Blakey (1964) and Hembree (written communication, 1965) the investigation has shown:

1. The surface waters of Hubbard Creek watershed were originally low in chloride content; however, at present the chloride concentration of many of the streams is high, especially during low flow.

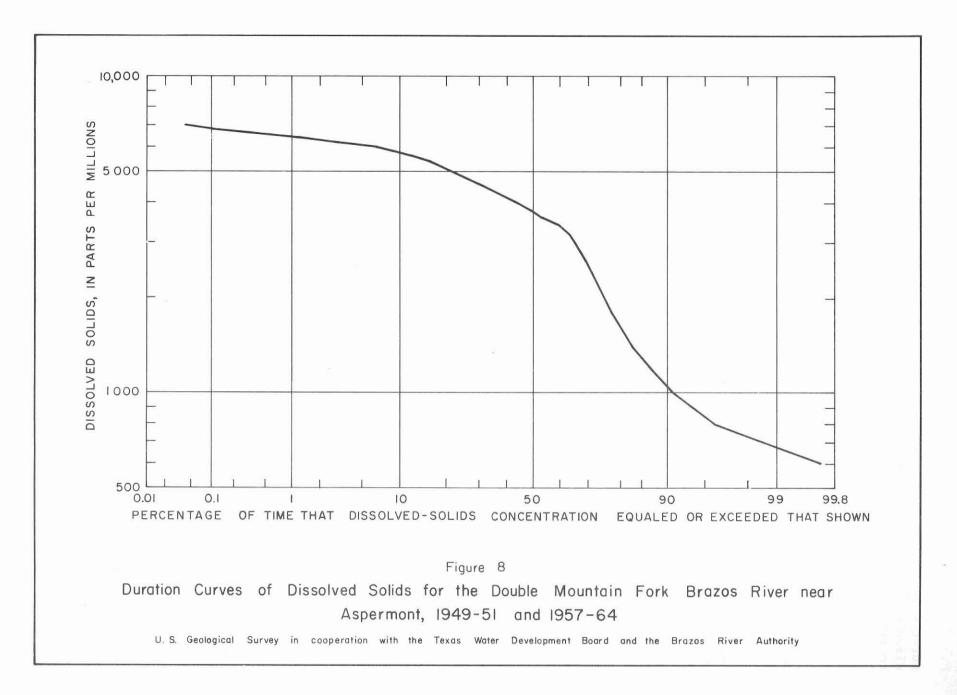
2. Chemical-quality records indicate a progressive increase in chloride between 1955 and 1962; this increase in chloride coincided with an increase in water-flood projects in the oil fields.

3. An overall improvement in the quality of water since 1962 probably is the results of intensified efforts to control disposition of oil-field brines. However, the quality of water in some streams has improved only slightly if at all.

Oil-field brines also have contributed to the salinity of Salt Creek in Young and Archer Counties. However, daily chemical-quality records collected from Salt Creek at Olney during the 1958-59 period and from Salt Creek at Newcastle during the 1958-60 period indicate that a campaign to reduce pollution and to encourage subsurface injection of salt water resulted in almost immediate improvement of water quality. In November 1962, Lake Graham on Salt Creek contained water with less than 300 ppm dissolved solids. Another area where oil fields probably are contributing brine to surface streams is the upper reach of the Leon River. Chemical-quality records for a daily sampling station operated on the Leon River near Eastland during the 1951-53 period show that the sodium chloride content of the water usually was low. However, the sodium chloride content increased erratically some of the time. Similarly, analyses of several samples collected from the Leon River near Hasse during the 1962 water year (before closure of Proctor Reservoir) show evidence of oil-field brine pollution. During moderate and high flows, water of the Leon River near Hasse was low in dissolved solids and was the calcium bicarbonate type. During low flows, the water was more mineralized and a mixed type. Most of the increase in dissolved solids resulted from an increase in the sodium chloride content, which is indicative of oil-field brine pollution.

Daily chemical-quality records for the Navasota River near Easterly during 1941-42 and for the Navasota River near Bryan from October 1958 to date indicate that oil-field brine is reaching surface streams in the drainage area of the Navasota River. Reconnaissance investigations by the Geological Survey (C. H. Hembree, written communication, 1962) and by the Texas Water Commission (Burnitt, Holloway, and Thornhill, 1962) have shown that much of this brine originates from oil fields in northeast Limestone County and probably enters surface drainage largely by direct runoff. Despite efforts by the oil-field operators to contain the brine by the construction of large surface pits, the presence of flowing brine in road ditches and intermittent streams during the 1962 investigations indicated that gross seepage of brine from the surface pits was occurring. Leakage of brine from some of the 600 abandoned oil and gas wells in the area, many of which may be inadequately plugged, also may contribute to the salinity of surface streams.

These data show that the disposition of oil-field brines has resulted in the deterioration of water quality in several streams in the Brazos River basin upstream from Richmond. Although the load of dissolved constituents contributed by oil-field brines was not determined, the quality of water in most of these streams probably would be improved substantially if pollution were abated.


Oil-field brines, industrial effluents and sea-water intrusion are contributing to the salinity of the lower reach of the Brazos River. Since January 1962, the U.S. Geological Survey periodically has collected chemical-quality data at many sites on streams in the drainage areas of Big, Cow, and Varner Creeks in Fort Bend and Brazoria Counties. Chemical analyses show that the quality of water in Cow Creek varies widely from site to site (Table 4). The dissolved solids content (as indicated by specific conductance measurements) and chloride content usually are minimum at the upstream site 99 (Figure 3), often increase greatly at site 100, and then usually decrease slightly farther downstream at site 101. The water of Cow and Varner Creeks also varies widely in dissolved-solids and chloride content at all rates of water discharge (Table 4). These data indicate that oil-field brines and other industrial effluents are being contributed intermittently to streams in the drainage areas of Big, Cow, and Varner Creeks and thus to the lower reach of the Brazos River.

Part of the flow of the main-stem Brazos River downstream from Richmond is diverted and stored in the off-channel Harris and Brazoria Reservoirs. Chemical analyses of water from the two diversion sites (Table 3) show that the yearly maximum dissolved-solids concentrations at the Brazoria Reservoir station greatly exceeds those at the Harris Reservoir station. Chemical-quality surveys by the Dow Chemical Company have shown that much of the increase of dissolved solids at the Brazoria Reservoir station is caused by the intrusion to sea water from the Gulf of Mexico (E. T. Kincannon, oral communication, 1964).

Daily Variation of Chemical Quality

Some of the previous sections have shown that the quality of surface water in the Brazos River basin varies not only from stream to stream and from location to location on the same stream but also from time to time at any specified location. The daily variation in concentrations of dissolved solids at a particular location can be shown by a duration curve. Such a curve shows the percentage of days of flow for which specified concentrations of dissolved solids were equaled or exceeded during a particular period, without regard to sequence of occurrence. Figure 8 provides this information for the Double Mountain Fork Brazos River near Aspermont. For example, Figure 8 shows that during the period of the 1949-51, 1957-64 water years the dissolved-solids concentration equaled or exceeded 5,750 ppm on 10 percent of the days, 4,850 ppm on 25 percent, 3,770 ppm on 50 percent, 2,000 ppm on 75 percent and 1,040 ppm on 90 percent. These data also are given in Table 5, as is the equivalent data for sulfate, chloride, and hardness.

Although daily samples usually were collected at each site listed in Table 5, a complete chemical analysis of each daily sample was not feasible. Therefore, two or more daily samples usually were combined into a composite sample for chemical analysis on the basis of the total dissolved-mineral content as indicated by specific conductance measurements of daily samples, supplemented by data on river stage. For this frequency study, the dissolved-solids content of each daily sample was estimated from the specific conductance of the sample. These data for the period of record were used to prepare dissolved-solids duration curves for selected sites in the Brazos River basin. The dissolved-solids values in Table 5 were compiled from these duration curves. Next, curves of relation were plotted between dissolved solids and concentrations of sulfate, chloride, and hardness. Then, for each value of dissolved solids in the table, corresponding concentrations of sulfate, chloride, and hardness were tabulated. The resulting Table 5 shows the concentrations of dissolved solids, sulfate, chloride, and hardness that was equaled or exceeded in the percentage of days shown for the period of record. Insofar as conditions such as precipitation, runoff, temperature, land use, and pollution remain approximately the same as for the period of record, such a table is probably a satisfactory basis for predicting the percentage of time that a particular concentration may be expected in the future. However, data in Table 5 should be used with care because the periods of record are of varying length; some of the records are for a period of less than five years, during which time runoff generally was below the long-term average. Also, the level of upstream development has not remained constant during the period of record for some stations; several large reservoirs have been constructed on the main stem and on tributaries. Chemicalquality frequency data collected from a stream before the construction of a large reservoir is not directly comparable to data collected from the stream after reservoir regulation begins. The removal of water of good quality from reservoirs on tributaries may cause an increase in salinity of water of the main stem. Regulation of flow by flood-control or other type of detention reservoirs from which the consumptive use of water is small may smooth out chemical-quality variations, resulting in more uniformity in the chemical quality of water at downstream sites. Therefore, for some streams affected by

×

÷

- 32 -

reservoir regulation, Table 5 gives chemical-quality frequency data for periods both before and after reservoir construction.

Similarly, the level of pollution in streams of the basin has not remained constant. Although an intensified effort to control pollution during the past few years has resulted in an improvement in the quality of water in some streams, continued municipal and industrial growth have increased the waste-disposal burdens of other streams in the basin.

Regardless of these limitations, data in Table 5 are useful for showing the extent of past water-quality variations, for evaluating some of the factors that have caused these variations, and for determining the suitability of water for various uses.

The chemical quality of water of the Double Mountain Fork Brazos River near Aspermont is highly variable. The dissolved-solids content has ranged from less than 600 ppm to more than 7,000 ppm. During about 90 percent of the period of record, the dissolved-solids content equaled or exceeded 1,040 ppm; for about 10 percent of the time it equaled or exceeded 5,750 ppm. Similarly the sulfate, chloride, and hardness contents of the water are highly variable. During 80 percent of the time, sulfate concentrations ranged between 425 and 1,900 ppm, chloride concentrations ranged between 170 and 1,950 ppm, and hardness concentrations ranged between 460 and 2,470 ppm. The principal factor resulting in the variation of dissolved minerals was water discharge. The dissolved-solids content was usually highest during periods of low flow, when most of the flow consisted of ground-water inflow. The quality of water improved with increase in water discharge (Figure 6).

The dissolved-solids content of water of the Salt Fork Brazos River near Aspermont has ranged from about 1,000 ppm to more than 135,000 ppm. During about 50 percent of the period of record, the dissolved-solids content equaled or exceeded 33,900 ppm. (In comparison, the dissolved-solids content of ocean water averages about 35,000 ppm.) The principal chemical constituents of the water also were highly variable. For example, during 80 percent of the time, the chloride content of the water ranged between 2,280 and 29,400 ppm. For about 50 percent of the time the chloride content equaled or exceeded 18,700 ppm. The dissolved-mineral content of the water was maximum during low flow when most of the flow was contributed by highly mineralized inflow from seeps and springs in the drainage area of Croton and Salt Croton Creeks. However, some medium and high flows also were very highly mineralized because of the solution of large quantities of salt that had been previously deposited in flats around salt springs and seeps and in stream channels (Figure 6).

Water of the main-stem Brazos River at the Seymour station during the 1960-64 period usually was slightly to very saline. Although the dissolvedsolids content ranged from about 500 ppm to more than 20,000 ppm, about 50 percent of the time the dissolved-solids content equaled or exceeded 8,100 ppm. Because water at the Seymour station is a composite of water from both the Double Mountain and Salt Forks, the dissolved-solids content and the chemical composition depend largely upon the proportion of water contributed by each fork. When most of the water is contributed by the Salt Fork, the water usually ranges from moderately to very saline and chloride greatly predominates over sulfate When most of the flow is contributed by the Double Mountain Fork, the water usually ranges from slightly to moderately saline; and although chloride usually is the predominant anion, the percentage of sulfate increases.

The water of the Clear Fork Brazos River usually is much superior in quality to that of either the Double Mountain Fork or the Salt Fork. During the 1962-64 water years, the dissolved-solids content of the Clear Fork Brazos River at Eliasville ranged from about 100 ppm to more than 3,200 ppm; but about 50 percent of the time the water contained less than 1,000 ppm. Water of California Creek, a tributary to the upper reach of the Clear Fork, generally was more mineralized than water of the Clear Fork at Eliasville. During the 1963-64 water years, the dissolved-solids content of water of California Creek near Stamford ranged from about 200 ppm to more than 13,000 ppm, equaling or exceeding 5,200 ppm about 50 percent of the time. Although the relation between dissolved-solids content and water discharge was not precise, the dissolvedsolids content in both California Creek and Clear Fork usually was minimum during high flows when most of the water consisted of direct runoff. However, the concentrations of principal dissolved constituents, especially chloride, varied markedly during some high-flow periods, apparently because of oil-field brine pollution. Because of this variation, the relation between dissolved solids and individual chemical constituents was ill defined, and values for individual chemical constituents in Table 5 are rough approximations.

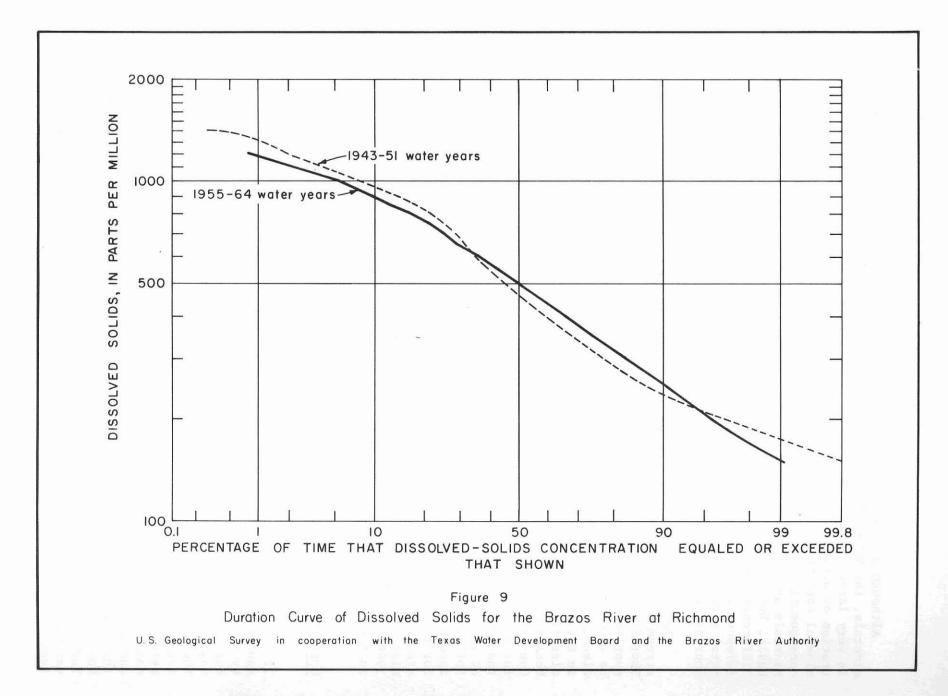
Oil-field brine pollution also has resulted in marked variation of the quality of water of Hubbard Creek, the principal tributary to the lower reach of the Clear Fork Brazos River. During the 1956-61 period, before closure of Hubbard Creek Reservoir, the dissolved-solids content of Hubbard Creek near Breckenridge ranged from less than 100 ppm to more than 5,000 ppm. However, for about 50 percent of the time the dissolved-solids content equaled or exceeded 680 ppm. Although the chemical quality usually improved with increase in water discharge, the dissolved-solids content, especially the chloride content, was relatively variable at all discharge rates. Much of this variation probably resulted from oil-field brine pollution. Since the closure of Hubbard Creek Reservoir in 1962, most of the flow passing the Breckenridge station has consisted of runoff from the area downstream from the reservoir and seepage from the reservoir. During the 1963-64 water years, the dissolved-solids content of water at the Breckenridge station ranged from about 100 ppm to more than 2,000 ppm. However, about 50 percent of the time the water contained less than 330 ppm dissolved solids.

A comparison of chemical-quality data for the Brazos River at the Possum Kingdom Dam station with those for upstream stations on both the main stem and tributaries show that storage of water in Possum Kingdom Reservoir has resulted in a decrease of quality-of-water variations. During the 1943-64 period, since the closure of Possum Kingdom Reservoir, the dissolved-solids content of water released or spilled from the reservoir has ranged from about 200 ppm to more than 3,800 ppm. However, for about 80 percent of the time the range has been from about 1,080 ppm to about 1,710 ppm. Similarly, for about 80 percent of the time the sulfate and chloride concentrations have ranged from 245 ppm to 390 ppm and from 380 ppm to 650 ppm, respectively.

The collection of chemical-quality data from the Brazos River near Whitney pre-dates the closure of Whitney Reservoir. Therefore, chemical-quality frequency data for periods both before and after closure of Whitney Reservoir are given in Table 5. During the 1949-51 water years, before the closure of the reservoir, the dissolved-solids content of the water ranged from less than 150 ppm to more than 1,500 ppm. During 50 percent of the time, the dissolvedsolids content equaled or exceeded 1,120 ppm. During the same period, the dissolved-solids content of water released from Possum Kingdom Reservoir ranged from about 1,000 ppm to more than 1,600 ppm. Water from the drainage area between the two reservoirs is low in dissolved solids. Much of the time before the closure of Whitney Reservoir, water at the Whitney station consisted largely of water released from Possum Kingdom Reservoir. During the 1953-64 period after the closure of Whitney Reservoir, the dissolved solids content of water at the Whitney station ranged from less than 350 ppm to more than 1,400 ppm. About 50 percent of the time, the dissolved-solids content equaled or exceeded 960 ppm. During the same period, the dissolved-solids content of water released from Possum Kingdom Reservoir ranged from less than 300 ppm to more than 3,800 ppm, and for about 50 percent of the time equaled or exceeded 1,400 ppm. These data show that regulation of flow by Whitney Reservoir has resulted in an integration of the saline releases from Possum Kingdom Reservoir with water of better quality contributed by the intervening area. Mixing of these waters in Whitney Reservoir has resulted in more uniformity in the chemical quality of water at the Whitney station.

During the 1962-64 period of chemical-quality record for the Lampasas River at Youngsport, the dissolved-solids content of the water ranged from less than 150 ppm to more than 950 ppm. During about 40 percent of the time, the dissolved-solids content equaled or exceeded 500 ppm. Mills and Rawson (1965) have shown that although the base flow of most streams in the drainage area of the Lampasas River contains low concentrations of dissolved solids, the base flow of Sulphur Creek is slightly saline. Therefore, the variation in chemical quality of the Lampasas River at Youngsport is attributed largely to differences in pattern of runoff. When most of the flow is contributed by Sulphur Creek, the dissolved-solids content is maximum. As the percentage of water contributed by other tributaries increases, the chemical quality of water of the Lampasas River improves.

Because water of the Little River at Cameron is a composite of the flow of the Leon, Lampasas, and San Gabriel Rivers, the dissolved-solids content and the chemical composition of the water depend largely upon the pattern of runoff from sub-basins. During the 1961-64 period of chemical-quality record, the dissolved-solids content of the Little River at Cameron ranged from less than 125 ppm to more than 675 ppm. Although the dissolved-solids content was maximum during low flow, it equaled or exceeded 500 ppm only about one percent of the time.


The quality of water of the main-stem Brazos River near Bryan is relatively variable. During the 1962-64 water years, the dissolved-solids content ranged from less than 200 ppm to more than 1,200 ppm. About 50 percent of the time the dissolved-solids content equaled or exceeded 720 ppm. During the same period, the dissolved-solids content of water released from the upstream Whitney Reservoir equaled or exceeded 700 ppm for more than 99 percent of the time. These data indicate that the dissolved-solids content of water at the Bryan station is maximum when most of the flow consists of releases from Whitney Reservoir. As the proportion of water contributed by the intervening area between the reservoir and the Bryan station increases, the chemical quality of water improves.

The dissolved-solids content of water of Yegua Creek near Somerville during the 1962-64 water years ranged from less than 100 ppm to more than 950 ppm. About 40 percent of the time the dissolved-solids content equaled or exceeded 500 ppm. Although the chemical quality clearly improved with increase in water discharge, the dissolved-solids content and concentrations of individual constituents were variable at all discharge rates, but especially during medium and low flows (Figure 6). Although no chemical-quality data are available for tributaries, much of this variation at the Somerville station probably is due to differences in the pattern of runoff from sub-basins.

During the 1959-64 period, the dissolved-solids content of the Navasota River near Bryan ranged from less than 50 ppm to more than 2,200 ppm. However, the dissolved solids equaled or exceeded 500 ppm for only about 15 percent of the time. The dissolved-solids content usually was maximum during low or medium flows. However, the relation between discharge and dissolved-solids content was ill defined (Figure 6). During some periods, both the dissolvedsolids and chloride contents of the water increased erratically without a corresponding change in rate of flow. Much of this variation is attributed to oil-field brine pollution.

The collection of chemical-quality data from the Brazos River at Richmond pre-dates the construction of the upstream Whitney and Belton Reservoirs. Therefore, in Table 5 chemical-quality frequency data for the Richmond station are shown for two periods -- the period before closure of Whitney Reservoir and the period after closure of Belton Reservoir. During the 1943-51 period before closure of Whitney Reservoir, the dissolved-solids content of the Brazos River at Richmond ranged from less than 150 ppm to more than 1,400 ppm. About 50 percent of the time the dissolved solids equaled or exceeded 500 ppm. During the same period, the dissolved solids in water released from the upstream Possum Kingdom Reservoir ranged from about 800 ppm to more than 1,600 ppm. About 50 percent of the time the dissolved-solids content of water released from the reservoir equaled or exceeded 1,300 ppm. These data show that before the construction of Whitney Reservoir the quality of water at the Richmond station was relatively variable. The dissolved-solids content of the water was maximum when inflow from the intervening area between the Possum Kingdom and Whitney station was deficient. As the proportion of water contributed by the intervening area increased, the chemical quality of water at the Richmond station improved. For example, discharge records for the 1943-51 period indicate that during the January-June months, releases from Possum Kingdom Reservoir averaged less than 7 percent of the total flow at the Richmond station. For 50 percent of the days during the January-June period, the dissolved-solids content of water at the Richmond station was less than 360 ppm. During the July-December months, releases from Possum Kingdom Reservoir averaged more than 20 percent of the total flow at the Richmond station. For 50 percent of the days during the June-December period, water at the Richmond station contained more than 590 ppm dissolved solids.

The dissolved-solids content of the Brazos River at Richmond during the 1955-64 period, since the closure of Whitney and Belton Reservoirs, has ranged from less than 150 ppm to more than 1,200 ppm. About 48 percent of the time the dissolved-solids content has equaled or exceeded 500 ppm. These data indicate that the regulation of flow by Whitney and Belton Reservoirs has not reduced appreciably the day-to-day variations of chemical quality of water at the Richmond station. This is shown more clearly by dissolved-solids duration curves in Figure 9. The similarity of the two curves shows that the range of dissolved solids and the percent of time that a particular concentration was equaled or exceeded at the Richmond station was not greatly reduced by the regulation of flow by the upstream reservoirs.

÷.

18:

2

- 37 -

5

Salt Yields

Although a large stream may contain low concentrations of dissolved minerals, the total dissolved-mineral load transported by the stream usually is very large, because the load is proportional to the product of the concentration of dissolved minerals and the water discharge. Both the dissolvedmineral content and the water discharge of the Brazos River are relatively large; consequently, the river transports immense quantities of dissolved minerals. Minerals are being dissolved and removed from all parts of the Brazos River basin, but the rates at which this process is proceeding are far from uniform. Differences in yield are caused by a combination of factors--principally differences in precipitation, geology, and proportion of ground-water inflow to total surface-water outlfow. Also, the yield of dissolved minerals from natural sources has been increased appreciably by brine from oil fields.

Because salt loads are cumulative, they continually increase in a downstream direction, except where water is diverted or delayed by reservoir storage. Therefore, streamflow and chemical-quality records at various sites on a stream, supplemented by streamflow and chemical-quality records for tributaries, can be used to compute salt yield from intervening areas. Annual summaries of water discharge and dissolved solids, chloride, and sulfate loads for selected sites in the Brazos River basin are given in Table 6. However, these data are not directly comparable because the periods of record are not all concurrent and because water is diverted or stored in reservoirs between some of the stations. Concurrent long-term records of discharge and chemical quality are desirable for a comparison of salt loads. Concurrent daily chemical-quality records for the 1949-64 period are available for the Possum Kingdom Dam (discharge measured at the Palo Pinto station), Whitney, and Richmond stations. Therefore, in the following discussion these stations were used to divide the Brazos River basin into three principal areas, for which salt yields were computed or estimated for the 1949-64 period. Similarly, where possible, the salt yields of subareas were estimated from available data. A summary of estimated yields of dissolved solids, chloride, and sulfate for selected drainage areas for the 1949-64 period is given in Table 7; the computation procedures are explained in the following discussion.

Upper Brazos River Basin

The upper Brazos River basin, for the purpose of this report, is the area 22,550 square miles upstream from Possum Kingdom Reservoir, of which 9,240 square miles is probably noncontributing. The dissolved-solids load contributed by this area, as measured at the chemical-quality station at Possum Kingdom Dam, during the 1949-64 period averaged about 3,080 tons per day, of which 1,110 tons was chloride and 700 tons was sulfate. The annual dissolved-solids yield from the contributing area averaged about 84 tons per square mile, of which about 30 tons was chloride and 19 tons was sulfate. However, the yield from different parts of the upper basin is highly variable. Although daily chemical-quality data have been collected at several sites on the Double Mountain Fork, Salt Fork, and Clear Fork of the Brazos River (the three principal tributaries that drain the area), none of the records are continuous for the entire 1949-64 period. However, both chemical-quality and streamflow records for the Double Mountain Fork and the Salt Fork at the Aspermont stations are of sufficient length that estimates of chemical-quality data can be made for the period of missing record. The method used to extend the chemical-quality records is similar to

that described by Iorns, Hembree, and Oakland (1965, p. 58-59). Curves of relation between concentrations of dissolved solids and water discharge were prepared. With data obtained from these curves and from flow-duration curves of streamflow, duration tables of dissolved solids and dissolved-solids discharge were computed. Curves of relation between concentrations of dissolved solids and the concentrations of chloride and sulfate also were prepared. With data obtained from these curves and the duration tables of dissolved-solids concentrations, tables of concentrations and discharges of chloride and sulfate were computed. These estimated data for the Double Mountain and Salt Forks of the Brazos River at the stations near Aspermont are included in Tables 6 and 7. These estimates indicate that for the 1949-64 period the average dissolvedsolids load of the Double Mountain Fork Brazos River near Aspermont was about 520 tons per day, of which 90 tons was chloride and 215 tons was sulfate. The annual dissolved-solids yield from the contributing area averaged about 125 tons per square mile, of which 21 tons was chloride and 52 tons was sulfate.

The principal source of salinity in the upper Brazos River basin is the drainage area of the Salt Fork. During the 1949-64 period, the average dissolved-solids load of the Salt Fork Brazos River near Aspermont was about 1,740 tons per day, of which 820 tons was chloride and 260 tons was sulfate. The annual dissolved-solids yield from the contributing area averaged about 308 tons per square mile, of which 145 tons was chloride and 46 tons was sulfate. Several periodic chemical-quality stations have been operated on tributaries of the Salt Fork Brazos River since 1956. Data from these stations indicate that the principal sources of salinity are seeps and springs in the drainage area of Croton and Salt Croton Creeks. According to Hughes (1965, p. 4), the average daily load contributed by the Salt Croton Creek area during the 1957-64 period of record was about 850 tons of dissolved solids, 485 tons of chloride, and 30 tons of sulfate. Based on these data, the annual dissolved-solids yield from the drainage area of Salt Croton Creek averaged about 4,830 tons per square mile, of which about 2,750 tons was chloride and 170 tons was sulfate.

Daily chemical-quality records for other streams in the upper Brazos River basin generally are inadequate for computation of average yields for the 1949-64 period. The average yield for the area exclusive of the Double Mountain Fork and Salt Fork drainage areas can be estimated from records of the mainstem station at Possum Kingdom Dam. On the basis of records for the 1949-64 period, the daily yield from this area was about 825 tons of dissolved solids, 200 tons of chloride and 230 tons of sulfate. The annual yield per square mile averaged about 31 tons of dissolved solids, 8 tons of chloride, and 9 tons of sulfate.

Middle Brazos River Basin

The middle Brazos River basin, as discussed in this report, extends from below Possum Kingdom Reservoir to the Brazos River stream gaging station near Whitney and includes an area of 3,620 square miles. Data in Table 6 indicate that during the 1949-64 period, the daily load of dissolved solids at the Whitney station was 3,200 tons, of which 1,060 tons was chloride and 672 tons was sulfate. However, these data are not directly comparable with load data for the Possum Kingdom Dam station because of storage in Whitney Reservoir. Quality-of-water surveys and daily water-quality records of releases from Whitney Reservoir indicate that at the end of the 1964 water year, water stored in Whitney Reservoir contained about 350,000 tons of dissolved solids, 132,000 tons of chloride, and 64,000 tons of sulfate. Computations based on these data indicate that if storage in Whitney Reservoir had not occurred, the daily load of dissolved solids, chloride, and sulfate at the Whitney station during the 1949-64 period would have been about 3,260 tons, 1,080 tons, and 683 tons, respectively. A comparison of these data with load data for the Possum Kingdom station for the 1949-64 period (Table 6) indicates that the dissolved-solids yield from the area between the two stations was only about 120 tons per day and that an apparent loss of chloride and sulfate occurred.

Although small quantities of water with accompanying loads of dissolved minerals were lost by diversion, seepage, and uptake by phreatophytes, part of the apparent loss of chloride and sulfate loads undoubtedly resulted from deficiencies of chemical-quality and streamflow data. Loads for the Brazos River below Possum Kingdom Dam were computed by using flow data for the streamflow station near Palo Pinto. Although the amount of runoff from the 210-mile area between the two stations usually is small, the water probably is much less mineralized than is the outflow from Possum Kingdom Reservoir. Therefore, use of flow data for the Palo Pinto station to compute loads for the station below Possum Kingdom Dam causes the computed loads to be slightly high. Other sources of error are the sampling schedule, method of computing loads, and streamflow measurements.

Regardless of the source of error, the salt yield of the middle Brazos River basin cannot be computed from records for the two main-stem stations. Also, no daily chemical-quality stations have been operated on tributaries in the area. Some miscellaneous chemical analyses are available for the principal tributaries; but most of these are for low flows. However, chemicalquality data for Palo Pinto Creek near Santo probably is adequate to estimate roughly the salt yield of the drainage area upstream from the Santo station. These data indicate that during the 1949-64 period the daily load of dissolved solids at the Santo station averaged about 39 tons, of which about 5 tons was chloride and about 3 tons was sulfate. Calculations based on these data indicate that the annual yield of dissolved solids per square mile averaged about 25 tons, of which 3 tons was chloride and 2 tons was sulfate.

Chemical analyses of low-flow samples collected from Paluxy Creek at Glen Rose and from Nolands River near Blum indicate that waters of Paluxy Creek and Nolands River generally are of better quality than water of Palo Pinto Creek (Table 4). This also is indicated by analyses of water from Cleburne Reservoir, which impounds water from the upper reaches of Nolands River. The dissolvedsolids, chloride, and sulfate content of two samples collected from Cleburne Reservoir during the 1965 water year averaged about 160 ppm, 7.2 ppm, and 13 ppm, respectively.

Assuming that the chemical quality of water of Palo Pinto Creek near Santo is fairly representative of water contributed by the upper half of the middle Brazos River basin and that the chemical quality of water stored in Cleburne Reservoir is fairly representative of water contributed by the lower half of the basin, the dissolved-solids, chloride, and sulfate content of water contributed by the entire area for the 1949-64 period probably averaged about 164 ppm, 13 ppm, and 13 ppm, respectively. Based on these assumptions, the daily yield of dissolved solids was about 267 tons, of which about 21 tons was chloride and about 21 tons was sulfate. Similarly, the annual yield of dissolved solids, chloride, and sulfate per square mile of drainage area was about 28 tons, 2 tons, and 2 tons, respectively. A comparison of these data with estimated yields for Palo Pinto Creek indicates that the salt yield per square mile of drainage area in the middle basin during the 1949-64 period was fairly uniform.

Lower Brazos River Basin

The lower Brazos River basin, as discussed in this report, extends from Whitney Reservoir to the mouth and includes an area of about 18,000 square miles. The lowermost station for which chemical-load data are available is at Richmond, about 90 river miles upstream from the mouth. As discussed in the previous section, the computed salt load at the Whitney station for the 1949-64 period (Table 7) probably was smaller than the actual load. Nevertheless, because of the large area between the Whitney and Richmond stations and because of the large quantity of water contributed by the area, the load data for the Whitney station probably can be used to compute the salt yield from the lower Brazos River basin without introducing appreciable error. However, a comparison of load data at the Whitney and Richmond stations is valid only if load data for the Richmond station are corrected for storage in Proctor and Belton Reservoirs and for two major diversions near Richmond. Such computations indicate the daily yield of dissolved-solids for the lower Brazos River basin upstream from the Richmond station during the 1949-64 period was about 2,580 me tons, of which about 281 tons was chloride and about 304 tons was sulfate. The annual yield of dissolved solids, chloride, and sulfate per square mile of drainage area averaged about 53 tons, 6 tons, and 6 tons, respectively.

Although some chemical-quality data have been collected for most of the principal tributaries in the area, none of the records are continuous for the entire 1949-64 period. However, yields from various parts of the drainage area can be estimated from available data.

Miscellaneous chemical analyses for streams in the drainage area of the Bosque River and from Lake Waco (Table 4) indicate that the dissolved-solids content of the water in the area averages about 200 ppm, of which about 15 ppm is chloride and about 30 ppm is sulfate. Based on these data, the daily yield of dissolved solids for the Bosque River during the 1949-64 period was about 222 tons, of which about 17 tons was chloride and about 33 tons was sulfate. The annual dissolved-solids, chloride, and sulfate yield per square mile of drainage area was about 49 tons, 4 tons, and 7 tons, respectively.

Chemical-quality data for the Little River at Cameron (Table 6) indicate that the annual discharge-weighted average concentrations of dissolved constituents are relatively constant. Therefore, these records probably are adequate to estimate the salt yield from the area for the 1949-64 period. Calculations based on chemical-quality records for the 1961-64 period indicate that the daily load of dissolved solids, corrected for storage in Proctor and Belton Reservoirs, was about 968 tons, of which about 110 tons was choride and about 114 tons was sulfate. The annual dissolved-solids, chloride, and sulfate yield per square mile of drainage area was about 51 tons, 6 tons, and 6 tons, respectively.

Daily chemical-quality data have been collected from Yegua Creek near Somerville for the 1962-64 period. However, streamflow during this period was only about 56 percent of the 1949-64 average, and loads of dissolved constituents at the Somerville station for the 1962-64 period probably were less than the 1949-64 averages. Streamflow during the 1963 water year was near the 1949-64 average. Consequently, the discharge-weighted average of dissolved constituents for the 1963 water year should be fairly representative of the 1949-64 average. On the basis of this assumption, the daily load of dissolved solids, chloride, and sulfate at the Somerville station during the 1949-64 period averaged about 125 tons, 25 tons, and 37 tons respectively. The annual yield of dissolved solids per square mile of drainage area was about 45 tons, of which 9 tons was chloride and 13 tons was sulfate.

Daily chemical-quality data have been collected from the Navasota River near Bryan for the 1959-64 period. Flow during this period was about 117 percent of the estimated 1949-64 average. Both periods included years of high, medium, and low flows. Therefore the discharge-weighted average of dissolved constituents for the 1959-64 period should be fairly representative of the 1949-64 period. Calculations based on the 1959-64 records indicate that the daily load of dissolved solids, chloride, and sulfate of the Navasota River at the Bryan station during the 1949-64 period was about 220 tons, 76 tons, and 28 tons, respectively. The estimated annual yield of dissolved solids per square mile of drainage area was about 56 tons, of which about 19 tons was chloride and 7 tons was sulfate.

The estimated annual yield of dissolved-solids, chloride, and sulfate per square mile of the combined drainage areas of the Bosque, Little, and Navasota Rivers and Yegua Creek for the 1949-64 period was about 51 tons, 8 tons, and 7 tons, respectively. As stated earlier, the dissolved-solids, chloride, and sulfate yield per square mile of the entire lower Brazos River basin upstream from the Richmond station, as computed from load data for the Brazos River at the Whitney and Richmond stations, was about 53 tons, 6 tons, and 6 tons, respectively. The agreement between these data indicates that the estimated data are fairly reliable. A comparison of data for the individual streams indicates that the salt yield per square mile of drainage area in the lower basin was relatively uniform. The greatest dissolved-solids and chloride yield per square mile was from the drainage area of the Navasota River where oilfield brines contributed to the salinity of the streams.

Water Quality in Reservoirs

Chemical analyses for most of the principal reservoirs and for some of the smaller ones in the Brazos River basin are given in Table 4. Locations of the principal reservoirs are shown in Figure 3. Many of the reservoirs were constructed on tributaries where quality-of-water problems were minimum. Consequently, the water in these reservoirs usually is satisfactory for public supply, or can be made satisfactory with a minimum of treatment. Water of the main-stem reservoirs generally is less suitable for public supply because of high salinity.

Lake Buffalo Springs.--When sampled in November 1965, water in Lake Buffalo Springs contained 992 ppm dissolved solids and 3.2 ppm fluoride and was very hard. Principal chemical constituents were sodium, magnesium, chloride, sulfate, and bicarbonate.

White River Reservoir.--Impoundment in this new reservoir began in May 1963. The dissolved-solids content of samples collected from the partially-filled reservoir has ranged from 546 ppm to 611 ppm (Table 4). The water was moderately hard to hard and was the sodium bicarbonate chloride type. Fluoride concentrations in the samples ranged from 2.4 ppm to 3.0 ppm.

- 42 -

Lake Sweetwater.-- Chemical analyses indicate that water stored in Lake Sweetwater contains less than 300 ppm dissolved solids, is very hard, and is the calcium bicarbonate type.

Lake Abilene.--Water stored in Lake Abilene is low in dissolved solids, very hard, and the calcium bicarbonate type.

Fort Phantom Hill Reservoir.--Fort Phantom Hill Reservoir stores water from three sources--water from Elm Creek, water diverted from Deadman Creek, and water selectively pumped from the Clear Fork Brazos River. Therefore, the chemical composition of stored water is heterogeneous. However, the water usually contains less than 400 ppm dissolved solids and ranges from hard to very hard.

Lake Stamford.--When sampled in August 1965, water in Lake Stamford contained 348 ppm dissolved solids and was hard. Principal chemical constituents were sodium, calcium, magnesium, and bicarbonate.

Lake Cisco.--Water stored in Lake Cisco is low in dissolved solids (usually less than 200 ppm), hard, and the calcium bicarbonate type.

Hubbard Creek Reservoir .-- Impoundment in this newly constructed reservoir began in December 1962. Although the reservoir has not filled to operational level, chemical-quality data have been collected for the reservoir since September 1963. Chemical-quality surveys of the reservoir are made three times annually. During these surveys, specific conductance and water temperature are measured at various depths in selected vertical profiles. Water for chemical analyses is collected at depth where changes in dissolved-solids content occur, as determined by conductivity measurements. Chemical analyses usually consist of chloride and specific conductance measurements, although analyses of some samples are more complete. To supplement these data, in April 1964 a multiplecell conductivity recorder was installed at the reservoir outlet. Therefore, continuous records of conductivity of water in the reservoir are obtained at three different depths. These conductivity records have been related to chloride concentrations and thus a continuous chloride record has been obtained. A report describing the results of this study is in preparation. Generally the study has shown that the chloride content is relatively variable (from less than 90 ppm to more than 180 ppm). During drought periods, the dissolved-solids and chloride content probably will exceed 500 ppm and 250 ppm respectively, unless oil-field brine pollution is reduced. Representative chemical analyses of samples collected from the reservoir at a site near Hubbard Creek Dam (Table 4) show that the water is very hard; principal dissolved constituents are sodium, calcium, chloride, and bicarbonate.

Lake Daniels.--Water impounded in Lake Daniels is low in dissolved solids, moderately hard to hard, and the calcium bicarbonate type.

Lake Graham.--In April 1958, water stored in Lake Graham contained 2,750 ppm dissolved solids. Much of the salinity was contributed by brine from oil fields. However, this saline water was released from the reservoir and there-after water quality in the reservoir has improved greatly because of efforts to control oil-field brine pollution. In April 1962, water in the reservoir contained only 252 ppm dissolved solids. Principal chemical constituents were sodium, calcium, and chloride.

Possum Kingdom Reservoir .-- A study of Possum Kingdom Reservoir has been included in the Geological Survey's investigation of the chemical guality and stratification of water stored in the major reservoirs of the Brazos River basin. Results of the study to May 1962 have been described by Mendieta and Blakey (1963, p. 5); and a more comprehensive report is in preparation. The study has shown generally that during much of the time some stratification of water occurs because of temperature and salinity differences. The degree of stratification depends largely upon the salinity and temperature of stored water as compared to the temperature and salinity of inflowing water. The study also has shown that much of the time the stored water is undesirable for domestic, municipal, and most industrial uses because of its salinity. This is shown more conclusively by daily chemical-quality records of water released from the reservoir. The dissolved-solids content of water released during the 1943-64 period ranged from about 200 ppm to more than 3,800 ppm. However, about 94 percent of the time the dissolved-solids content equaled or exceeded 1,000 ppm. Similarly, the released water usually contained excessive concentrations of chloride and sulfate. During the 1943-64 period, the chloride content equaled or exceeded 250 ppm about 99 percent of the time; the sulfate content equaled or exceeded 250 ppm about 88 percent of the time. Usually the water was very hard and the sodium chloride type.

Lake Palo Pinto.--No chemical-quality data are available from this recently completed reservoir; however, chemical analyses of samples collected from Palo Pinto Creek near Santo (Table 4) indicate that the stored water will contain about 180 ppm dissolved solids, 25 ppm chloride, and 15 ppm sulfate. The water will be moderately hard to hard and the calcium bicarbonate type.

Lake Mineral Wells.--The dissolved-solids content of water collected from Lake Mineral Wells has ranged from 196 ppm to 262 ppm. The water is hard and the calcium bicarbonate type.

<u>Lake Pat Cleburne</u>.--This newly constructed reservoir stores water that is low in dissolved solids but hard. Principal chemical constituents are calcium and bicarbonate.

Whitney Reservoir .-- The Geological Survey has included Whitney Reservoir in its chemical-quality and stratification study of the major reservoirs of the Brazos River basin. Results of the study to May 1962 have been described by Mendieta and Blakey (1963, p. 4-5), and a more comprehensive report is in progress. Generally, the study has shown little vertical stratification of salinity. However, considerable difference in the salinity of water in different areas of the reservoir was noted during some periods. The study also has shown that water stored in the reservoir often is too saline for many uses. This is shown more conclusively by the daily chemical-quality records of water released from the reservoir. During the 1953-64 period, the dissolved-solids content of water released from the reservoir ranged from less than 350 ppm to more than 1,400 ppm. However, about 43 percent of the time the dissolved-solids content equaled or exceeded 1,000 ppm; about 97 percent of the time it equaled or exceeded 500 ppm. The chloride content of the water also was excessive--about 78 percent of the time it equaled or exceeded 250 ppm. Some of the time the sulfate content also was excessive--about 20 percent of the time it exceeded 250 ppm. Usually the released water was very hard and the sodium chloride type.

<u>Waco Reservoir</u>.--The quality of water stored in Waco Reservoir can be inferred from analyses of samples from Lake Waco (recently enlarged to form Waco Reservoir) and from analyses of samples collected from the Bosque River near Waco (Table 4). These data show that the water is low in dissolved solids, hard to very hard, and the calcium bicarbonate type.

Leon Reservoir.--Water stored in Leon Reservoir usually contains less than 250 ppm dissolved solids but is hard. Principal dissolved constituents are calcium and bicarbonate.

<u>Proctor Reservoir</u>.--Proctor Reservoir has been included in the Geological Survey's chemical-quality and stratification study of the major reservoirs in the Brazos River basin. The study has shown little vertical stratification of waters of different salinities. Selected chemical analyses (Table 4) show that the dissolved-solids content of stored water, although variable, usually is less than 350 ppm. The water ranges from moderately hard to very hard; principal chemical constituents usually are calcium and bicarbonate.

Belton Reservoir.--Belton Reservoir also has been included in the Geological Survey's study of the major reservoirs in the Brazos River basin (Mendieta and Blakey, 1963, p. 3-4). The study has shown generally that vertical stratification of waters of different salinities in the reservoir is not significant. Selected chemical analyses (Table 4) show that the dissolved-solids content, although variable, usually is less than 300 ppm. The water is moderately hard to very hard; principal chemical constituents usually are calcium and bicarbonate.

Lake Mexia.--Available chemical-quality data for water stored in Lake Mexia are meager (Table 4). These data indicate that in February 1962 the water was relatively low in dissolved solids (probably less than 350 ppm) and was hard. The chloride content of the water was 120 ppm, much of which probably was contributed by brine from oil fields. Because the quantity of brine reaching streams upstream from the reservoir varies, the chemical quality of water in the reservoir may vary.

Water Quality at Potential Reservoir Sites

One of the principal objectives of this investigation was to appraise the quality of water available for storage at potential reservoir sites in the Brazos River basin. Many potential sites studied by various federal, state, and local agencies are shown on Figure 3. In the following discussion, evaluations of water quality at these sites are based on present conditions. Continued municipal and industrial growth in some areas will increase the wastedisposal burdens of the stream and, therefore, may cause significant changes in water quality before some of the reservoirs can be built.

<u>Duck Creek Reservoir</u>.--Available chemical-quality data from Duck Creek consist of chemical analyses of low-flow samples. The dissolved-solids content of these samples collected from Duck Creek near Jayton (Table 4) ranged from 948 ppm to 2,630 ppm. The water was very hard and the calcium sulfate type. Sulfate concentrations ranged from 556 ppm to 1,600 ppm. Higher flow probably would have a considerably lower dissolved-solids and sulfate content. Water stored in the reservoir probably would be hard; the dissolved-solids content usually would exceed 500 ppm; and the sulfate content usually would exceed 250 ppm.

- 45 -

Seymour Reservoir No. 1.--Daily chemical-quality records for the Salt Fork Brazos River near Aspermont indicate that water which would be stored in Seymour Reservoir No. 1 would contain more than 5,000 ppm dissolved solids, 2,000 ppm chloride, and 700 ppm sulfate. Hughes (1965, p. 7) has calculated that if 90 percent of the salt load contributed by Salt Croton Creek, the principal source of the salt load, and part of the load contributed by several smaller sources were removed, the average dissolved-solids and chloride content of water impounded in Possum Kingdom Reservoir would be reduced about 25 percent and 37 percent, respectively. Under the same salinity-control conditions, water available for storage in a reservoir at the Seymour No. 1 site probably would contain more than 2,600 ppm dissolved solids, 1,000 ppm chloride, and 600 ppm sulfate.

Seymour Reservoir No. 2.--Daily chemical-quality records for the Double Mountain Fork Brazos River near Aspermont indicate that water which would be stored in the proposed Seymour Reservoir No. 2 usually would contain more than 1,000 ppm dissolved solids, 180 ppm chloride, and 430 ppm sulfate; and the water would be very hard.

Seymour Reservoir.--Based on daily chemical-quality records for the Brazos River at Seymour and for the Double Mountain and Salt Forks of the Brazos River at the Aspermont stations, the dissolved-solids, chloride, and sulfate concentrations of water that would be stored in the proposed Seymour Reservoir usually would exceed 2,600 ppm, 1,000 ppm, and 600 ppm, respectively. Even if 90 percent of the salt load contributed by Salt Croton Creek and part of the load contributed by several smaller sources were removed, the stored water probably would contain more than 1,700 ppm dissolved solids, 500 ppm chloride, and 500 ppm sulfate, and would be very hard.

<u>Millers Creek Reservoir</u>.--The quality of water that would be stored in the proposed Millers Creek Reservoir can be inferred from the analyses of samples collected from Millers Creek near Munday and near Seymour. Although most of the samples from the Munday site were collected during low flow, the maximum dissolved-solids content of the samples was 177 ppm. The water was usually moderately hard and the calcium bicarbonate type. Most of the samples from the Seymour site also were collected during low flow. The dissolved-solids content of these samples ranged from 176 ppm to 2,060 ppm. Higher flows probably would be less mineralized. Thus, if the reservoir fills during a period of average rainfall and runoff, the stored water probably would contain less than 250 ppm dissolved solids and would be moderately hard or hard.

<u>South Bend Reservoir</u>.--Water available for storage in this proposed mainstem reservoir can be inferred from the daily chemical-quality records for the Brazos River at Seymour and below Possum Kingdom Dam. Water in the proposed reservoir would be less saline than water at the Seymour station but more saline than water in Possum Kingdom Reservoir. The dissolved-solids, chloride, and sulfate concentrations in the stored water probably would average more than 2,000 ppm, 800 ppm, and 450 ppm, respectively; and the water would be very hard.

Nugent Reservoir.--Daily chemical-quality records collected from the Clear Fork Brazos River at Nugent during the 1949-53 period indicate that water which would be stored in the proposed Nugent Reservoir would contain about 500 ppm dissolved solids, 70 ppm chloride, and 150 ppm sulfate.

Breckenridge Reservoir .-- No recent chemical-quality data are available for the Clear Fork Brazos River at the site of the proposed Breckenridge Reservoir. Daily chemical-quality records of the Clear Fork Brazos River at Fort Griffin for the 1950-51 water years indicate that the natural quality of the Clear Fork is very good. During these two years, the discharge-weighted average concentrations of dissolved solids, chloride, and sulfate at the Fort Griffin station were 357 ppm, 67 ppm, and 81 ppm, respectively. However, some deterioration of the quality of water has occurred because of pollution by oil-field brines. Daily chemical-quality records for California Creek, a tributary to the Clear Fork upstream from the proposed Breckenridge damsite, indicate that California Creek is badly polluted with oil-field brines. Daily chemical-quality records for the Clear Fork Brazos River at Eliasville during the 1963 and 1964 water years indicate that these brines have degraded the quality of the water of the Clear Fork. Now that Hubbard Creek Reservoir is in operation, the chemicalquality record for Eliasville may be fairly representative for the Breckenridge site. During the 1963-64 water years, the discharge-weighted average concentrations of dissolved solids, chloride, and sulfate at the Eliasville station were 652 ppm, 222 ppm, and 126 ppm, respectively; and the water usually was very hard. During these years the streamflow was below average; thus, the water was probably worse in quality than it would be during years of average flow. Nevertheless, during drought periods, the dissolved-solids and chloride content of water in the proposed Breckenridge Reservoir probably would exceed 500 ppm and 250 ppm respectively, unless oil-field brine pollution is reduced.

<u>Keechi Reservoir</u>.--The dissolved-solids content of low-flow samples collected from Keechi Creek near Graford during the 1963 water year ranged from 264 ppm to 631 ppm. During the 1962 water year, the water collected from Keechi Creek Reservoir, a small water-supply reservoir downstream from the Graford site, usually contained less than 250 ppm dissolved solids but was hard. These data indicate that water in the proposed Keechi Reservoir would contain less than 250 ppm dissolved solids and would be moderately hard or hard.

Turkey Creek, Inspiration Point, Hightower, DeCordova Bend, and Bee Mountain Reservoirs .-- The development of this five-reservoir system on the main-stem Brazos River between Possum Kingdom and Whitney Reservoirs has been proposed primarily for the generation of hydroelectric power and for flood control (U.S. Study Commission, 1962, p. 113). The chemical quality of water that would be stored in the reservoir system can be inferred from the quality of water stored in Possum Kingdom and Whitney Reservoirs. Because of inflow of water of good quality from intervening areas, the quality of water in the reservoir system generally would improve in a downstream direction. However, this improvement would be partially offset by the concentrating effect of evaporation from the reservoirs. Water in Turkey Creek Reservoir would be similar to that stored in Possum Kingdom Reservoir and usually would contain about 1,300 ppm dissolved solids, 500 ppm chloride, and 300 ppm sulfate. Water in Bee Mountain Reservoir would be similar to that stored in Whitney Reservoir and usually would contain about 1,000 ppm dissolved solids, 350 ppm chloride, and 200 ppm sulfate.

Aquilla Reservoir.--Chemical-quality data for Aquilla Creek near Aquilla indicate that if the proposed Aquilla Reservoir fills during a period of average rainfall and runoff, the stored water would contain less than 250 ppm dissolved solids but would be hard. Stephenville Reservoir.--Chemical analyses of samples collected from the North Fork Bosque River near Clifton indicate that the proposed Stephenville Reservoir would store water with a dissolved-solids content of less than 200 ppm and that the water would be hard.

<u>Stillhouse Hollow Reservoir</u>.--Daily chemical-quality records for the Lampasas River at Youngsport indicate that the dissolved-solids content of water that will be stored in Stillhouse Hollow Reservoir (now under construction) will average less than 350 ppm; however, the water will probably be very hard.

North San Gabriel, South San Gabriel, Berry Creek, and Laneport Reservoirs.--Chemical analyses of samples collected from the North and South Forks of the San Gabriel River and from the main-stem San Gabriel River indicate that water in the proposed reservoirs in the drainage area of the San Gabriel River would be low in dissolved solids (probably less than 200 ppm), hard, and the calcium bicarbonate type.

<u>Cameron Reservoir</u>.--Daily chemical-quality records for the Little River at Cameron indicate that water which would be stored in the proposed Cameron Reservoir would contain less than 300 ppm dissolved solids but would be hard or very hard.

<u>Somerville Reservoir</u>.--Daily chemical-quality records for Yegua Creek near Somerville indicate that Somerville Reservoir (now under construction) will store water that is low in dissolved solids (probably less than 250 ppm). However, the water will probably be moderately hard or hard.

Wayland Crossing, Marquez, Navasota, Ferguson, and Millican Reservoirs.--The quality of water that would be stored in reservoirs on the Navasota River can be inferred from daily chemical-quality records for the Navasota River near Bryan. The discharge-weighted average concentration of dissolved solids at the Bryan station for the 1959-64 period was 203 ppm. However, the annual dischargeweighted average concentrations of dissolved solids during the same period ranged from 143 ppm to 328 ppm. Much of this variation is attributed to oilfield brine pollution. If the pollution does not increase, water stored in the proposed reservoirs should contain less than 350 ppm dissolved solids much of the time.

<u>Allens Creek Reservoir</u>.--The proposed Allens Creek Reservoir would be an off-channel reservoir that would store water from the Brazos River when flow of the river below Allens Creek exceeds demand. Therefore the quality of water in the reservoir would be variable. However, most of the water for storage probably would be diverted when flow of the Brazos River was high. Therefore, the dissolved-solids content of the water probably would average less than 400 ppm.

POTENTIAL IMPROVEMENT OF WATER QUALITY IN THE BRAZOS RIVER

Integrated Operation of Reservoirs

Floodwaters captured in the flood-control storage space of Belton Reservoir usually are stored temporarily and then released as soon thereafter as possible

to maintain the storage space for flood control. Similarly, one of the primary purposes of Whitney Reservoir is flood control. No effective effort has been made to improve the quality of main-stem water by coordinating releases from the two reservoirs. As a result, the regulation of flow by the reservoirs has not reduced appreciably the daily variations of chemical quality of water in the downstream reach of the Brazos River. (See Figure 9.) However, the increased flood storage provided by Proctor Reservoir supplemented by storage in Stillhouse Hollow and Somerville Reservoirs (now under construction) and in the proposed Laneport and Millican Reservoirs should make feasible the reduction of water-quality variations at downstream sites on the main stem by stor-ing flood waters on tributaries and releasing them gradually so as to continually dilute the more saline releases from Whitney Reservoir.

The extent of the potential improvement of the quality of main-stem water through the integrated operation of the reservoir system depends upon several factors, some of the more important of which are:

(1) the quantity and quality of the water available for release and rate of release each reservoir in the system; and

(2) the quantity and quality of tributary inflow that would not be controlled by the reservoir system.

During the 1955-64 period following the closure of Belton Reservoir, about 27 percent of the main-stem flow between the Whitney and Richmond stations was contributed by releases from Whitney Reservoir; about 26 percent was contributed by tributary inflow that would be regulated by the proposed reservoir system; and about 47 percent was contributed from other sources. Because of the large percentage of flow that would not be controlled by the proposed system, the integration of releases from the various reservoirs would be only partially effective in the reduction of water-quality variations at the Richmond station. Deficiencies in data on streamflow, chemical-quality, and time of travel make difficult an accurate evaluation of the benefits that would result from integrating releases from the various reservoirs. However, some of the potential benefits are readily apparent. During the 1964 water year, for example, water at the Richmond station contained more than 500 ppm dissolved solids for 181 days, more than 750 ppm for 68 days, and more than 1,000 ppm for 19 days. If the reservoir system had been in operation and if releases from each reservoir had been regulated so that the rate of release was approximately equal to the mean daily discharge for the 1964 water year, the dissolved-solids content at the Richmond station would not have exceeded 1,000 ppm, seldom would have exceeded 750 ppm; and probably would have exceeded 500 ppm for about 160 days. The discharge-weighted average of dissolved solids would have been approximately the same; but the range of dissolved constituents would have been narrowed substantially. This decrease in range of dissolved constituents generally would make the water more suitable for municipal, industrial, and irrigation use. However, to operate the reservoir system principally for water-quality control is impractical, because first priority in reservoir operation must be given to using the available resources to meet water-supply demands. Therefore, the quantity of water available for quality control and, thus, the improvement of water quality in the lower reaches of the main stem probably would be small. Moreover, water-quality problems would persist throughout the middle and upper reaches of the main stem.

Reduction of Natural Salt Contamination

For any plan to be effective in the basin-wide improvement of water quality in the main-stem Brazos River, it must provide for a reduction of natural salt contamination in the upper part of the basin. Hughes (1965) has calculated the effect that partial control of natural salinity in the upper Brazos River basin would have on water quality in Possum Kingdom Reservoir (based on the period of the 1957-64 water years). Hughes' data (included in Table 8) indicate that although the average dissolved-solids concentration in Possum Kingdom Reservoir probably cannot be reduced to the U.S. Public Health Service recommended limit of 500 ppm, the quality of the water would be improved substantially. With maximum possible control, the dissolved-solids, chloride, and sulfate concentrations would average about 765 ppm, 229 ppm, and 212 ppm, respectively; and the water would compare favorably with other supplies used in West Texas for municipal, industrial, and agricultural purposes.

Partial control of natural salinity in the upper Brazos River basin would also result in substantial improvement of the quality of main-stem water in the middle and lower reaches of the Brazos River (Table 8). For example, the removal of 90 percent of the salt load contributed by Salt Croton Creek and part of the load contributed by several smaller sources (Hughes, 1965, p. 7) would reduce the average dissolved-solids concentration of Whitney Reservoir from 705 ppm to about 548 ppm. The average chloride content of the water would be reduced substantially also (from 228 ppm to about 143 ppm), but the average sulfate content would be reduced only slightly (from 145 ppm to about 136 ppm). Under the same salinity control conditions, average dissolved-solids and chloride concentrations of the Brazos River at Richmond would be reduced from 343 ppm to about 304 ppm and from 75 ppm to 54 ppm, respectively. Reduction of the average sulfate content would be insignificant, from 57 ppm to about 55 ppm. Because calcium sulfate is widely disseminated throughout much of the upper basin, the maximum possible salinity control measures would reduce the average sulfate content of the main stem only slightly. Nevertheless, the reduction of natural salinity from the upper Brazos River basin would result in a substantial improvement of water quality throughout the main stem. This reduction of salinity, supplemented by the integrated operation of reservoirs in the lower basin, would greatly improve the quality of the water in the lower Brazos River.

RELATION OF WATER QUALITY TO USE

Although other water-quality criteria are important, the suitability of a water for most uses is often determined by its chemical quality. All natural waters contain dissolved-mineral matter, most of which is dissociated into charged particles, or ions. Principal cations (positively-charged ions) in natural water are calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), and iron (Fe). Principal anions (negatively-charged ions) are carbonate (CO₃), bicarbonate (HCO₃), sulfate (SO₄), chloride (Cl), fluoride (F), and nitrate (NO₃). Other constituents and properties are determined to help define the chemical quality of water; Table 9 lists the constituents and properties commonly determined by the U.S. Geological Survey, and includes a résumé of their sources and significance.

To present chemical-quality criteria for all purposes would be an endless task. Because surface water in the Brazos River basin is being used and developments are being planned primarily for municipal, industrial, and irrigation uses, only these uses will be considered in the following discussion.

Domestic Purposes

Because of differences in individuals, varying amounts of water used, and other factors, defining the safe limits for mineral constituents in water to be used for domestic purposes is difficult. The criteria for drinking water usually accepted in the United States are those recommended by the United States Public Health Service. Originally established in 1914 to control the quality of water used on interstate carriers for drinking and for culinary purposes, these standards have been revised several times. The latest revision was in 1962 (U.S. Public Health Service, 1962). These standards have been accepted by the American Water Works Association and by most of the state departments of public health as minimum standards for public water supplies. The limits specified by these standards for various constituents are included in the statements under "Significance" in Table 9. Although the recommended limits for dissolved solids, chloride, and sulfate are 500 ppm, 250 ppm, and 250 ppm, respectively, a considerable number of water supplies exceeding these recommended limits have been used for domestic purposes without adverse effects.

Surface waters of many types and concentrations flow in streams of the Brazos River basin. Most of the water-supply reservoirs upstream from Possum Kingdom Reservoir were constructed on tributaries where quality-of-water problems were minimum. Therefore, water stored in these reservoirs are usually suitable for domestic supply. However, water in many of the other tributaries is often undesirable for domestic supply because of excessive concentrations of dissolved solids, chloride, or sulfate. Table 5 lists the concentrations of dissolved solids, chloride, and sulfate that was equaled or exceeded in the percent of days for the indicated period at selected sites in the Brazos River These data indicate that, most of the time, waters of the Double Mounbasin. tain and Salt Forks of the Brazos River are unsuitable for public supply. Although water of the Clear Fork Brazos River is usually of much better quality, the concentrations of dissolved minerals often exceed the limits recommended by the U.S. Public Health Service. For example, during the 1962-64 period, the dissolved-solids content of the Clear Fork Brazos River at Eliasville exceeded the recommended 500 ppm limit for about 75 percent of the time. Similarly, the chloride and sulfate content was excessive much of the time.

Dissolved minerals in most tributaries that drain the lower part of the Brazos River basin rarely exceed the limits recommended by the U.S. Public Health Service, and the waters usually are suitable for domestic use. During the 1961-64 period, for example, water of the Little River at Cameron contained less than 500 ppm dissolved solids for more than 98 percent of the time. The chloride content of the water seldom exceeded 90 ppm, and the sulfate content seldom exceeded 70 ppm.

Although generally more mineralized than water of the Little River, the water of Yegua Creek near Somerville contained less than 500 ppm dissolved solids for more than 60 percent of the time during the 1962-64 period. The chloride content of the water seldom exceed 150 ppm; the sulfate content equaled or exceeded 250 ppm for only about 15 percent of the time.

As discussed previously, brines from oil fields are contributing to the salinity of surface waters in the Navasota River drainage area. Nevertheless, much of the time water of the Navasota River near Bryan is suitable for domestic use. During the 1959-64 period, for example, the dissolved-solids content of the water was less than 500 ppm more than 85 percent of the time; the

chloride content was less than 250 ppm for about 90 percent of the time; and the sulfate content seldom exceeded 70 ppm.

Although the quality of water in the main-stem Brazos River generally improves progressively as the water flows downstream, data in Table 5 show that at most sites the water is undesirable for domestic use. During the 1960-64 period, for example, water of the Brazos River at Seymour exceeded 500 ppm dissolved solids for the entire period. The water contained more than 1,000 ppm dissolved solids for about 98 percent of the time. Similarly, the water usually contained excessive concentrations of chloride and sulfate.

Usually, water released from Possum Kingdom Reservoir is also undesirable for domestic use. For example, the dissolved-solids content of the water equaled or exceeded 500 ppm for more than 99 percent of the days in the 1943-64 period; and it equaled or exceeded 1,000 ppm for about 94 percent of the days. The chloride content of the water exceeded 250 ppm more than 98 percent of the days; and the sulfate content exceeded 250 ppm about 88 percent of the days.

Although generally of better quality than releases from Possum Kingdom Reservoir, water released from Whitney Reservoir during the 1953-64 period contained more than 500 ppm dissolved solids for about 97 percent of the time and more than 1,000 ppm for about 43 percent of the time. Although the sulfate content of the water exceeded 250 ppm for only about 20 percent of the time, the chloride content exceeded 250 ppm more than 78 percent of the time.

Inflow of water from tributaries downstream from Whitney Reservoir results in a substantial improvement in the quality of main-stem water at downstream sites. During the 1955-64 period, for example, water of the Brazos River at Richmond contained less than 500 ppm dissolved solids for about 52 percent of the time; the chloride content of the water was less than 250 ppm for about 81 percent of the time; and the sulfate content was less than 250 ppm more than 99 percent of the time.

These data show that the dissolved-solids, chloride, and sulfate concentrations in waters of the middle and upper reaches of the main-stem Brazos and in some of the tributaries principally those upstream from Possum Kingdom Reservoir) often exceed the maximum concentrations recommended by the U.S. Public Health Service.

Other chemical constituents or properties usually considered in evaluating a water for domestic use include hardness, iron, nitrate, and fluoride.

A comparison of hardness-duration data for selected daily sampling sites (Table 5) and chemical analyses of water from miscellaneous sites (Table 4) with the classification of hardness in the following table shows that most surface waters in the Brazos River basin are hard or very hard and will require softening in some areas.

- 52 -

Hardness (ppm)	Rating	Usability
0-60	Soft	Suitable for many uses without further softening.
61-120	Moderately hard	Usable except in some industrial applications.
121-180	Hard	Softening required by laundries and some other industries.
181+	Very hard	Softening desirable for most purposes.

Chemical-quality data (Tables 3 and 4) show that the nitrate content of surface water of the basin generally is well within the recommended limit of 45 ppm. One area where high nitrate concentrations have been observed is the North Fork Double Mountain Fork Brazos River downstream from Lubbock. The nitrate content of samples collected at a site 4.3 miles southeast of Lubbock during the 1952-54 period ranged from 38 ppm to 62 ppm. According to Irelan (1955, p. 8-12), the high nitrate content of these samples probably resulted from inflow of sewage and return flow from irrigation.

Only a few iron determinations have been included in the chemical analyses of surface waters of the basin. However, the analyses of samples from some of the reservoirs (Table 4) indicate that the concentrations of iron are usually within the recommended limit of 0.3 ppm.

The optimum fluoride concentration in drinking water for a particular area depends on the climatic conditions of that area, because the amount of water (and consequently the amount of fluoride) ingested is influenced primarily by the air temperature. The annual average of maximum daily air temperatures for most of the Brazos River basin usually is within the 70.7 - 79.2°F range. Therefore, according to the U.S. Public Health Service Drinking-Water Standards (1962, p. 8), the fluoride content of drinking water in the basin should not exceed 1.0 ppm. The fluoride content of surface waters in much of the basin is well within the 1.0 ppm limit. However, during low-flow periods, fluoride concentrations of water in the North Fork Double Mountain Fork Brazos River and the White River, which drains largely from the Ogallala Formation, have exceeded 1.0 ppm (Table 4). When sampled in November 1965, water stored in Lake Buffalo Springs contained 3.2 ppm fluoride; and water in the partly filled White River Reservoir has contained as much as 3.0 ppm fluoride.

Industrial Use

The quality requirements vary greatly for almost every industrial application (see Table 10). However, one requirement of most industries is that quality of the water remain relatively constant. Often water must be treated to make it suitable for a particular industrial application. If concentrations of undesirable minerals in the water vary widely, constant monitoring is required and operating expenses are increased. Data in Table 5 show that the concentrations of dissolved minerals in most streams of the basin are variable. Regulation of flow by Possum Kingdom and Whitney Reservoirs have smoothed out some of the chemical-quality variations. Impoundment on tributaries, which would be required for dependable supplies of water, also would decrease water-quality variations. The integrated operation of proposed and existing reservoirs in the lower part of the basin would further reduce water-quality variations of the main stem and thus make the water more suitable for industrial use.

Corrosion is the most widespread and probably the most costly, watercaused difficulty with which industry must cope. Therefore, the suitability of a water for most industrial uses is determined partly by its corrosiveness. High concentrations of dissolved solids in a water is conducive to corrosion, especially if chloride is present in appreciable quantities. Upstream from Possum Kingdom Reservoir, the main-stem Brazos River and some of its principal tributaries contain high concentrations of dissolved solids and chloride. Therefore, these waters probably are rather corrosive and are unsuitable for many industrial applications. Water in most of the tributaries downstream from Possum Kingdom Reservoir usually contains much smaller concentrations of dissolved-solids and chloride and, therefore, is less corrosive.

Hardness is another important property of water that affects its utility for industrial purposes. Some calcium hardness may be desirable because calcium carbonate sometimes forms protective coatings on pipes and other equipment and thus reduces corrosion. However, excessive hardness is objectional because it contributes to the formation of scale in steam boilers, pipes, water heaters, radiators, and various other equipment where water is heated, evaporated, or treated with alkaline materials. The accumulation of scale increases cost for fuel, labor, repairs, and replacement, and lowers the quality of many wetprocessed products. Most surface waters of the Brazos River basin range from hard to very hard and will require softening for some industrial applications.

In summary, water from tributaries downstream from Possum Kingdom Reservoir usually is suitable for many industrial uses, although some industries will require that the water be softened. Water in many tributaries upstream from Possum Kingdom Reservoir is of poor quality for most industrial uses most of the time, principally because of the high degree of mineralization. Although the quality of water in the main-stem Brazos River generally improves progressively in a downstream direction, much of the water upstream from Whitney Reservoir is too highly mineralized for many industrial uses. The quality of water generally improves substantially downstream from Whitney Reservoir, but the quality of water is variable because of the varying quantities of water contributed by tributaries.

Irrigation

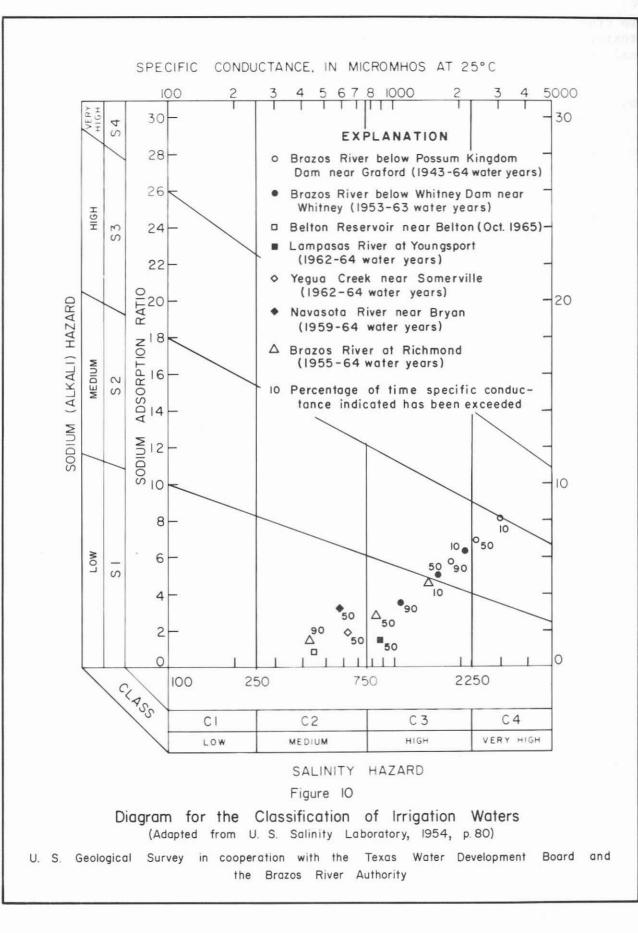
The suitability of a water for irrigation depends primarily on its chemical composition. However, the extent to which chemical quality limits the suitability of a water for irrigation depends on many factors, such as: the nature, composition, and drainage of the soil and subsoil; the amounts of water used and the methods of application; the kind of crops grown; and the climate of the region, including the amounts and distribution of rainfall. Because these factors are highly variable, every method of classifying waters for irrigation is somewhat arbitrary.

According to the U.S. Salinity Laboratory Staff (1954, p. 69), the most important characteristics in determining the quality of irrigation water are: (1) total concentration of soluble salts, (2) relative proportion of sodium

to other cations, (3) concentration of boron or other elements that may be toxic, and (4) the excess of equivalents of bicarbonate over equivalents of calcium plus magnesium.

High concentrations of dissolved salts in irrigation water may cause a buildup of salts in the soil solution and may make the soil saline. The increased soil salinity may reduce crop yields drastically by decreasing the ability of the plants to take up water and essential plant nutrients from the soil solution. This tendency of irrigation water to cause a high buildup of salts in the soil is called the salinity hazard of the water. The specific conductance of the water is used as an index of the salinity hazard.

High concentrations of sodium relative to the concentrations of calcium and magnesium in irrigation water can adversely affect soil structure. Cations in the soil solution become fixed on the surface of the soil particles; calcium and magnesium tend to flocculate the particles, whereas sodium tends to deflocculate them. This adverse effect on soil structure caused by high sodium concentrations in an irrigation water is called the sodium hazard of the water. An index used for predicting the sodium hazard is the sodium-adsorption ratio (SAR), which is defined by the equation:


$$SAR = \frac{Na^+}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}}$$

where the concentration of the ions are expressed in equivalents per million.

The U.S. Salinity Laboratory Staff has prepared a classification for irrigation waters in terms of salinity and sodium hazards. Empirical equations were used in developing a diagram, reproduced in modified form as Figure 10, which uses SAR and specific conductance in classifying irrigation waters. This classification, although embodying both research and field observations, should be used only for general guidance because many additional factors (such as availability of water for leaching, ratio of applied water to precipitation, and crops grown) also affect the suitability of water for irrigation. With respect to salinity and sodium hazards, waters are divided into four classes-low, medium, high, and very high. The classification range encompasses those waters that can be used for irrigation of most crops on most soils as well as those waters that are usually unsuitable for irrigation. Selection of class demarcation is discussed in detail in the publication by the U.S. Salinity Laboratory Staff (1954). Interpretation of the diagram is as follows:

"LOW-SALINITY WATER (C1) can be used for irrigation with most crops on most soils with little likelihood that soil salinity will develop. Some leaching is required, but this occurs under normal irrigation practices except in soils of extremely low permeability.

"MEDIUM-SALINITY WATER (C2) can be used if a moderate amount of leaching occurs. Plants with moderate salt tolerance can be grown in most cases without special practices for salinity control.

- 56 -

"HIGH-SALINITY WATER (C3) cannot be used on soils with restricted drainage. Even with adequate drainage, special management for salinity control may be required and plants with good salt tolerance should be selected.

"VERY HIGH SALINITY WATER (C4) is not suitable for irrigation under ordinary conditions, but may be used occassionally under very special circumstances. The soils must be permeable, drainage must be adequate, irrigation water must be applied in excess to provide considerable leaching, and very salt-tolerant crops should be selected.

"LOW-SODIUM WATER (S1) can be used for irrigation on almost all soils with little danger of the development of harmful levels of exchangeable sodium. However, sodium-sensitive crops such as stone-fruit trees and avocados may accumulate injurious concentrations of sodium.

"MEDIUM-SODIUM WATER (S2) will present an appreciable sodium hazard in fine-textured soils having high cation-exchange-capacity, especially under lowleaching conditions, unless gypsum is present in the soil. This water may be used on coarse-textured or organic soils with good permeability.

"HIGH-SODIUM WATERS (S3) may produce harmful levels of exchangeable sodium in most soils and will require special soil management--good drainage, high leaching, and organic-matter additions. Gypsiferous soils may not develop harmful levels of exchangeable sodium from such waters. Chemical amendments may be required for replacement of exchangeable sodium, except that amendments may not be feasible with waters of very high salinity.

"VERY HIGH SODIUM WATER (S4) is generally unsatisfactory for irrigation purposes except at low and perhaps medium salinity, where the solution of calcium from the soil or use of gypsum or other amendments may make the use of these waters feasible."

The salinity and sodium hazards of water at selected sites in the Brazos River basin are given in Table 11 and Figure 10. These data indicate that much of the time, waters of the principal tributaries in the upper Brazos River basin are unsuitable for irrigation because of high or very high salinity and sodium hazards. Of the three principal forks, waters of the Clear Fork is the most suitable for irrigation; but, even here, the salinity hazard of the water may preclude its use for irrigation much of the time unless drainage is adequate, salt tolerant crops are grown, and an excess of irrigation water is applied.

Although the sodium hazard of tributary waters downstream from Possum Kingdom Reservoir usually is low, the salinity hazard usually ranges from medium to high. These waters generally are suitable for supplemental irrigation on soils of adequate drainage, provided that plants with good salt tolerance are selected.

The salinity and sodium hazards of water of the main stem Brazos River generally decrease in a downstream direction. Both the salinity and sodium hazards of water at the Seymour station usually are very high. Inflow downstream from the Seymour station causes some reduction of the sodium and salinity hazards of the main-stem water. Nevertheless, during the 1943-64 period, the salinity hazard of water released from Possum Kingdom Reservoir ranged from high to very high more than 80 percent of the time, and the sodium hazard was medium most of the time. Therefore, water from Possum Kingdom Reservoir generally is suitable for irrigation only on permeable soils, where drainage is adequate, an excess of water is applied, and salt-tolerant crops are selected.

Inflow from the intervening area between Possum Kingdom and Whitney Reservoirs results in some reduction of the salinity and sodium hazards of the mainstem water. Nevertheless, the salinity hazard of releases from Whitney Reservoir is high most of the time.

Although the sodium hazard of the main-stem water at the Richmond station generally is low, the salinity hazard usually ranges from medium to high. However, the principal use of surface water for irrigation in the Richmond area is for growing rice. Although the concentrations of chemical constituents tolerated by rice varies with the stage of growth, investigators generally agree that water containing less than 600 ppm sodium chloride (350 ppm chloride) is not harmful to rice at any stage of growth (Irelan, 1956, p. 330). Therefore, water of the Brazos River at Richmond usually is suitable for rice irrigation.

As previously stated, other criteria for evaluating the suitability of water for irrigation use include the boron content and the excess of equivalents of bicarbonate over equivalents of calcium plus magnesium (residual sodium carbonate). A few analyses for boron (Table 4) show that boron concentrations in surface waters of the Brazos River basin usually are low. With regard to residual sodium carbonate, surface waters of the basin usually contain an excess of equivalents of calcium plus magnesium over equivalents of bicarbonate. The residual sodium carbonate usually is zero and thus is not a problem.

- American Water Works Association, 1950, Water quality and treatment: Am. Water Works Assoc. Manual, 2d ed., tables 3-4, p. 66-67.
- Baker, R. C., Hughes, L. S., and Yost, I. D., 1964, Natural sources of salinity in the Brazos River, Texas: U.S. Geol. Survey Water-Supply Paper 1669-CC, 81 p., 4 pls., 11 figs.
- Blank, H. R., 1955, Sources of salt water entering the Upper Brazos River: Report, Project 99, Texas A&M Foundation, Dept. of Geology, Agricultural and Mechanical College of Texas, 48 p., 10 pls.
- Burnitt, S. C., Holloway, H. D., and Thornhill, J. T., 1962, Reconnaissance survey of salt water disposal in the Mexia, Negro Creek, and Cedar Creek oilfields, Limestone County, Texas: Texas Water Commission Memorandum Report No. 62-02, 29 p., 2 pls., 2 figs.
- Cronin, J. G., and others, 1963, Reconnaissance investigation of the groundwater resources of the Brazos River basin, Texas: Texas Water Commission Bull. 6310, 152 p., 11 pls., 24 figs.
- Hembree, C. H., and Blakey, J. F., 1964, Chemical quality of surface waters in the Hubbard Creek watershed, Texas, progress report, September 1963: Texas Water Commission Bull. 6411, 45 p., 23 figs.
- Hughes, Leon S., 1965, Effect of the partial control of natural salinity on water quality in Possum Kingdom Reservoir, Texas: U.S. Geol. Survey open-file report 94, 11 p., 3 figs.
- Iorns, W. V., Hembree, C. H., and Oakland, G. L., 1965, Water resources of the upper Colorado River basin--technical report: U.S. Geol. Survey Prof. Paper 441, 370 p.; plates in separate case.
- Irelan, Burdge, 1955, Quality of Water, in Joerns, J. O., Double Mountain Fork Brazos River between Lubbock and Buffalo Lake, Texas: U.S. Geol. Survey openfile report 51, 38 p.
- 1956, Quality of Water, <u>in</u> Jones, P. H., Hendricks, E. L., Irelan, Burdge, and others, Water resources of southwestern Louisiana: U.S. Geol. Survey Water Supply Paper 1364, p. 323-442.
- Irelan, Burdge, and Mendieta, H. B., 1964, Chemical quality of surface waters in the Brazos River basin in Texas: U.S. Geol. Survey Water-Supply Paper 1779-K, 70 p., 4 pls., 2 figs.
- Leifeste, D. K., and Smith, J. T., 1965, Base-flow studies, San Gabriel River, Texas, quantity and quality, March 16-18, 1964: Texas Water Commission Bull. 6510, 17 p., 1 pl., 8 figs.
- Lockwood, Andrews, and Newnam, 1960, Surface runoff from Texas watersheds and sub-basins: Texas Board of Water Engineers Bull. 6001, 253 p., 2 pls., 2 figs.

- McMillion, L. G., 1958, Ground-water geology in the vicinity of Dove and Croton Creeks, Stonewall, Kent, Dickens, and King Counties, Texas, with special reference to salt-water seepage: Texas Board of Water Engineers Bull. 5801, 53 p., 11 figs., 2 pls.
- Mendieta, H. B., and Blakey, J. F., 1963, Brazos River basin reservoir studies, progress report, May 1962: Texas Water Commission Memorandum Report No. 63-01, 24 p., 9 pls.
- Mills, W. B., and Rawson, Jack, 1965, Base-flow studies, Lampasas River, Texas, quantity and quality, June 3-6, 1963: Texas Water Commission Bull. 6506, 16 p., 2 pls., 4 figs.
- Searcy, J. K., 1960, Graphical correlation of gaging-station records: U.S. Geol. Survey Water-Supply Paper 1541-C, 100 p., 1 pl., 6 figs.
- Shamburger, V. M., Jr., 1958, Reconnaissance report on alleged contamination of California Creek near Avoca, Jones County, Texas: Texas Board of Water Engineers Contamination Report No. 5, 14 p., 1 fig.
- Stevens, P. R., and Hardt, W. F., 1965, Preliminary report on the investigation of salt springs and seeps in a portion of the Permian basin in Texas: U.S. Geol. Survey open-file report, 19 p., 7 figs.
- Stiff, H. A., Jr., 1951, The interpretation of chemical water analysis by means of patterns: Jour. of Petro. Tech., Oct., p. 15.
- Texas Board of Water Engineers, 1958, Compilation of surface water records in Texas through September 1957: Texas Board of Water Engineers Bull. 5807A, 503 p., 4 pls.
- Texas Water Commission and Texas Water Pollution Control Board, 1963, A statistical analysis of data on oilfield brine production in Texas for the year 1961 from an inventory conducted by the Texas Railroad Commission: Summary vol., 81 p.
- U.S. Geological Survey, 1939, Summary of records of surface waters of Texas, 1898-1937: U.S. Geol. Survey Water-Supply Paper 850, 154 p.

1960, Compilation of records of surface waters of the United States through September 1950, Part 8. Western Gulf of Mexico basins: U.S. Geol. Survey Water-Supply Paper 1312, 633 p., 1 pl., 2 figs.

_____1961, Surface water records of Texas, 1961, basic data release.

1962, Surface water records of Texas, 1962, basic data release.

1963, Surface water records of Texas, 1963, basic data release.

1964a, Compilation of records of surface waters of the United States, October 1950 to September 1960, Part 8, Western Gulf of Mexico basins: U.S. Geol. Survey Water-Supply Paper 1732, 574 p., 1 pl., 2 figs.

1964b, Surface water records of Texas, basic data release.

- 60 -

- U.S. Geological Survey, 1964c, Water quality records in Texas, basic data release.
- U.S. Public Health Service, 1962, Drinking water standards, 1962: U.S. Public Health Service Pub. 956, 61 p.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. of Agriculture Handb. 60.

U.S. Study Commission, Texas, 1962, The report of the U.S. Study Commission, Pt. III, The Eight Basins, 217 p., 26 pls.

à

Quality-of-water records for the Brazos River Basin are published in the following U.S. Geological Survey Water-Supply Papers and Texas Water Development Board reports (including reports formerly published by the Texas Water Commission and Texas Board of Water Engineers):

Water Year	U.S.G.S. Water-Supply Paper No.	T.W.D.B. Report No.	Water Year	U.S.G.S. Water-Supply Paper No.	T.W.D.B. Report No.
1940-45		*1938-45	1955	1402	*1955
1946	1050	*1946	1956	1452	Bull. 5905
1947	1102	*1947	1957	1522	Bull. 5915
1948	1133	*1948	1958	1573	Bull. 6104
1949	1163	*1949	1959	1644	Bull. 6205
1950	1188	*1950	1960		Bull, 6215
1951	1199	*1951	1961		Bull. 6304
1952	1252	*1952	1962	1944	Bull. 6501
1953	1292	*1953	1963		Rept. 7
1954	1352	*1954			

* "Chemical Composition of Texas Surface Waters" was designated only by water year from 1938 through 1955.

The following U.S. Geological Survey Water-Supply Papers contain results of stream measurements in the Brazos River Basin, 1898-1960:

Year	Water-Supply Paper No.	Year	Water-Supply Paper No.	' Year	Water-Supply Paper No.
1898	28	1931	718	1946	1058
1899	37	1932	733	1947	1088
1900	50	1933	748	1948	1118
1901	75	1934	763	1949	1148
1902	83	1935	788	1950	1178
1903	99	1936	808	1951	1212
1904	132	1937	828	1952	1242
1905	174	1938	858	1953	1282
1906	210	1939	878	1954	1342
1924	588	1940	898	1955	1392
1925	608	1941	928	1956	1442
1926	628	1942	958	1957	1512
1927	648	1943	978	1958	1562
1928	668	1944	1008	1959	1632
1929	688	1945	1038	1960	1712
1930	703				

Refer-	<u></u>	Drainage						_				Caler	dar	Years										
ence no.	Stream and Location	Area (sq. miles)	19	01-10	0	1911	-20	_		192	-30		1	931-40			1941-	50		19	951-6	0	1961 -	-65
i.	Double Mountain Fork Brazos River at Justiceburg	b1,272																			III			
2	rth Fork Double Mountain Fork Brazos River, 5 miles northwest of Slayton																			-				
3	Lake Buffalo Springs near Lubbock																							
4	Rough Creek at mouth near Rotan															T						55		T
5	Double Mountain Fork Brazos River near Rotan	c7, 739																						T
6	Double Mountain Fork Brazos River near Aspermont	c7,980										0000		8	5565	19119	2000	10000		10000			1000	22770
7	Double Mountain Fork Brazos River near Rule									Ħ									20210					
8	Tank Creek near Rule									Ħ						tt								
9	McDonald Creek at mouth near Post	112														ŤŤ						555		
10	Running Water Draw at Plainview														20200			80000	m	1222			10/10	101307 P.4
11	White River near Crosbyton									tt						tt				222	1222	222		
12	White River Reservoir near Spur									tt						Ť					*****			N
13	Red Mud Creek at mouth near Clairemont															T		tt						
14	Salt Creek near Clairemont									T														
15	Duck Creek near Jayton															+					ttt			
16	Butte Creek at mouth near Jayton																							
17	Salt Fork Brazos River near Peacock	d4,260								††						Ħ							×	1992
18	Croton Creek near Jayton	284														t			20000			-		
19	Salt Croton Creek near Aspermont	64.3	T							T						T								
20	Salt Fork Brazos River near Aspermont	d4,830				11			0						1040	ana a	unan		11111			ANONA	1000	

Table 1.--Index of surface-water records for selected sites in the Brazos River basin^a.

See footnotes at end of table.

12

Daily chemical quality Water temperature Account Periodic chemical quality Water temperature Account A

18.7

1.36

1

lefer-		Drainage	_													Cal	end	ar	Y	ear	s										_					-		_	-
no.	Stream and Location	Area (sq. miles)		190	01-1	0		19	-11	20			19	21-	30				19	31-	40				I	941	-5	0		Τ		19	51-	- 60		1	196	iI —	65
21	North Croton Creek at mouth near Knox City																				Π	Τ	Π		Π			Ι	Π				Π	Π	SU1	1		Π	Π
22	Mustang Creek at mouth near Knox City																													Π	Π	Τ	Π	Π	- 190			Π	
23	Brazos River at Seymour	el4,490										2		1919		5125			500						220														N.
24	Millers Creek near Munday	113														Π					Π		Π		Π	Π			Π	Π	Π	Τ	Π	Π		Π			2 N 2
25	Millers Creek near Seymour			Π													Τ				Π		Π		Π	Π		T	Π	Π	T	T		Π		Π	1	2	
26	Lake Trammel near Sweetwater														Π						Π	T	Π	Π		Π	2		Π	Π		T				I	T	Π	
27	Lake Sweetwater near Sweetwater	104																		211		Terrison and		1161116					111000		5								間、
28	Lake Abilene near Abilene																				Π																	Π	
29	Kirby Lake near Abilene					Π			Π						-						Π		Π					T		Π		T				IT	T	Π	1
30	Lytle Lake near Abilene		Π							Π					Π						Π	T	Π		Π			T	Π	Π		T				Π	T	Π	
31	Fort Phantom Hill Reservoir near Nugent	478	T									Π			Ħ	T	T				T	T	1111		under	55 83 11	1							1101110		****	release		1
32	Clear Fork Brazos River at Nugent	2,200	Π	Π								Π	-		2022	000	100	110	22	1999	8.57	5367	100	5 53	556	9.9	554	100								~~~	000	200	8
33	Lake Stamford near Haskell	360																					Π							Ĩ					Rinn		htterin		hit
34	Hamlin Lake near Hamlin															Π							Π		Π								Π					Π	
35	California Creek near Stamford	465										Π											Π						Π										
36	Paint Creek near Haskell	879													Π								Π		Π						Π						T	Π	-
37	Clear Fork Brazos River at Fort Griffin	3,974	T				T			T			559		140	200	1059	202		1010	000		100			8	110	5998									SKS XXX		2
38	Hubbard Creek near Sedwick	127																					Π		Π					T									2 1 20
39	Deep Creek at Moran	235																							Π			T											
40	Hubbard Creek near Albany	461	T		T					Π					Π				Π		Ħ		Π		Π			T	Π	Π	Π	T		T					100

Table 1.--Index of surface-water records for selected sites in the Brazos River basin^a, --Continued

1

.

Periodic discharge measurements managements and a Daily chemical quality Periodic chemical quality Water temperature Address See footnotes at end of table.

1

- 64 -

1. 1.

 \mathbf{x}

lefer-		Drainage			_	_									Ca	len	dar	Ye	ars														
nce no.	Stream and Location	Area (sq. miles)		190	01-10	0		19	11-3	20			192	-30)			193	1-4	0			19	941-	50			19	951-	60		19	61-6
41	Salt Prong Hubbard Creek at U.S. Highway 380 near Albany	65.2																									Π	Π		Π	Π	Π	
42	North Fork Hubbard Creek near Albany	38.4																									Π			Π			0000
43	Salt Prong Hubbard Creek near Albany	116																						Π			Π			Π			
44	Snailum Creek near Albany	25.5														Π		Π	Π					Π	Π	Π	Π	Π	Π	Π		Π	
45	Big Sandy Creek near Breckenridge	298														Π		Π	Π					Π	Π	T	Π	Π		T			
46	Hubbard Creek Reservoir near Breckenridge	1,107																					T	Π		T	T	T		T			
47	Hubbard Creek near Breckenridge	1,111														Π								IT		Π	Π	Π			The local division in which the		×××××
48	Lake Daniels near Breckenridge															Π	Π	Π	Π					T	Π	Π	Π	T	Π	T	-	T	
49	Clear Fork Brazos River at Eliasville	5,721														Π		Π	Π					Π	Π	Π	Π	T	T	T	Π		00000
50	Brazos River near South Bend	e21,600			Π	Π				Π						Π	Π	Π	Π	10	<i>eeca</i>		100	800	2294					2000	××××		
51	Salt Creek at Olney	9.6	T		Π	Π				II	Π	T				Π	T	Ħ	T			T		IT	Ħ	Î	Î		Î				
52	Salt Creek near Newcastle	57.9			Π	Π				Π	Π					Π		T	T					IT	IT	Ħ	T	T					
53	Lake Graham near Graham	205	Π	Π												Π						1	T	IT	T	T	T	T					
54	Brazos River below Possum Kingdom Dam, near Graford	£22,550			Π					Π						Π		Π	T			-	-		H				2000				00000
55	Brazos River near Palo Pinto	e22,760									Π		12.22	2020		CCCC.		2004	000	.0.09	53655	238.2	1907		39298								
56	Keechi Creek near Graford		Π							Π						Π	Π	Π		Π				I						T		T	1
57	Keechi Creek Reservoir near Graford					T					T					IT	T	Ħ						IT	T	T	T	T		T	T	F	-
58	Lake Hagaman near Ranger					T						T				Π	Ħ	T							Π	T	T	Π		T		T	
59	Palo Pinto Creek near Santo	567				Π							1000			Π										T	×××						
60	Lake Mineral Wells near Mineral Wells		Π		Π	Π				Π	Π					Π		II	T		T	T			IT	T			TT,	IT	TT	T	-

Table 1.--Index of surface-water records for selected sites in the Brazos River basin^a,--Continued

5 g.

Periodic discharge measurements and and and a second

Daily chemical quality memory Periodic chemical quality Mater temperature Accounters

See footnotes at end of table.

1

Refer-		Drainage														Co	lend	ar	Yea	rs	_				_							-		-
ence no.	Stream and Location	Area (sq. miles)		19	-10	10			19	-116	20			19	21-3	0		P	931-	40			19	941-	50			19	951-	60		196	61-6	55
61	Paluxy Creek at Glen Rose	399																		\prod														
62	Lake Pat Cleburne near Cleburne																																	
63	Nolands River at Blum	276																								88				***		××		30
64	Brazos River below Whitney Dam, near Whitney	e26,170																					Π					888					1	
65	Brazos River near Whitney	e 26, 190																	Π			10200		acter a	0000						~~~			
66	Aquilla Creek near Aquilla	306	•																Π	18	55		8690		1312									
67	Green Creek near Alexander	45.5																								IT	Π							
68	North Bosque River near Clifton	972												13623									9666		100									
69	Middle Bosque River near McGregor	182						Π					Π			Π			Π	Π	Π	Π	Π	Π	Π		Π		Π					
70	Waco Reservoir near Waco						Π		Π				Π			Π			Π	Π	Π	Π	-	Π	Π	T								
71	Bosque River near Waco	1,655						Π	Π	Π		Π	Π			T			T	Ħ	1	Ħ	T		Π	Ħ	Ħ	Ħ						
72	Brazos River at Waco	e28,500			10000						TT	0.00				000000			000	000	cacae	5000	Calendar											
73	Cow Creek at Mooreville	79.6														Π			Π	ľ	Π	Π	Π		Π	Π	Π		1.1.		~~~		000	
74	Leon River near Eastland	279									Π					Π			Π			Π							Π		T	Π	T	T
75	Leon Reservoir near Ranger	252								Π																Π	Π							1000
76	Proctor Reservoir near Proctor	1,265									Π					Π								Π			Π		Π					
77	Leon River near Hasse	1,268					Π		IT	Ħ	T	T							T	T	138	1000	19230	95925							~~~~			
78	Lake Eanes near Comanche									Π									T			T	T										-	
79	Lake Comanche near Comanche												T						1				Ħ		T	T		T	T					T
80	Lake Hamilton near Hamilton					Π		T	IT	II	Ħ	T	\parallel			T					T		T			Ħ								-

Table 1.--Index of surface-water records for selected sites in the Brazos River basin a, --Continued

Periodic discharge measurements and an end of table. Daily chemical quality Periodic chemical quality Water temperature accession of table.

8

- 66 -

1 3.

r 3.

Refer-		Drainage													Ca	enda	ir Y	Years	1										
nce no.	Stream and Location	Area (sq. miles)	19	01-10	10			1911-	-20			192	21-3	0		19	31-4	0		1	941-	50			1951	-60	19	61-65
81	Belton Reservoir near Belton	3,560																	Π	TH	Π	Π	Π		Π				
82	Leon River near Belton	3,572	Π				T				T		caur		01111	ana	aaaa	eeseo		anna		ana				0,000	21212		
83	Sulphur Creek below Lampasas		T											tt	11						\uparrow	11							
84	Lampasas River near Kempner	817																				\dagger			11				
85	Lampasas River at Youngsport	1,244	Π					T					13		686460			2000	10402	777778	10109	72798	Rate						
86	North Fork San Gabriel River at Georgetown													Ħ							1	11		m		2000	\$25\$2\$22		
87	South Fork San Gabriel River at Georgetown													T	T		T					11							
88	San Gabriel River at Georgetown	399											1.15	8	1		100	erece	earce	ocenco		10000	center			<i>1999</i>		10000	
89	Little River at Cameron	6,982								191100	141400	25923	10108	9696	296953	19992	00000	20100	uera	accus	11112	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1000						
90	Brazos River at State Highway 21 near Bryan		Π														T				Π	T	IT					ΠÜ	
91	Little Brazos River at State Highway 21 near Bryan						T			T					T						T	tt	İŤ		T			T	
92	Brazos River near Bryan	e38,400	1000							10	355969	6069	.03094	1000	112230	10/10/0	36363	10200	1969	96949	1914	1000	10.07			19999		1111111	
93	Yegua Creek near Somerville	1,008												1999	266969	20100	26969	259923	<i></i>	30013	1000	79797	2000						
94	Lake Mexia near Mexia	198	\prod														T				T		T				××××××××	T	
95	Navasota River near Easterly	940	Π										100	1993	966966		ann	20190	eeree	96969	ж <i>трер</i>	19999		X X X		1919		191920	
96	Navasota River near Bryan	1,429									\square			Ħ								T				2002	191191		
97	Brazos River at Richmond	e44,020	hunu	1000	1999		T		-											1911911	1999		1222						
98	Brazos River near Juliff	e44,100					T								T		T									000	ichideo	1000	
99	Big Creek at Farm Road 1994 near Guy													\uparrow								T		1 A		20003	202000		
.00	Big Creek at Farm Road 762 near Guy							T			T			T	T		11					11			11				

Table 1.--Index of surface-water records for selected sites in the Brazos River basin^a, --Continued

2

Periodic discharge measurements See footnotes at end of table.

8

Daily chemical quality Water temperature Account Periodic chemical quality Water temperature Account A

Refer- ence	Stream and Location	Drainage		_	_							_	_				Cale	nda	r١	ears														
no.	Stream and Location	Area (sq. miles)		19	01-1	0			19	11-2	0			1	921-	-30			19	31-4	ю			19	41-!	50			195	1-6	0	1	961-	- 65
101	Big Creek at county road 9 miles northeast of Guy																										Π	Π	Π	Π	Π	Π	-	
102	Cow Creek at Kitty Nash Road 8 miles northeast of Damon																												T	Π	T	Π	-	-
103	Brazos River at Harris Reservoir, near Angleton																											T	Π	Π	T	Π	-	
104	Varner Creek at State Highway 35 at East Columbia														Π													T	T	Π	T	Π	-	-
105	Brazos River at Brazoria Reservoir, near Brazoria													T	Π	Π												T	T	T	T	Ħ	H	
													Π	Π	T	T													Ħ	Ħ	T	Ħ	Ħ	Ħ
													Π	Π	Ħ	T		Ħ	Ħ			T						T	Ħ	Ħ	tt	Ħ	Ħ	
1						T							IT	I	IT	T	IT	Ħ	IT	T			T	T				T	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
				Π		Т			1			T	IT	Ħ	Ħ	Ħ	Ħ	T	T				T	T	1			T	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
				T		T							IT	Ħ	Ħ	Ħ	Ħ	tt	Ħ										Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
				t		T		T	Ħ			T	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ				t		\dagger			++	Ħ	Ħ	++-	Ħ	Ħ	
						T		T	Ħ				Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ									++	$^{++}$	Ħ	Ħ	Ħ	Ħ	++
						t		+						Ħ	Ħ	Ħ	Ħ	Ħ		-						$\left \right $			Ħ	tt	+	Ħ	Ħ	
						T		+	\parallel		1		H		Ħ	Ħ	Ħ	+		+	+							++	++	Ħ	+	Ħ	Ħ	+++
						П		\top		T	-			Ħ	Ħ	$^{++}$	Ħ	Ħ	\square									++	+	H	++	H	+	+
			+			+		-		T				Ħ	Ħ	Ħ		Ħ		-	+		+	+				++	$^{++}$	+	╫	$^{++}$	Ħ	++
			+	+		+	-	+		+	+	+	\mathbb{H}	+	+	++	╟	+	-	-	-	+	+			-		++	₩	\mathbb{H}	++-	+	++	$\left \right $
-			+	+		+				+	-			+	H	+	++	+			-		+	+	+			++	++	++	++	+	++	
-						+				-	-				\parallel	$\left \right $						+		+		-		++	++-	+	-	+	+	
-			+	+		+	_	-	+	-	-				++					_		+		+		-		++	++-		++-		++-	

Table 1.--Index of surface-water records for selected sites in the Brazos River basin^a, --Continued

Periodic discharge measurements second and and

Daily chemical quality Water temperature

1

a Index of records for other sites are found in publications or files of the Texas Water Development Board and the U.S. Geological Survey.
 b of which 1,003 square miles is probably noncontributing.
 c of which 6,470 square miles is probably noncontributing.
 d of which 2,770 square miles is probably noncontributing.
 e of which 9,240 square miles is probably noncontributing.

. E . . . X.

. 89 1

Name of reservoir	Year operation began	Stream	<u>a</u> /Total storage capacity (acre-feet)	Owner	County	Use
Lake Buffalo Springs	1960	North Fork Double Mountain Fork Brazos River	5,360	Lubbock County Water Control and Improve- ment District No. 1	Lubbock	M, I, R
White River	1963	White River	38,600	White River Municipal Water District	Crosby	M, I, Mi
Lake Sweetwater	1930	Bitter and Cottonwood Creeks	11,900	City of Sweetwater	Nolan	Μ, Ι
Lake Abilene	1921	Elm Creek	9,790	City of Abilene	Taylor	М
Kirby Lake	1928	Cedar Creek	7,620	City of Abilene	Taylor	M, Ir
Fort Phantom Hill	1938	Elm Creek	74,310	City of Abilene	Jones	M, Ir
Lake Stamford	1953	Paint Creek	53,070	City of Stamford	Haskell	M, I
Lake Cisco	1925	Sandy Creek	25,600	City of Cisco	Eastland	м
Hubbard Creek	1962	Hubbard Creek	317,800	West Central Texas Municipal Water District	Stephens	M, I, Mi
Lake Daniel	1948	Gonzales Creek	10,000	City of Breckenridge	Stephens	M, I
Lake Graham	1929, 1958	Flint and Salt Creeks	53,680	City of Graham	Young	м, і
Possum Kingdom	1941	Brazos River	724,700	Brazos River Authority	Palo Pinto	M, I, Ir, Mi, P, R
Lake Palo Pinto .	1964	Palo Pinto Creek	44,100	Palo Pinto County Municipal Water District No. 1	Palo Pinto	М, І
Lake Mineral Wells	1921, 1943	Rock Creek	8,420	City of Mineral Wells	Palo Pinto	M, I
Lake Pat Cleburne	1964	Nolands River	25,560	City of Cleburne	Johnson	М
Whitney	1951	Brazos River	1,999,500	U.S. Army Corps of Engineers	Hill-Bosque	P, FC

Table 2 .-- Reservoirs with capacities of 5,000 acre-feet or more in the Brazos River basin.

(The purposes for which the impounded water is used are indicated by the following symbols: M, municipal; I, industrial; Ir, irrigation; Mi, mining; P, hydroelectric power; FC, flood control; R, recreation.)

- 69 -

Name of reservoir	Year operation began	Stream	<u>a</u> /Total storage capacity (acre-feet)	Owner	County	Use
Waco (Enlargement)	1929, 1965	Bosque River	726,400	U.S. Army Corps of Engineers,City of Waco, Brazos River Authority	McLennan	M, I, FC
Lake Creek	1952	Manos Creek (Brazos River off-channel)	8,400	Texas Power & Light Company	do.	I
Leon	1954	Leon River	27,290	Eastland County Water Supply District	Eastland	М, І
Proctor	1963	do.	374,200	U.S. Army Corps of Engineers, Brazos River Authority	Comanche	M, I, Ir, FC
Belton	1954	do.	1,097,600	do.	Bell	M, I, Ir, FC
Stillhouse Hollow	<u>b</u> /	Lampasas River	630,400	do.	do.	M, I, Ir, FC
Alcoa Lake	1953	Sandy Creek (Little River off-channel)	10,500	Aluminum Company of America	Milam	I
Somerville	<u>b</u> /	Yegua Creek	507,500	U.S. Army Corps of Engineers, Brazos River Authority	Burleson	M, I, Ir, FC
Lake Mexia	1961	Navasota River	10,000	Bistone Municipal Water District	Limestone	M, I
Camp Creek Lake	1948	Camp Creek	8,550	Camp Creek Water Company	Robertson	R
Smithers Lake	1957	Dry Creek	18,000	Houston Lighting & Power Company	Fort Bend	I
William Harris	1947	Brazos River & Oyster Creek off-channel	12,000	Dow Chemical Co.	Brazos	M, I
Eagle Nest-Manor Lake	1949	Unnamed Tributary to Varner's Creek	18,000	T. M. Smith, et al	Brazoria	Ir
Brazoria	1954	Brazos River off-channel	21,970	Dow Chemical Co.	do.	M, I

Table 2 .-- Reservoirs with capacities of 5,000 acre-feet or more in the Brazos River Basin .-- Continued

 \underline{a} / Total storage capacity is that capacity below the lowest uncontrolled outlet or spillway and is based on the most recent reservoir survey available. \underline{b} / Under construction.

3

7

16

1.

1

value	es of other	r cons	tituen	ts may	not be	extre	mes.	Results	in parts	per m	illio	n except	as inc	dicated.)					
			ŝ.	Mag		De	B1-						solved calcula			iness aCO ₃	So-	Specific con-	
Date of collection	Mean Discharge (cfs)	Silica (SiQ _s)		Mag- ńe- sium (Mg)	Sođium (Na)	Po- tas- sium (K)	car- bon- ate (HCO ₂)	Sulfate (SO ₄)	Chloride (Cl)	ride	Ni- trate (NO ₃)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	рH ,
				5. DO	UBLE MOU	NTAIN	FORK	BRAZOS R	IVER NEAR	ROTA	N					*			
Water year 1950 Maximum, Jan. 21-31, 1950 Minimum, Sept. 5-9 Weighted average	a0 1,542 146	14 13 15	800 49 97	156 8.3 16		1 79 118 152	126 120 126	2,190 177 294	9,700 91 160		1.2 1.4	19,100 b531 812	.72	0.0 2,210 320	2,640 156 308	2,530 58 205	4.1	28,900 871 1,270	1 8.
Water year 1951 Maximum, Oct. 22-24, 1950 Minimum, Aug. 21-25, 1951 Wcighted average	a0 910 32.6	18 18 19	559 98 176	110 16 28		070 115 218	117 127 121	1,590 300 525	4,800 101 270		1.2	10,200 b731 1,300	13.9 .99	.0 1,800 114	1,850 310 554	1,750 206	31 2.8	15.80 1,10 1,94	0 7
			6.	DOUBI	LE MOUNT	AIN F	ORK MR.	AZOS RIV	ER NEAR A	SPERM	ONT								-
Water year 1949 Maximum, Mar. 1-10, 1949 Minimum, Sept. 11-20 Weighted average	0.77 1,168 139	13 14 14	636 81 138	92 13 20		779 110 130	116 115 120	1,770 254 380	1,220 95 150		1.5 2.2 2.6	4,570 6664 916	6.22 .90 1.25	9.5 2,090 344	1,970 256 426	162	3.0	6,340 1,020 1,410	0 7.
Water year 1950 Maximum, Feb. 1-13, 19-28, 1950- Minimum, May 11-13 Weighted average	1.62 2,275 171	13 16 15	614 74 162	9.6	1	595 132 138	116 120 109	1,700 240 460	920 114 148		1.2 1.0 2.3	3,980 646 1,010	5.41 .88	17 3,970 466	1,870 224 478	1,770	6.0 3.8	5,350 1,030 1,470	0 7.
Water year 1951 Maximum, Aug. 5, 8, 1951 Minimum, Aug. 23-29 Weighted average	a0 743 63	23 18 18	816 105 249	17		553 142 167	76 133 106	2,340 330 700	860 132 203		.0 3.5 2.4	4,740 b842 1,430	6.45 1.15	.0 1,690 243		2,450 223 654	4.8	5,920 1,280 1,980	07.07.
Water year 1957 Maximum, Juliy 9-16, 1957 Minimum, June 1-7, 13-14, 19-20- Weighted average	4.62 2,849 352	26 16 14	588 104 152			787 89 110	59 122 110	1,720 273 400	1,190 87 123		1.6 4.2 3.0	4,420 5689 910	6.01	55.1 5,300 865	1,810 317 445	1,760 217	8.0 2.2	6,020 1,020 1,300	07.
Water year 1958 Maximum, Feb. 23-28, 1958 Minimum, Oct. 22-28, 1957 Weighted average	9.02 492 130	10 11 14	640 61 217	102 10 22		470 138 207	130 137 110	1,660 208 592	2,400 115 265		2.5	6,350 6636 1,390	8.64	155 845 488	2,020 193 632		14 4.3	9,430	8.
Water year 1959 Maximum, Aug. 1-7, 1959 Minimum, July 1-6 Weighted average		18 15 15	590 110 153			969 99 149	103 110 113	1,600 318 429	1,530 88 168		1.0 3.0 2.6	4,840 b715 999	6.58	64.8 8,890 591	1,800 332 456	1,720 242	9.9	6,690 1,060 1,460	07.
Water year 1960 Maximum, Mar. 1-12, 1960 Minimum, Dec. 18-21, 1959 Weighted average	3.48 559 149	12 11 22	650 63 139	11		080 158 151	120 138 112	1,750 204 410	2,090 155 159		3.2 4.3	5,740 674 977		53.9 1,020 393		1,930 89 325	10 4.8	8,350 1,110 1,410	7.
Water year 1961 Maximum, May 1-16, 1961 Minimum, June 16-19 Weighted average		15 18 15	870 100 168	14		160 126 185	90 122 100	2,210 291 472	2,020 124 237	0.6	 1.8 2.4	6,450 761 1,180	8.77 1.03	15.3 6,280 1,270	2,700 307 506	10000	9.7 3.1 3.6	8,700 1,150 1,720	6.
Water year 1962 Maximum, Dec. 16-31, 1961 Minimum, July 18, 1962 Weighted average	5.9 464 173	13 	655			290 186	163 66 115	1,760 490 455	2,090 62 217			6,000 b851 1,140	8.16	95.6 1,070 532	2,110 578 475	1,980 524	12	8,520 1,230 1,650	7.
Water year 1963 Maximum, Mar. 1-31, 1963 Minimum, June 2-12	2,064	12 18 17	830 73 159			080 112 182	89 130 124	2,080 221 457	2,000 94 220	1.2 	.0 3.5 3.0	6,200 b599	-		2,720 232 496	2,650	9.0	8,260 930 1,640	7.

Table 3 .-- Summary of chemical analyses at daily stations on streams in the Brazos River basin, Texas.

(Analyses listed as maximum and minimum were classified on the basis of the values for dissolved solids only; values of other constituents may not be extremes. Results in parts per million except as indicated.)

See footnotes at end of table.

71 -

1

	D.L.			-	Mag		De	Bi-						solved a		Hard as C		So-	Specific con-	
	Date of collection	Mean Discharge (cfs)	Silica (SiQ ₀)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (IK)	car- bon- ate (HCO ₂)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	N1- trate (NO ₃)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH
			6.	DOUB	LE MOU	NTAIN FO	RK BR	AZOS R	IVER NEA	R ASPERMO	NTC	ontinu	aed							
Minimum,	1964 May 1, 3-7, 1964 Nov. 19, 1963 average	0.7 143 18.8	$13 \\ 8.2 \\ 14$	880 222 289	181 8.8 38		990 76 357	82 62 104	2,120 568 875	2,150 78 466		 3.0 2.9	6,470 994 2,090	8.80 1.35 2.84	12.2 384 106	2,940 590 880	2,870 539 795	8.7 1.4 5.1	8,670 1,290 2,860	7.
					17.	SALT 1	FORK E	BRAZOS	RIVER N	EAR PEACOO	к									
Minimum,	1950 Apr. 14-15, 1950 Sept. 26-28 average	0.19 720 134	13 12 16	1,050 56 158	18		200 241 731	123 121 137	3,250 141 412	17,800 345 1,160		4.8 4.3	33,700 b934 2,610	45.8 1.27 3.55	17 1,820 944	4,160 214 583		7.2	45,100 1,560 4,380	7.
Minimum,	1951 Apr. 20-24, 30, 1951 May 19-27 average	.75 313 31.2	24 22 24	796 64 195	17		280 163 150	145 133 139	2,410 159 550	13,200 218 1,790		2.5	25,100 b728 3,840	34.1 .99 5.22	51 615 323	3,230 230 708	3,110 120 594	4.7	35,900 1,280 6,280	7.
						18. 0	ROTON	CREEK	NEAR J	YTON										
	1960 Apr. 28, 1960 July 7-8	c0.91 791				11,500 269			3,540 1,600	18,100 410					==	4,740	1,610		46,700	
	1961 Apr. 5, 1961 Oct. 18, 1960	c.54 4,980				10,900 130			3,720 1,380	17,200 182						4,840 1,430	1,380		43,700 2,700	
Minimum,	1962 Apr. 7-8, 1962 Sept. 2-4, 7 average	.4 248 13.0					900 232 854	54	3,480 1,590 1,770	19,700 330 1,310						4,580 1,660 1,890	1,620		45,300 3,340 6,160	7.
Minimum,	1963 Apr. 2-12, 1963 Nov. 26-27, 1962 average	.3 202 25.4	23 18 18	1,410 595 748	30		800 334 360	70	3,960 1,530 1,920	18,900 485 1,850		1.0 	36,600 3,030 5,490	51.1 4.12 7.47	30.4 1,650 377	5,210 1,610 2,130	1,550	3.6	43,300 3,970 7,730	7.
Minimum.	1964 Apr. 18, 1964 Oct. 21, 1963 average		7.2	372 908			900 5.5 890	52	4,310 948 2,390	20,900 690 6,200		2.0	40,300 2,510 13,600	56.3 3.41 18.5	892 176 99.9	5,940 1,040 2,860	996		50,900 3,830 18,400	6.
					20.	SALT F	ORK BI	RAZOS	RIVER NE	AR ASPERM	ONT			L I						
Minimum,	1949 Mar. 21, 24-28, 1949 July 16, 31, Aug. 1 average	8.50 109 157	14 17 15	1,330 128 274	34		400 433 160	105 138 112	2,850 336 709	45,400 662 1,820		5.0	78,500 1,680 4,080	107 2.28 5.55	1,800 494 1,730	5,330 460 873		8.8	90,000 2,790 6,380	-
Minimum,	1950 Apr. 1-15, 30, 1950 Sept. 6-10, 27-29 average	a.41 1,004 166	11 15 16	1,440 166 320	26		900 448 400	159 116 117	3,440 435 	26,880 670 2,230		4.0	48,900 1,820 4,870	66.5 2.48 6.62	54 4,930 2,180	4,720 521 1,010	4,590 426 916	8.5	60,900 3,060 7,640	7.
Minimum,	<u>1951</u> Mar. 11-13, 27, 1951 May 19-24 average	9.60 713 64.5	26		445 19 79		500 423 250	$ \begin{array}{r} 114 \\ 153 \\ 118 \end{array} $	$2,760 \\ 320 \\ 1,020$	43,800 588 3,560		6.3	75,800 1,580 7 380	2.15	1,960 3,040 1,290	4,870 372 1,280	247	9.5	95,500 2,760 11,000	7.

See footnotes at end of table.

×.

. A.

- 72 -

.

				Mag-		Po-	Bi-						solved		Hard as C		So-	Specific con-	
Date of collection	Mean Discharge (cfs)	Silica (SiQ ₂)		ne- sium (Mg)	Sodium (Na)	tas- sium (K)	car- bon- ate (HCO ₃)	Sulfate (SO4)	Chloride (Cl)		Ni- trate (NO ₃)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro-	100
			20.	SALT	FORK BRAZ	ZOS RI	VER NH	EAR ASPEN	MONTCon	ntinue	d								
Water year 1957 Maximum, Feb. 1-6, 1957 Minimum, June 2-4 Weighted average	0.68 4,590 299	12 15 17	1,490 126 247	455 19 33		500 300 382	149 127 117	3,190 319 625	$44,100 \\ 428 \\ 1,360$		6.1	76,900 1,280 3,220	1.74	149 15,860 2,600	5,590 392 752	5,470 288 656	6.6	86,600 2,080 5,080	7.8
Water year 1958 Maximum, Sept. 1-14, 1958 Minimum, Oct. 14-19, 23-26, 1957- Weighted average	.72 399 71.4	$ 13 \\ 14 \\ 13 $	1,540 119 330	27		700 348 300	135 129 124	3,630 311 826	32,900 1,290 4,410		2.9	59,200 2,670 8,500	83.7 3.63 11.6	115	5,270 408 1,100	5,160 302	124	74,100 4,650 12,700	7.5
Water year 1959 Maximum, Mar. 30-31, 1959 Minimum, Aug. 8-12 Weighted average	60 648 126	24 23 17	1,570 140 263	22		100 609 540	90 123 121	$3,510 \\ 362 \\ 666$	57,400 910 2,420		3.5	99.200 2.130 5.020	145 2.90 6.83	161 3,730		6.130 339 750	199 13	101,000 3,530 7,700	7.3
Water year 1960 Maximum, Apr. 28-30, 1960 Minimum, July 7-9 Weighted average	2.27 4,280 80.2	13 22 18	1,420 106 246	17		400 310 310	158 125 126	$3,240 \\ 299 \\ 653$	$48,300 \\ 420 \\ 2,820$		3.8	83,900 1,240 5,660	121 1.69	514 14,330 1,230		5,380 232 712	178	92,400	7.3 7.8
Water year 1961 Maximum, Aug. 18, 1961 Minimum, Oct. 19-20, 1960 Weighted average	28.0 6,115 253	$ \begin{array}{c} 13 \\ 13 \\ 16 \end{array} $	1,520 112 322	523 16 49		900 313 470	103 107 136	3,060 226 817	66,500 498 2,290			114,000 1,230 5,030	168	8.620 20,310				115,000	7.4
Water year 1962 Maximum, Apr. 1-7, 1962 Minimum, June 9-10 Weighted average	7.0 977 63.2	13 16	1,240		25,0		122 84 111	3,030 594 1,200	39,600 810 4,490			69,300 2,230 9,150	98.9 3.03	1,310	4,750 710 1,440	4,650	158	71,900 3,690 13,000	7.2
Water year 1963 Maximum, Aug. 19-20, 1963 Minimum, June 18-20 Weighted average	13.3 1,191 80.8	17 24 17	1,320 129 319	20	32,		68 124 116	2,720 344 854	50,800 472 2,900		0.8	87,400 1,380 6,070	122 1.88	3,340	4,810 404 1,050		201 7.2	96,100 2,250 8,770	6.6
Water year 1964 Maximum, July 2, 1964 Minhuum, June 15-17 Weighted average	86.0 256 19.1	38 30 20		621 39 135		000 978 270	99 118 112	3,310 822 1,570	79,500 1,460 9,960		3.5	135,000 3,680 18,600	202	34,480	6,870	6,790 792	14	127,000 5,740 24,800	7.1 7.9
					23. 1	BRAZOS	S RIVER	AT SEYN	OUR										
Water year 1960 Maximum, Mar. 1-16, 1960 Minimum, July 6-15 Weighted average	27.3 4.953 279	22 18 17	644 150 209	189 19 32		310 256 549	74 103 108	$1,830 \\ 425 \\ 576$	$6,940 \\ 340 \\ 975$	0.6 	3.5	14,000 1,260 2,510	19.2 1.71 3.41	1.030 16,850 1,890	$2.380 \\ 452 \\ 653$	2,320 368 564	5.2	20,800 1,990 3,960	7.4
Water year 1961 Maximum, Feb. 27-28, 1961 Minimum, Oct. 14, 16, 1960 Weighted average	$\begin{smallmatrix}&110\\1,686\\&807\end{smallmatrix}$	 11 13	77 211	15 32		154 548	95 72 96	210 592	8,700 218 817		2.8	17,200 723 2,270	23.6 .98 3.09	5,110 3,290	2,370 254 658	2,290 194 580	10000	25,000 1,250 3,500	7.2
Water year 1962 Maximum, Apr. 15-23, 1962 Minimum, Sept. 8 Weighted average	14.600	7.6 14	678 241	229 		240 691	$142 \\ 86 \\ 103$	$2,240 \\ 404 \\ 659$	$8,210 \\ 180 \\ 1,060$			16,700 946 2,750	23.0 1.29 3.74		2.630 415 759	2,520 344 674	44 10	23,300 1,400 4,320	7.3
Water year 1963 Maximum, Apr. 5, 7-27, 1963 Minimum, June 1, 6-10 Weighted average	2,462	$\begin{array}{c} 7.7\\14\\15\end{array}$	615 88 233	$181 \\ 19 \\ 42$	19	910 183 734	$ \begin{array}{r} 144 \\ 136 \\ 123 \end{array} $	$1,850 \\ 254 \\ 646$	6,200 222 1,110	1.1	4.2	12,800 852 2,850	1.16		2,280 298 753	2,160 186 652	36 4.6 10	18,400 1,400 4,390	7.4

Table 3.--Summary of chemical analyses at daily stations on streams in the Brazos River basin, Texas, --Continued

8

3. 8

See footnotes at end of table.

73 -

1

Date	Mean		Cal	Mag-		Po-	Bi-						solved a	Concernmenter :	Hard as C:		So-	Specific con-	
of collection	Discharge (cfs)	Silica (SiO ₂)		ne- sium (Mg)	Sodium (Na)	tas- sium (K)	car- bon- ate (HCO ₂)	Sulfate (SO ₄)	Chloride (Cl)		Ni- trate (NO ₃)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	рĔ
				23	BRAZO	S RIV	ER AT	SEYMOUR-	-Continue	d									
Water year 1964 Maximum, Feb. 9-10, 1964 Minimum, Sept. 22-24 Weighted average	2,682	$15 \\ 8.2 \\ 11$	632 121 250	$\begin{array}{c} 173\\14\\44\end{array}$		70 20 18	128 78 90	1,600 316 711	10,800 160 1,410		1.5	20,100 779 3,390	$27.7 \\ 1.06 \\ 4.61$	3,960 5,640 803	2,290 360 807	2,180 296 733	2.7 12	28,500 1,250 5,170	7. 7. 7.
				32	. CLEAR	FORK	BRAZO	S RIVER	AT NUGENT						1				
Water year 1949 Maximum, Mar. 21-31, 1949 Minimum, Sept. 15-16 Weighted average	4.15 860 58.1	4.1 8.8 10	370 34 65	138 1.1 15		74 20 54	140 104 120	1,460 32 145	1,090 8.0 63		2.5 2.5 2.3	3,910 158 425	5.32 .21 .58	44 367 67	1,490 89 224	1,380 4 125	.9	264	7.
Water year 1950 Maximum, Mar. 11-20, 1950 Minimum, Oct. 22, 24, 26-28,1948 Weighted average	1.42 234 64.6	6.0 9.0 14	314 33 59	149 8.2 17	1. 7	73 13 47	106 106 119	1,300 36 131	852 13 59		1.0 1.8 3.2	3,250 b181 410	4.42 .25 .56	$12\\114\\72$	1,400 116 217		6.6	4,760	7. 7.
Water year 1951 Maximum, Feb. 11-19, 1951 Minimum, July 2-4, 27-31 Weighted average	140	6.8 16 17	352 36 77	157 11 24		19 25 76	194 117 136	1,470 47 197	835 29 96		4.2 4.0 4.4	3,540 b234 569	4.81 .32 .77	38 88 67	1,520 135 290	1,360 39 179	. 9	5,060 390	7.7.
Water year 1952 Maximum, May 28-29, 1952 Munimum, Sept. 22, 24-25 Weighted average	102	17 8.8 12	325 37 65	97 7.3 28	1	72 14 81	132 104 165	1,310 44 165	$1,000 \\ 12 \\ 106$		7.3 5.2 2.8	3,590 b201 558	4.88 .27 .76	52 55 16.3	1,210 122 277		9.6	5,070	7.7.
Water year 1953 Maximum, Feb. 11-28, 1953 Minimum, July 15-22 Weighted average	203 12.4	12 14 15	82 32 40	86 7.3 10		62 15 29	131 111 124	383 22 48	438 17 37		4.0 4.7 3.4	1,330 b179 260	1 · 81 · 24 · 35	.79 98.1 8.7	558 110 141	450 19 40	4.8	2,250 301	8. 8.
				3	5. CALI	FORNI	A CREE	K NEAR S	TAMFORD								1		-
Water year 1963 Maximum, Aug. 17-31, 1963 Minimum, May 31 Weighted average	1,260	7.9 23 17	560 40 104	353 9.5 52		20 30 52	108 113 131	2,070 48 348	2,920 42 233		3.2 3.8	7,580 252 974		6.14 857 86.5	2,850 139 461	46			7.0
Water year 1964 Maximum, Apr. 28-30, 1964 Minimum, June 12-13 Weighted average		8.0 14 9.2	833 48 152	628 9.7 105	1 72	10 43 67	$131 \\ 141 \\ 167$	3,090 61 670	5,280 52 553		1.8	12,700 298 1,940	17.4 .41	27.4 69.2 10.5	4,660 160 811		1.5	17,000	7.7
					36. F	PAINT	CREEK	NEAR HAS	KELL										
Water year 1950 Maximum, July 25-26, 28, 1950 Minimum, Aug. 17	67.5 27.0	14 12	98 18	40		94 12	93 86	100 9	615 4.2		1.8	1,210 b108	1.65	221 7.9	409	333			
Water year 1951 Maximum, May 21-22, 24, 26, 1951 Minimum, May 18-19	118 911	20 17	$94 \\ 26$	42 7.9	209	12	$\frac{114}{116}$	$^{168}_{12}$	410 8.0		$1.5 \\ 5.0$	1,000 b157	1.36	319 386	407	314 2		1.790	6.1

· •

*

See footnotes at end of table.

14.

. .

				Man			Bi-						solved a		Hard as Ca		So-	Specific con-	
Date of collection			Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	car- bon- ate (HCO ₃)	Sulfate (SO ₄)	Chloride (Cl)		Ni- trate (NO ₃)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate		duct- ance (micro- mhos at 25°C)	рĦ
				37.	CLEAR FO	ORK BI	RAZOS F	RIVER AT	FORT GRII	FIN									
Water year 1950 Maximum, Apr. 17, 1950 Minimum, Nov. 9-21, 1949 Weighted average	2,064 .92	8.4 14 12	123 32 47	44 8.4 12		15 12 15	84 126 117	112 17 68	898 14 67		4.2 .8 2.9	1,680 160 333	2.38 .22 .45	9.360 .4 118	488 114 167	419 11 71	8.8 .5 1.5	3,120 267 544	7.0
Water year 1951 Maximum, May 20-21, 1951 Minimum, May 19-20 Weighted average	1,533 1,119 88.7	7.4 8.8 16		51 7.8 15		92 21 14	101 121 119	492 28 101	255 18 67		2.5 3.0 3.5	b183	1.60 .25 .53	4,880 553 94	539 109 206	456 10 108	3.6 .9 1.3	314	7.
					38. HU	JBBARI	CREEK	NEAR SE	DWICK										·
Water year 1964 Maximum, Feb. 1-3, 1964 Minimum, Nov. 8-11, 19-20, 1963 Weighted average	0.2 34.4 1.3	8.7 7.7 8.7	30	8.9 1.7 5.3	6.4	54 4.4 24	153 85 105	15 8.8 17	115 14 53	0.2	0.5		0.46 .16 .28	0.18 11.0 .73	82	12	.3	213	7.8 6.6 6.1
					39.	DEER	CREEK	AT MORA	N										-
Water year 1963 Maximum, Mar. 10-13, 1963 Minimum, May 30-31 Weighted average	0.1 1,308 13.2	2.2 14 13	365	134		92 16 37	92 122 117	368 17 28	2,240 25 75		3.2			1.12	1,460 121 151	21	. 6		6.8 7.1 7.1
Water year 1964 Maximum, Jan. 30, 1964 Minimum, Nov. 20-21, 1963 Weighted average	13.0 39.5 5.6	5.2	28			 18 70	119 81 110	214 15 31	1,220 34 155		2.8 3.6			81.8 15.9 5.91	925 93 191	26	.8		6.
					40. H	UBBARI	D CREEP	NEAR AI	BANY										
Water year 1962 Maximum, Apr. 5-6. 1962 Minimum, Sept. 8-25 Weighted average	76.0 58.4 e32.0	12	7 209 32 54	6.3		39 24 75	107 97 108	222 15 37	1,200 43 158	0.2	3.3 1.3 1.6	182	.25	474 28.7 34.8	842 106 188	26	5 1.0	326	7.
Water year 1963 Maximum, Jan. 1-11, 1963 Minimum, May 22 Weighted average		8.3	2 38	4.7		37 19 37	140 110 106	$118\\14\\24$	565 38 73		1. 2.		.24	. 32 636 11.9	520 114 136	24	.8	316	5 7.
Water year 1964 Maximum, May 1-2, 1964 Minimum, Sept. 18-21 Weighted average		7.1				16 37	142 88 90	183 12 19	900 20 75		3.				80		8 . 8	236	7. 6. 6.
		41	. SAL	T PRONG	G HUBBAR	D CRE	EK AT I	U. S. HIC	HWAY 380	, NEA	R ALB	ANY							
Water year 1964 Maximum, May 1-4, 12-21, 28-31, 1961- Miniaum, Nov. 19-20- Weighted average	26.8	10	31	5.0	D	30 24 00	240 99 167	73 14 40	458 37 196	0 - 5	2 . 2 . 2 .	173	.24		98	17	1 1.1	312	7.

Table 3. -- Summary of chemical analyses at daily stations on streams in the Brazos River basin, Texus, -- Continued

12

.4

See lootnotes at end of table.

...

 (\mathbf{x})

							B1-						solved		Hard as C	lness aCO,	So-	Specific con-	
Date of collection	Mean Discharge (cfs)	Silica (SiQ _s)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	car- bon- ate (HCO ₃)	Sulfate (SO ₄)	Chloride (Cl)		Ni- trate (NO ₃)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	1
				42.	NORTH F	ORK H	UBBARD	CREEK NI	EAR ALBAN	Y									
Water year 1963 Maximum, Apr. 1-26, 1963 Minimun, June 11-12 Weighted average	18.4	8.6 11 9.5	138	197 29 108	2	99 89 51	116 72 105	128 13 67	3.050 722 1.860	0.2	1.5	5.060 1.240 3.120	$6.88 \\ 1.69 \\ 4.24$	5.46 61.6 5.90	2.360 464 1.360		8.9 5.8 7.6	2,340	7.1
Water year 1964 Maximum, Aug. 22-25, 27, Sept. 1, 1964 Minimum, Feb. 4-5 Weighted average		9.9 12 9.8	106	25		70 92 84	113 97 120	156 22 63	$3,050 \\ 480 \\ 1,320$.1	6.3	5,110 891	1.21	4.14 204	2.220 368	2,130	9.9 4.4	8,740 1,740	6. 7.
								- 25	EAR ALBAN		**	2,290	3.11	8.66	981	882	6.4	4,180	7.
Water year 1962 Maximum, May 1-31, 1962 Minimum, June 10 Weighted average	2,420	9.2	415	138	7	63 	76 129 124	120 24 34	2,180 156 430		2.6	3,660 397 846	4.98 .54 1.15	3.95 2,590	200	1,540		769	7.0
Water year 1963 Maximum, May 1-21, 1963 Minimum, May 22 Weighted average		8.8	502	177	8	36	96 115 130	159 27 103	2,520 395 1,180			4,250 766 2,110	5.70	40.7 2.30 149 6.84	376 1,980 346 938	274 1,900 252 831	3.8 8.2 6.5	$7,280 \\ 1,470$	6. 7.
					44.	SNAIL	UM CREI	EK NEAR	LBANY								1		
Water year 1964 Maximum, May 8+10, 1964 Minimum, Nov. 20-24, 1963 Weighted average	0.4 2.0 .7	7.3 8.4 12		10		01 69 55	86 82 80	78 14 22	1,880 163 381		1.0, 0 3.2	3,160 352 715	4.30 .48 .97	$3.41 \\ 1.90 \\ 1.35$	1,280 161 294	1,219 94 228	8 6 2 1 3 7	5,630 707 1,390	13. 3
				45	BIG S	ANDY (CREEK N	EAR BREG	CKENRIDGE										
Water year 1962 Maximum, Apr. 1-2, 1962 Minimum, June 12-14	0.6 229 e31.2	8.7 10	 23 39	 4.1 5.8		22 42	29 62 96	59 11 14	4,180 43 83		0.0	6,730 142 243	9.19 .19 .33	10.9 87.8 20.5	$2,550 \\ 74 \\ 121$	2.530 33 42		11,990 327 452	8.1
Water year 1963 Maximum, June 22-25, July 11, 1963 Minimum, May 30-31 Weighted average	1,131	12 17 17	262 19 28	$ \begin{array}{c} 62 \\ 2.1 \\ 3.6 \end{array} $		76 3.9 23	$ \begin{array}{r} 113 \\ 62 \\ 76 \end{array} $	62 - 8 7 - 4	1,420 3.5 43		1.5 9.8 3.6	$2,450 \\ 86 \\ 162$	3.33 .12 .22	2.65 263 12.5	908 56 85	816 5 22	8.3 2.3 1.3	4,380 151 286	7.:
Water year 1964 Maximum, Apr. 5, 6, 10, 1964 Minimum, Nov. 21, 1963 Weighted average		12 11 10	1,110		2,8	10	$ \begin{array}{r} 118 \\ 26 \\ 82 \end{array} $	557 3.2 13	6,460 1.1 49			11,200 42 178		9.07 4.42 15.9	3,680 28 93	1	Co. Nor	17,600 59 307	7.4
				4	7. HUBB	ARD CI	REEK NI	CAR BRECH	ENRIDGE						1				
Water year 1956 Maximum, Apr. 17-28, 1956 Minimum, Oct. 3-10, 1955 Weighted average	88.7		268 32 38	3.6		98 13 32	132 101 106	$\begin{array}{c} 32\\8.7\\11\end{array}$	1,280 20 58	0.2 .5 .4	$1.2 \\ 3.5 \\ 2.7$	2,200 b152 212	2.99 .21 .29	7.60 36.4 13.0	866 95 113	758 12 26	7.4 .6 1.3	4.120 256 386	7.9

¥ 8

See footnotes at end of table.

1 A.

- 76 -

	9							Bi-						solved a	and the second	Hard as C		So-	Specific con-	
-	Date of collection	Mean Discharge (cfs)	Silica (SiQ _s)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	car- bon- ate (HCO ₃)	Sulfate (SO4)	Chloride (Cl)		Ni- trate (NO ₃)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	
				47	. HUB	BARD CRE	EK NE	AR BRE	CKENRIDG	EContin	ued									
Minimum,	1957 Aug. 8-31, 1957 Feb. 6-8 average	0.50 7,473 633	14 6.2 8.4	204 25 36	51 2.3 4.1		84 15 24	149 79 98	259 7.0 10	820 21 46	0.4	2.0	1,810 118 180	2.46 .16 .25	2.44 2,380 308	718 72 107	596 7 26	.7	3,160 213 331	7.8
Minimum,	1958 June 13, 1958 Oct. 14-15, 1957 average	20.0 10,020 204	6.7 6.4 7.6	325 29 50	76 3.2 8.6		41 19 61	132 87 103	81 10 23	1,800 31 129	.4.	3.0	3,100 143 332	4.22	129220	1,120 86 160	1,020 14 76	9.6	5,600 258 622	7.7
Minimum,	1959 Apr. 16-30, 1959 July 16 average	a0 251 47.9	5.8 6.8 9.4	325 28 51	81 2.5 8.4		89 20 56	144 79 104	702 12 24	840 31 121	.4	6.8 3.5	2,420 143 325	3.29 .19 .44		1,140 80 162	1,030 15 76	5.0	3,780	7.9
Minimum,	1960 July 1-5, 1960 July 6 average	a0 1,340 83.0	8.8 9.4	 34 51	3.5 8.7		12 58	109 101 107	 11 25	3,180 20 120	 .4 .2		5,350 142 330	7.28 .19 .45			1,730 16 76		9,220	7.4
Minimum,	1961 May 16-31, 1961 June 15 average	a.06 265 134	5.1 	275 	61 8.2		39 51	163 65 105	440 25 20	920 10 109	.3	1.2	2,220 112 300	3.02 .15 .41	.36 80.1 109	937 78 151	804 25 65		3,680	7.4
Minimum, S	1962 May 1-31, 1962 Sept. 5-30average	a.8 74.3 68.5	7.1 13 11	265 37 64	82 4.8 13	1	22 30 91	150 89 108	264 18 27	1,230 59 207	.3	.5	2,440 208 469	3.32 .28 .64	5.27 41.7 86.7	998 112 213	786 39 124	7.2	4,290	6.8 7.1
Minimum, .	1963 Mar. 1-5, 1963 Apr. 27 average	.3 54.0 46.2	7.1 7.9 9.3	245 43 53	62 5.9 8.0	250 17	3.8 5.7		632 42 16	495 39 106	.1	1.2 4.2 1.7	1,740 209 307	2.37 .28 .42	1.41 30.5 38.3	866 132 165	794 59 61		2,640 362 578	7.3
Minimum, H	1964 July 30, 1964 Sept. 24-30 average	$8.4 \\ 1.2 \\ 29.3$	8.5 7.3 4.7	280 50 50	61 6.1 7.7	1	27 11 17	155 65 117	700 97 19	415 13 101	.3	.8 1.0 1.3	1,770 217 290	2.41 .30 .39	40.1 .70 22.9	950 150 155	822 97 59	3.2	2,590 370	7.1
					49.	CLEAR FO	ORK BR	AZOS R	IVER AT	ELIASVILI	L									
Minimum, .	1962 June 1-5, 1962 June 14-16 average	390 9,630 540	2.2 15 13	255 44 63	159 7.8 18	2	76 28 36	134 109 116	912 40 95	1,050 48 156	0.3	1.5 3.2 2.5	3,020 b250 505	4.11 .34 .68	3,180 6,500 736	1,290 142 230	1,180 53 135	7.0 1.0 2.1	4,810 423 860	7.1
Minimum, A	1963 Mar. 16-31, 1963 Apr. 29 average	29.7 1,930 194	6.3 10 9.3	255 41 80	100 6.2 26	50 2 11	29	216 120 141	620 19 149	940 48 203		2.0 6.0 2.9	2,540 218 661	3.45	204 1,140 347	1,050 128 307	870 29 191	6.8 1.1 2.7	4,040 364 1,110	7.1 7.1
Minimum, 1	1964 Nov. 10, 1963 Dec. 1-31 average	$206 \\ 175 \\ 71.7$	$3.7 \\ 4.0 \\ 5.4$	192 49 72	$65 \\ 8.1 \\ 19$	62 5 13	56	73 111 118	42 17 63	1,420 119 273	 . 3	2.5 1.5 2.1	2,390 310 627	3.25 .42 .85	1,330 146 121	746 156 259	686		4,500 610 1,170	7.0 7.0

Table 3 .-- Summary of chemical analyses at daily stations on streams in the Brazos River basin, Texas. -- Continued

à.

a.

ħ.,

See footnotes at end of table.

- 77 -

.

				Maria			Bi-						solved a		Hard as Ca		So-	Specific con-	c
Date of collection	Mean Discharge (cfs)	Silica (SiQ _e)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	car- bon- ate (HCO ₃)	Sulfate (SO ₄)	Chloride (Cl)		Ni- trate (NO ₃)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	t pl
				5	O. BRAZ	ZOS RI	VER NE	AR SOUTH	BEND										
Water year 1942 Maximum, Aug. 21-23, 1942 Minimum, Sept. 7-9 Weighted average	364 9,335 1,309		496 40 110	80 7.3 24	1,:	310 60 251	109 91 125	1,240 53 226	2,140 92 411		4.5 1.8 2.2	5,320 299 1,080	7.24 .41 1.48	5,230 8,910 4,070	1.570 130 373	56	2.3		0
Water year 1943 Maximum, Muy 20, 1943 Minimum, Oct. 17-20, 1942 Weighted average	310 24,920 678		410 64 136	107 9.7 27	1.0000	530 85 340	142 89 118	949 111 305	4,310 138 549		.5 1.0 2.2	8,480 453 1,420	11.5 .62 1.93	7,100 30,500 2,600	1.460 200 450	126	30 2.6	13,80	01
Water year 1944 Maximum, Dec. 11-20, 1943 Minimum, Sept. 1-3, 6, 1944 Weighted average	3.35 568 236		538 55 139	148 11 27	122	350 90 318	167 95 113	390 50 284	$3,540 \\ 174 \\ 539$		2.5 4.3 4.9	6,350 431 1,370	8.64 .59 1.86	57 661 873	1,950 182 458	104	16 2.9	10,800	0
Water year 1945 Maximum, Dec. 11, 1944 Minimum, July 8, 1945 Weighted average	350 959 545		$535 \\ 42 \\ 146$	$113 \\ 9.2 \\ 24$	1.00	550 39 358	111 96 113	1,130 48 294	7,380 69 598		9.7 2.5 3.3	13,800 257 1,480	18.8 .35 2.01	$13,000 \\ 665 \\ 2,170$	1.800 143 463	64	1.4	22,70	0
Mater year 1946 Maximum, Aug. 11-20, 1946 Minimum, Aug. 23, 29-30 Weighted average	0 3,461 503		428 42 173	$113 \\ 6.3 \\ 25$	1,5	540 64 379	93 103 108	413 30 394	3,100 108 610		$2.5 \\ 2.5 \\ 2.1$	5,640 b332 1,660	7.67 .45 2.26	0 3,100 2,250	1,530 131 534	1.460 46 446	2.4		7
Water year 1947 Maximum, Apr. 11-16, 1947 Minimum, Nov. 5-6, 1946 Weighted average	62.3 1,710 1,032		530 44 165	127 9.0 26	2,2	290 66 308	110 107 106	1,240 33 358	3,860 118 514		2.0 3.0	8,100 b361 1,450	11.0 .49 1.97	1,360 1,670 4,040	1,840 147 519	1,759 60 432	2.4		5
Maximum, Feb. 21-26, 29, 1948 Minimum, Nov. 21-23, 1947	420 471		364 117	84 21	1,	380 236	131 102	932 275	2,250 370			5,070 1,070	6.90 1.46	5,750 1,360	1,250 378	1,150	17	8.190	0
					51.	SALT	CREEK	AT OLNE	Y										
Vater year 1958 Maximum, July 4-5, 1958 Minimum, Sept. 26 Weighted average	$0\\1\cdot 2\\2\cdot 74$		1,190 41	260 	5,9	010 118	59 90 88	52 	11,900 15 222	0.0	-111	19,300 120 458	26.5	0 	78	3.999 4 68		29,897 214 853	1 8
Nater year 1959 Maximum, Apr. 23-26, 1959 Minimum, Sept. 3 Weighted average	0 20.0 .36	3.9 6.0 6.0		56 1.7 7.7	1.1	9.8 9.8	55 84 94	61 2.6 9.8	2,190 12 225	.6 .1 .3	2.5 1.7	3,679 101 463	4.99 .14 .63	0 5.45 .45		670 1 57	. 5		2 7
					52. SA	LT CR	ERE NE	AR NERCA	STLE	0									
ater year 1958 Maximum, June 21-30, July 1-5, 1958 Minimum, May 1-4	a0.15 289 14.7	9.9	350 21 32	87 2.8 5.4		90 26 55	86 65 81	59 7.2 9.9		0.2	3.0 3.0	4,350 142 255	5.92 19 .35	1.76 111 19.1	1,230 64 102	1,160 11 36	1.4	7,870 265 477	5 7
ater year 1959 Maximum, Apr. 14-16, 1959 Minimum, July 18-19 Weighted average	a0 170 3.12	$\frac{4.1}{13}$	$ \begin{array}{r} 194 \\ 5.4 \\ 22 \end{array} $	$ \begin{array}{c} 43 \\ 2 \cdot 1 \\ 4 \cdot 5 \end{array} $	15	68 5.8 45	56 26 58	95 3.6 8.3		.5	3.2 3.2	$2,170 \\ 51 \\ 205$	2.95 .07 .28	0 23.4 1.73	661 22 73	615 1 26	9.6 .5		77

.

.

				Mar			Bi-						solved a	19 CH 19 C C	Hard as Ca		So-	Specific	
Date of collection	Mean Discharge (cfs)	Silica (SiQ _s)		Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	car- bon- ate (HCO ₃)	Sulfate (SO4)	Chloride (Cl)	ride	Ni- trate (NO ₃)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	рH
				52.	SALT CR	EEK N	EAR NET	WCASTLE-	-Continue	d									
Water year 1960 Maximum, Oct. 19-29, 1959 Minimum, Oct 3-4	a0.10 1,670 g36.4	18	166 9.3 16	38 2.6 3.8		24 12 27	140 47 54	32 4.2 7.3	950 10 42	0.4 .4 .4	4.0 3.0 3.1	1,700 82 140	2.31 .11 .19	0.46 370 13.8	570 34 56	456 0 11		3,230 120 242	7.3
			54.	BRAZOS	RIVER B	ELOW	POSSUM	KINGDOM	DAM NEAR	GRAF	ORD								
Water year 1942 Maximum, Feb. 2-9, 1942 Minimum, Sept. 1-10 Weighted average Water year 1943	189 4,225 1,750	• 1 1 1	194 94 119	43 18 23	1	23 82 20	192 136 144	424 176 242	850 290 352		2.0 1.5 1.6	829	$2.90 \\ 1.13 \\ 1.40$	1,090 9,460 5,030	661 308 392	504 197 274	8.8 4.5 4.8		
Maximum, Jan. 11-20, 1943 Minimum, Dec. 21-31, 1942 Weighted average	536 350 1,161		$132 \\ 98 \\ 109$	27 18 21	1	02 83 23	140 123 138	242 187 201	516 298 370		3.0 1.8 1.6	846	1.76 1.15 1.35	1,870 799 3,110	440 318 358	326 218 246	6.3 4.5 5.1	1,570	-
Water year 1944 Maximum, Feb. 11-20, 1944 Minimum, Dec. 21-31, 1943 Weighted average	$73.3 \\ 40.0 \\ 164$	21	138 131 137	23 27 28	2	36 75 01	148 136 152	279 276 274	535 450 498		2.5 3.2 2.5	1,230	1.89 1.67 1.78	275 133 580	439 438 457	318 326 332	7.0 5.7 6.1	2,350	
Water year 1945 Maximum, Mar. 21-31, 1945 Minimum, Sept. 21-30 Weighted average	883 320 528		150 118 135	32 26 27	2	81 96 35	$137 \\ 140 \\ 140$	279 204 256	658 508 561		3.2 1.8 2.5	1,220	$2.14 \\ 1.66 \\ 1.89$	3,740 1,050 1,980	506 402 448	394 287 334	7.4	2,740	(1) (4)
Water year 1946 Maximum, Nov. 21-30, 1945 Minimum, July 21-31, 1946 Weighted average	173 617 502		148 132 137	26 23 24	2	75 85 10	132 142 135	280 255 262	630 468 519		$3.5 \\ 1.0 \\ 1.3$	1,230	2.08 1.67 1.80	715 2,050 1,790	476 424 440	382 308 330	7.5 6.0 6.4	2,660 2,180	
Water year 1947 Maximum, Oct. 1-10, 1946 Minimum, Sept. 1-30, 1947 Weighted average	620		$ 164 \\ 149 \\ 145 $	31 23 24	2	59 64 21	126 116 113	325 338 303	620 420 530		1.0 2.0 1.7	1,250	$2.12 \\ 1.70 \\ 1.88$	8,940 2,090 5,000	$537 \\ 466 \\ 460$	434 372 368	$6.7 \\ 5.3 \\ 6.5$	2,670 2,080	
Water year 1948 Maximum, Aug. 1-31, 1948 Minimum, Oct. 1-31, 1947 Weikhted average	926 304 470	12	166 150 162	28 22 26		12 81 21	131 120 118	379 344 374	538 438 510		.5 2.0 1.5		$2.08 \\ 1.77 \\ 1.99$	3,830 1,070 1,850	530 465 512	422 366 415	6.2 5.7 6.2		7.6
Water year 1949	$\begin{smallmatrix}&125\\1,130\\769\end{smallmatrix}$	9.0	$ 184 \\ 133 \\ 161 $	29 20 26	2	77 95 33	119 108 115	417 298 375	612 465 531		$2.8 \\ 1.2 \\ 1.2$	1,270	$2.30 \\ 1.73 \\ 2.04$	570 3,870 3,110	578 414 509	480 326 415	6.8 6.3 6.4	2,860 2,220 2,540	7.8
Water year 1950 Maximum, July 1-31, 1950 Minimum, Jan. 1-31 Weighted average	$2,255 \\ 140 \\ 898$	12 7.5 10	135 122 128	22 22 21	2	87 48 81	108 108 109	286 265 280	472 404 451		.8 .8 1.3	1,270	1.73 1.52 1.67	7,730 423 2,980	428 395 406	339 306 316	6.0 5.4 6.1		7.6
Water year 1951 Maximum, Aug. 1-10, 1951 Minimum, Dcc. 1-31, 1950 Weighted average		11 9.4 12	139 123 131	27 24 24	2	61 54 08	126 110 120	309 267 291	580 418 490		.8 1.0 1.7	1,490	2.03 1.56 1.80	5,150 1,200 2,150	458 406 426	355 316 327	7.3	2,620 1,990 2,280	7.5

Table 3 .-- Summary of chemical analyses at daily stations on streams in the Brazos River basin, Texas, -- Continued

d.

See footnotes at end of table.

- 79 -

/ Table 3.--Summary of chemical analyses at daily stations on streams in the Brazos River asin, lexas,--Continued

Date				Mag-		De	Bi-						alcula		Hard as Ca		So-	Specific con-	
of collection	Mean Discharge (cfs)	Silica (SiO ₂)	Cal- cium (Ca)	ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	car- bon- ate (HCO ₃)	Sulfate (SO ₄)	Chloride (Cl)		Ni- trate (NO ₃)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	рН
		54.	BRAZOS	RIVER	BELOW PC	DSSUM	KINGDO	M DAM N	EAR GRAFO	RDC	ontinu	ied							
Water year 1952 Maximum, Sept. 1-30, 1952 Minimum, Feb. 1-29 Weighted average	48.5 84.9 294	12 11 13	152 130 135	27 24 23	352 308 33		136 119 124	307 288 295	578 492 527		1.8	1,500 1,310 1,390	2.04 1.78 1.89	196 300 1,100	490 423 432	378 326 330	6.9 6.5 6.9	2,240	7.6
Water year 1953 Maximum, June 1-30, 1953 Minimum, Sept. 1-30 Weighted average	334 748 220	14 13 13	158 139 152	31 29 29	417 350 384	6	137 127 130	344 295 322	678 588 636	0.3	.8	1,710 1,480 1,610	2.33 2.01 2.19	1,540 2,990 956	522 466 498	409 362 392	7.9 7.2 7.6	2,940	7.6
Water year 1954 Maximum, Feb. 6-19, 1954 Minimum, July 1-31 Weighted average	39.6 985 1,052	12 16 14	148 114 118	30 20 18	463 259 289	9	124 111 113	324 250 245	$750 \\ 410 \\ 460$		1.0	1,790 1,120 1,200	2.43 1.52 1.63	191 2,980 3,410	493 366 368	392 276 276	9.1 5.9 6.6	$3,170 \\ 1,960$	7.9
Water year 1955 Maximum, May 1-31, 1955 Minimum, Sept. 26-30 Weighted average	699 41,280 1,120	14 15 13	148 124 133	22 16 18	379 253 29	3	118 115 114	333 286 301	595 378 448		$1.0 \\ 1.0 \\ 1.0$	1,130	$2.11 \\ 1.54 \\ 1.71$	2,930 125,900 3,810	460 376 406	364 282 312	7.7 5.7 6.3	2,620 1,850	7.6
Water year 1956 Maximum, Jan. 1-31, 1956 Minimum, Oct. 1-16, 1955 Weighted average	584 10,920 983	$ \begin{array}{c} 13 \\ 11 \\ 11 \end{array} $	266 102 156	40 12 21	620 15 29	2	128 97 107	660 235 379	980 220 445		$1.3 \\ 1.1 \\ 1.2$	2,640 b806 1,370	3.59 1.10 1.86	4,160 23,760 3,640	828 304 476	723 224 388	9.4 3.8 5.8	4,230 1,310 2,220	7.8
Water year 1957 Maximum, Oct. 1-31, 1956 Minimum, Apr. 26-30, May 1-10, 1957	67.3 38,920	12 7.4	219 45	30 5.4	50		128	518 73	790 91		.8	2,130 5331	2.90	387 34,780	670 135	565 74	8.4	3,430	
Weighted average Water year 1958 Maximum, Apr. 1-30, 1958 Minimum, Dec. 1-31, 1957 Weighted average	4,145 459 845 1,226			7.2 18 17 20	389 200 270	9 8	85 125 117 121	108 253 216	119 615 335		1.8 1.5 .5	443 1,470 951	.60 2.00 1.29	4,960 1,820 2,170	182 388 342	112 286 246	2.6 8.6 4.9	743 2,570 1,640	 7.4 7.6
Water year 1959 Maximum, Sept. 1-30, 1959 Minimum, Mar. 1-31 Weighted average	208 68.1 458	12 10	120 134 104 115	20 22 19 21	32 229 26	7	121 125 114 123	248 294 195 235	443 515 382 425		1.1 1.8 1.0 .9	1,370	1.60 1.86 1.35 1.54	3,910 769 183 1,400	382 425 338 374	282 322 244 272	6.9 5.4	1,780	7.4
Water year 1960 Maximum, Jan. 1-21, 1960 Minimum, Nov. 1-30, 1959 Weighted average	296 293 749	10000	188 118 129	32 20 22	57 294 34	7 8	118 109 114	416 288 288	940 450 546		.8 .5 .8	2,220	3.02 1.69 1.90	1,770 981 2,830	600 376 412	504 287 319	10 6.7 7.4		7.5
Water year 1961 Maximum, Feb. 18-30, 1961 Minimum, Oct. 28-31, 1960 Weighted average	108 4,515 1,409	14 12 11	278 134 165	57 18 28	1,02 27 44	5	137 98 115	736 296 398	1,600 438 697		1.0 .8 .9		$5.13 \\ 1.66 \\ 2.45$	1,100 14,870 6,850	928 408 526	816 328 432	15 5.9 8.4	6,030 2,110	7.8
Water year 1962 Maximum, Aug. 1-31, 1962 Minimum, Sept. 21-30 Weighted average	1,376 1,869 1,138	11 12 11	147 77 133	30 14 25	36 16 31	2	122 93 115	348 176 313	580 242 500	.5	$3.0 \\ 1.2 \\ 1.3$	1,540 764	$2.09 \\ 1.04 \\ 1.85$	5,720 3,850 4,180	490 250 434	390 174 341	7.2 4.5 6.7	2,590 1,250	7.4
Water year 1963 Maximum, Mar. 1-31, 1963 Minimum, Oct. 1-31, 1962 Weighted average	144 727 867	9.7 12 11	138 104 126	29 17 25	37 22 31	0	$134 \\ 106 \\ 124$	312 222 286	592 340 496	.4 .4 .4	.8 1.5 .6	966	$2.07 \\ 1.31 \\ 1.80$	591 1,900 3,090	464 322 417	354 235 315	7.5 5.3 6.7	2,560	7.2
Water year 1964 Maximum, Nov. 1-30, 1963 Minimum, July 1-31, 1964 Weighted average	$63.1 \\ 803 \\ 231$	12 11 11	137 125 129	27 25 27	313 32	6.5	126 113 123	351 304 307	540 510 515	.4.6.6	.8 .8 1.1	1,350	$2.03 \\ 1.84 \\ 1.88$	254 2,930 861	453 415 434	350 322 333	7.3	2,500	6.7

٧.

5

See footnotes at end of table.

2

16

e 1.

.

							Bi-						solved s		Hard as Ca		So-	Specific con-	
Date of collection	Mean Discharge (cfs)	Silica (SiQ _s)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	car- bon- ate (HCO ₃)	Sulfate (SO4)	Chloride (Cl)		N1- trate (NO ₃)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH
			6:	B. BRA	ZOS RIVI	ER BEI	OW WHI	TNEY DAM	I NEAR WHI	TNEY									
Water year 1948 Maximum, May 1-10, 1948 Minimum, Dec. 8, 12-18 1947	816 1,748	9.0	152 40	24 5.9		12 36	130 103	341 44	492 50		0.8	1,390 b256	1.89	3,060 1,210	478 124		6.2	2,400 420	
Water year 1949 Maximum, Oct. 1-10, 1948 Minimum, May 17-22, 1949 Weighted average	249 24,760 1,566	13 10 10	161 43 89	34 5.7 16	34 2 15	21	114 134 129	391 22 172	562 30 242		.0 2.2 1.7	1,560 b216 765	2.12 .29 1.04	1,050 14,400 3,230	542 131 288	448 21	6.5	2,650	
Water year 1950 Maximum, Oct. 11-24, 1949 Minimum, May 9, 16-21, 1950 Weighted average	1,121 1,517 1,520	9.5 11 9.2	126 38 84	22 6.7 15	28 3 15	39	112 125 127	282 45 157	448 39 244		.8 2.5 2.4	1,230 b242 748	1.67 .33 1.02	3,720 991 3,070	405 122 271	313 20	6.1 1.5 4.2	2,090	8.0
Water year 1951 Maximum, Sept. 21-30, 1951 Minimum, May 17-21, 25-31 Weighted average	299 748 840	7.8 9.4 8.2	$133 \\ 44 \\ 119$	29 8.1 23	34 6 27	52	121 102 127	288 59 260	565 94 437		1.5	1,430 b341 1,190	1.94 .46 1.62	1,150 689 2,700	451 144 392	352 60	7.0 2.3 6.1	2,500	7.4
Water year 1952 Maximum, Oct. 1-10, 1951 Minimum, June 11-20, 1952 Weighted average	$514 \\ 94.1 \\ 348$	9.0 9.0 8.3	131 30 92	28 5.2 18	31 2 21	27	144 100 146	278 22 167	512 35 332		2.2	1,350 b183 912	1.84 .25 1.24	1,870 46.5 857	442 96 304	14	$6.6 \\ 1.2 \\ 5.2$	2,350	7.7
Water year 1953 Maximum, Nov. 1-10, 1952 Minimum, June 2J-30, 1953 Weighted average	42.9 808 141	8.8 8.8 9.2	120 71 76	22 11 12	26 11 13	2	151 143 154	233 93 112	430 178 209		1.2	1,160 b547 651	1.58 .74 .89	134 1,190 248	390 222 239	105	5.9 3.3 3.8	2,020	7,9
Water year 1954 Maximum, Nov. 19-20, 22-23, 1953 Minimum, Oct. 1-13 Weighted average	76.8 56.2 912	$13 \\ 14 \\ 9.6$	124 91 107	17 16 18	29 18 24	35	119 150 131	235 144 198	475 298 392		2.0	1,220 824 1,040	$1.66 \\ 1.12 \\ 1.41$	253 125 2,560	380 293 341	170	6.5 4.7 5.7	$2,140 \\ 1,440 \\ 1,850$	7.8
Water year 1955 Maximum, Apr. 1-30, 1955 Minimum, June 17-30 Weighted average	78.3 4,408 997	8.0 9.0 10	120 88 104	18 14 16	28 19 23	0	130 115 124	248 168 205	450 298 374		2.8 2.0 1.8	1,200 b850 1,030	$1.63 \\ 1.16 \\ 1.40$	254 10,120 2,770	374 277 326	183	6.5 5.0 5.7	2,080 1,470 1,760	7.8
Water year 1956 Maximum, Sept. 1-30, 1956 Minimum, Nov. 1-30, 1955 Weighted average	609 411 1,571	10 8.8 10	137 92 116	22 14 16	28 15 22	59	$ 115 \\ 107 \\ 116 $	345 196 255	430 242 333		$1.2 \\ 1.0 \\ 1.4$	1,290 766 1,010	1.75 1.04 1.37	2,120 850 4,280	432 287 356	200	$ \begin{array}{c} 6.1 \\ 4.1 \\ 5.1 \end{array} $	$2,160 \\ 1,340 \\ 1,710$	7.4
Water year 1957 Maximum, Oct. 1-31, 1956 Minimum, June 11-20, 1957 Weighted average	639 34,260 6,213	13 12 11	147 51 62	26 5.6 7.9)3 i3 i2	115 104 106	361 67 96	470 78 126		1.5	1,380 b337 459	1.88 .46 .62	2,380 31,170 7,700	474 150 187	380 65		2,230 548	
Water year 1958 Maximum, Sept. 1-30, 1958 Minimum, May 12-31 Weighted average	564 4,512 2,322	11 13 11	88 58 80	$\begin{smallmatrix}14\\7.4\\12\end{smallmatrix}$	18 6 11	51	136 141 146	147 61 122	288 89 170		1.5 3.2 1.9	876 362 604	1.19 .49 .82	1,330 4,410 3,790	277 175 249	166 60 130	2.0	1,390	8.2 8.0
Water year 1959 Maximum, Feb. 1-28, 1959 Minimum, Aug. 1-31 Weighted average See footnotes at end of table.	596 711 681	11 11 10	93 87 93	18 16 17	19 17 19	7	114 137 134	176 138 165	322 290 309		.5 2.2 1.0	b947 b845 893	1.29 1.15 1.21	1,520 1,620 1,640	306 283 302	212 170 192	4.6	1,560 1,400 1,500	7.6

Table 3 .-- Summary of chemical analyses at daily stations on streams in the Brazos River basin, Texas, -- Continued

1. 0.

N IN

1-

Date				Mag-		Po-	Bi-						ssolved calcula		Hard as Ca		So-	Specific con-	
of collection	Mean Discharge (cfs)	Silica (SiO ₂)	Cal- cium (Ca)	ne- sium (Mg)	Sodium (Na)	tas- sium (K)	car- bon- ate (HCO ₃)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	N1- trate (NO ₃)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	рН
		63.	BRAZ	OS RIV	ER BELOW	WHIT	NEY DA	M NEAR W	HITNEYC	ontin	ued								
Water year 1960 Maximum, Sept. 1-30, 1960 Minimum, Mar. 1-24 Weighted average	580 968 1,882	11 9.6 10	84 79 79	17 13 14	17 10 14	7	141 169 136	147 106 130	278 165 229		$1.0 \\ 2.0 \\ 1.1$	831 589 705	1.13 .80 .96	1,300 1,540 3,580	280 250 254	112	4.6 2.9 4.0	1,380 977 1,170	7.7
Water year 1961 Maximum, Sept. 1-30, 1961 Minimum, Apr. 1-18 Weighted average	749 893 2,054	12 10 10	136 92 106	25 13 18	34 16 23	2	111 152 129	316 149 213	540 250 373	0.5	.8 2.8 1.2	1,430 783 1,040	1.94 1.06 1.41	2,890 1,890 5,770	442 283 338	352 158	7.1 4.2 5.6	2,410 1,330 1,780	7.4 7.4
Water year 1962 Maximum, Oct. 1-31, 1961 Minimum, Aug. 5-31, 1962 Weighted average	1,786 2,876 1,737	10 11 9.9	136 85 104	24 16 19	34 17 23	9	110 110 115	320 176 227	538 278 364	.4	.5 4.0 1.7	1,430 830 1,030	1.94 1.13 1.40	6,900 6,450 4,830	438 278 339	348 188	7.1 4.7 5.5	2,410 1,400 1,750	7.2
Water year 1963 Maximum, Sept. 1-30, 1963 Minimum, Jan. 1-31 Weighted average	580 839 1,215	8.6 8.8 7.9	106 87 95	22 16 18	24 16 19	9	140 128 129	216 168 189	390 262 309	.4 .3 .3	1.5 .5 .8	1,060 b810 896	1.44 1.10 1.22	1,660 1,830 2,940	355 283 310	178	5.7 4.4 4.9	1,860 1,350 1,520	6.9 7.6
Water year 1964 Maximum, Jan. 1-31, 1964 Minimum, July 1-31	212 730 434	$6.4 \\ 5.3 \\ 6.1$	112 96 104	26 20 25	282 214 24	5.1	126 133 130	264 196 226	460 342 396	.1 .4 .4	.8 .5 1.1	1,220 944 1,070	1.66 1.28 1.46	698 1,860 1,250	386 322 361	283 213	$6.2 \\ 5.2 \\ 5.6$	2,120 1,660 1,870	7.6
					74. LE	ON RI	VER NE	AR EASTL	AND								1		
Water year 1951 Maximum, Feb. 1-10, 1951 Minimum, July 24-26		$4.1 \\ 9.2$	64 29	10 4.7		72	206 99	39 9.8	50 18		0.0	b316 b152	0.43		200 92		1.1		7.9
Water year 1952 Maximum, May 17-20, 1952 Minimum, Sept. 18-19, 22-24		8.8 9.0	52 26	6.6 3.6		0 1	124 81	$\substack{\textbf{21}\\8.6}$	70 18		1.3 3.0	ь291 119	. 40 . 16		157 80	55 13	1.0	466	7.4 7.5
Water year 1953 Maximum, Apr. 6, 8-9, 1953 Minimum, Nov. 24-26, 28-29, 1952-		6.6 5.1	51 21	6.1 3.6	2.7	9	164 69	13 4.4	47 4.8		$\begin{array}{c} 1.0\\ 2.8 \end{array}$	b259 77	.35 .10		152 67	18 11	1.0 .1		7.5 7.3
				8	5. LAMP	ASAS	RIVER	AT YOUNG	SPORT										
Water year 1962 Maximum, Sept. 1-7, 1962 Minimum, June 27 Weighted average	7.8 263 102	15 11	58 45	38 22	17 - 5		176 120 194	$ \begin{array}{c} 18 \\ 8.4 \\ 22 \end{array} $	370 23 98	0.4	2.2	767 156 354	1.04 .21 .48	16.2 111 97.5	301 110 202	12	4.5		7.7 7.5 7.5
Water year 1963 Maximum, Nov. 15-30, 1962 Minimum, Oct. 9-13 Weighted average	54.5 1,687 57.4	11	68 37 48	32 8.2 19		7 2 4	241 131 180	28 11 20	278 38 119	111	2.2 2.5 1.6	ь687 194 373	.93 .26 .51	101 884 57.8	301 126 197	104 19	3.7	1,260 351	
Water year 1964 Maximum, Jan. 1-28, 1964 Minimum, Sept. 21-25 Weighted average	15.8 790 86.5	7.8	84 38 48	39 5.2 15	205 7.0		262 136 175	27 6.0 15	422 11 84	.3	$.4 \\ 1.5 \\ 1.2$	917 146 301	1.25 .20 .41	39.1 311 70.3	370 116 179	156 5	4.6	1,760 266	144 (2014)

See footnotes at end of table.

ŝ

- 82 -

			100010	Mag			Bi-						ssolved		Hard as C	lness aCO ₃	So-	Specific con-	c
Date of collection	Mean Discharge (cfs)	Silica (SiQ ₈)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	car- bon- ate (HCO _g)	Sulfate (SO ₄)	Chloride (Cl)		Ni- trate (NO ₂)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH
				_	89. L	ITTLE	RIVER	AT CAME	RON										
Water year 1960 Maximum, Sept. 29, 1960 Minimum, June 25-26 Weighted average	630	 13 12		12		10 27	194 120 226	6.8 33	203 4.0 34	0.5	2.2 7.5	b607 b130 311	0.83	615 221 1,800	236 92 214	77 0 29	0.5		7.1
Water year 1961 Maximum, May 16-31, 1961 Minimum, June 17-19 Weighted average	11,780	14 13 12	73 38 59			39 14 22	262 108 198	40 26 31	56 15 27	.3	11 4.8 7.1	b391 168 279	. 53 . 23 . 38	702 5,340 3,130	260 112 192	46 23 30	1.1	652 281	7.3
Water year 1962 Maximum, Jan. 16-31, 1962 Minimum, June 27-30 Weighted average	2,070	7.3 16 12	80 44 58	5.0		47 19 32	261 139 195	52 24 37	61 22 43	.4	$10 \\ 2.8 \\ 4.8$	401 201 302	.55 .29 .41	658 736 696	261 145 194	47 25 34	1.3	693 369	7.8
Water year 1963 Maximum, Sept. 21-30, 1963 Minimum, Dec. 21-22, 1962 Weighted average	3,835	10 13 9.9	63 36 57			08 18 35	196 100 181	41 36 44	198 17 46		.8 2.8 4.1	539 176 301	.73 .24 .41	57.9 1,820 386	248 108 187	87 26 39		1,020	
Water year 1964 Maximum, Jan. 16-31, 1964 Minimum, Sept. 23-24 Weighted average	3,835	1.4 11 7.7	79 40 54			77 3.(29	278 136 182	57 9.2 29	104 4.3 40		9.6 1.5 2.3	484 144 263	.66 .20 .36	132 1,480 407	275 112 176	47 1 26	2.0	877 242	7.9
		1	90.	BRAZ	OS RIVER	AT ST	TATE HI	GHWAY 2	L, NEAR BE	YAN					1		1	1	
Water year 1962 Maximum, June 18-27, 1962 Minimum, June 12-15 Weighted average	6,002	17 	97	$\frac{19}{14}$	1	97 31	131 128 152	193 56 134	310 22 196		2.5	b952 234 669	1.29 .32 .90	11,730 3,790 6,390	320 121 258	16			8.1
Water year 1963 Maximum, Apr. 11, 1963 Minimum, Nov. 28-29, 1962 Weighted average	11,850	18	146		2	44	478 100 153	303 35 146	220 29 217		1.2	1,200 186 703	1.63 .25 .96	3,370 5,950 3,600	488 110 274	96 28	4.8	1,110 1,840 331 1,200	7.5 7.0
Water year 1964 Maximum, Oct. 1-25, 1963 Minimum, Sept. 25-30, 1964 Weighted average	8,659	6.8 9.2 7.2	140 48 71	4.4		6.2 17 97	2 150 158 189	234 28 96	405 10 143	0.3	.8 1.8 1.4	1,120 196 511	1.52 .27 .69	2,250 4,580 1,840	372 138 229			1,930	6.9 8.1
		1		1	93. YEG	UA CRI	SEK NEA	AR SOMER	/ILLE		L							1	
Water year 1962 Maximum, Apr. 1-15, 1962 Minimum, June 29-30 Weighted average	561	21 18	116 			18	129 32 67	280 26 98	192 19 65	0.4	0.5	b884 111 319	1.20 .15 .43	105 168 113	413 44 150	308 18 96	2.5	1,310 176 508	6.8
Water year 1963 Maximum, Mar. 5-31, 1963 Minimum, Nov. 27-30, 1962 Weighted average	51.0 2,762	$\frac{19}{13}$	114		1	10	126 35 44	280 16 57	175 13 39		.5	858 82 194	1.17	113 118 123	404 40 93			1,250 136 316	7.1
Water year 1964 Maximum, Apr. 1-25, 1964 Minimum, Jan. 17 Weighted average See footnotes at end of table.	112	20 15	80	18 4.7	71	1	4 122 16 48	170 19 45	112 6.3 26	. 3	.8 1.8	540 63 162	.73 .09 .22	14.1 19.1 18.1	274 26 75		1.9	888 102 267	6.8

Table 3.--Summary of chemical analyses at daily stations on streams in the Brazos River basin, Texas, --Continued

2

1 .

r 2

Date				Mag-		Po-	Bi-					alcula		Hard as C:		So-	Specific con-	-
of collection	Mean Discharge (cfs)	Silica (SiQ _e)	Cal- cium (Ca)	ne- stum (Mg)	Sodium (Na)	tas- sium (K)	car- bon- ate (HCO ₃)	Sulfate (SO ₆)	Chloride (Cl)	N1- trate (NO ₂)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	
					95. NA	VASOT	A RIVER	NEAR E	STERLY							24		
Water year 1942 Dec. 5-10, 1941 Dec. 11-14, 16-18 Jan 6-7, 1942 Jan 8-10 Sept. 11-20	4.8 40.7 15.5 13.7 904		48 56 43 34	$ \begin{array}{r} 14 \\ \overline{17} \\ 13 \\ 6.1 \end{array} $	1 4 2	23 90 28 53 38	70 83 110 122 110	37 37 47 46 20	710 328 710 400 58	 0.0 .0 .5	1,270 b711 1,310 815 211	1.73 .97 1.78 1.11 .29		$178 \\ 156 \\ 210 \\ 161 \\ 110$			2,400 1,290 2,540 1,560 415	
Water year 1943 Oct. 21-23, 1942	165 44.5 24.2 8.9 2,390		40 64 67 39 21	$6.2 \\ 8.8 \\ 11 \\ 7.7 \\ 5.1$	13	34 59 56 69 35	143 158 135 107 72	28 29 31 46 16	37 270 598 102 52	1 · 8 · 5 · 2 · 0 · 8	217 609 1,130 316 165	. 30 . 83 1.54 . 43 . 22		125 196 212 129 73			531 1,180 2,160 610 327	
					96. N	AVASO	TA RIVE	R NEAR	BRYAN	 								I
Water year 1959 Maximum, Sept. 20-25, 1959 Minimum, Feb. 15 Weighted average	$17.8 \\ 3,400 \\ 529$	13 8.2 12	66 8.4 21	$15 \\ 1.5 \\ 4.9$		63 13 52	87 25 55	44 14 25	480 14 80	$3.8 \\ 1.2 \\ 1.1$	928 72 226	1.26 .10 .31	44.6 661 323	226 27 73	154 6 28	7.6	1,760 114 414	7.5
Water year 1960 Maximum, June 25, 1960 Minimum, Dec. 18-21, 1959 Weighted average	24.0 6,618 532	14 13	9.0 24	2.2 6.0		20 54	119 34 59	14 33	578 23 85	.5	1,130 100 248	1.54 .14 .34	73.2 1,790 356	355 32 85	258 4 36	1.5	2,110	7.2
Water year 1961 Maximum, Oct. 25-28, 1960 Minimum, Nov. 22 Weighted average	318 5,330 1,373	12 10	56 15	$13 \\ \\ \\ 3.6$		58 30	69 21 41	24 11 19	785 9.0 44	1.0	1,380 52 143	1.88 .07 .19	$1,180 \\748 \\530$	193 22 52	136 5 19	14	2,610	7.0 6.5
Water year 1962 Maximum, Dec. 1-4, 1961 Minimum, June 30, 1962 Weighted average	124 209 289	12 14	71	16 7.8		06 76	115 46 63	24 18 40	1,020 34 125	2.2	1,810 132 328	2.46 .18 .45	$ \begin{array}{r} 606 \\ 74.5 \\ 256 \end{array} $	243 52 104	149 14 53	17	3,370 254	1
Water year 1963 Maximum, Apr. 12-21, 1963 Minimum, June 20-22 Weighted average	40.1 210 48.7	14 5.3 14	72 7.5 24	19 1.8 7.2		40 11 66	68 18 40	54 15 43	780 13 110	1.8 1.8 1.0	$1,410 \\ 64 \\ 288$	1.92 .09 .39	153 36.3 37.9	258 26 90	202 11 57	12 .9 4.0	2,670	
Water year 1964 Maximum, Feb. 8-11, 1964 Minimum, Sept. 17-18 Weighted average	54.8 1,050 52.0	17 6.8 13	61 5.5 20	17 1.3 6.0		43 8.1 86	47 20 39	22 7.6 30	950 7.7 141	.8 1.8 1.9	1,630 49 317	2.22 .07 .43	241 139 44.5	222 19 77	184 3 45	16.8	3,120	1
		1			97. B	RAZOS	RIVER	AT RICH	IOND	 							000	1
Water year 1946 Maximum, Dec. 3-4, 1945 Minimum, May 21-31, 1946 Weighted average	6,610 32,590 10,220		63 39 51	12 5.3 8.6		94 15 37	172 124 155	46 19 39	465 21 53	 1.5 1.8 1.8	966 b195 299	1.31 .27 .41	17,200 17,200 8,250	206 119 163	66 18 36	8.9		8.3
Water year 1947 Maximum, Nov. 1-4, 1946 Minimum, Aug. 27-31, 1947 Weighted average	31,140	=	114 29 63	20 5.9 11	2	46 10 63	155 92 152	211 16 70	392 18 100	 1.0 1.0 1.9	1,060 b133 425	1.44 .18 .58	11.800 11,200 10,100	366 97 202	240 21 78	1.3 5.6 .4 1.9	487 1,870 228 691	

2 2

н. <u>Б</u>

Date			6-1	Mag-		Po-	Bi-						solved	3	Hard as Ca		So-	Specific con-	
of collection	Mean Discharge (cfs)	Silica (SiO ₂)		ne- sium (Mg)	Sodium (Na)	tas- sium (K)	car- bon- ate (HCO ₃)	Sulfate (SO4)	Chloride (Cl)		Ni- trate (NO ₃)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH
				97.	BRAZOS	RIVER	AT RI	CHMOND	Continued						_				
Water year 1948 Maximum, Sept. 1-10, 1948 Minimum, Nov. 21-26, 1947 Weighted average	1,334 2,538 2,687	11	134 37 65	27 7.1 11		71 38 82	147 130 162	294 31 84	432 45 118		.2 1.2 1.7	1,240 b245 479	1.69 .33 .65	4,470 1,680 3,480	446 122 207	325 15 74	1.5	2,120 400 791	
Water year 1949 Maximum, Oct. 11-20, 1948 Minimum, Apr. 23, 25-27,	1.5775.57	14	126	29	2	20	220	235	345		. 8	1,080	1.47	1,810	434	253		1,860	
29-30, 1949 Weighted average	33,050 4,645	11 12	34 59	5.8 10		21 70	120 141	24 76	20 103		2.8 2.1	b184 423	· 25 · 57	16,400 5,310	109 188	10 72		289 703	
Water year 1950 Maximum, Aug. 21-31, 1950 Minimum, Feb. 20-28 Weighted average	13,710	13 12 13	124 37 53	21 4.4 8.1		60 28 60	$144 \\ 112 \\ 136$	254 21 58	408 40 87	0.4	3.5 .8 1.3	1,150 b213 368	1.56 .29 .50	6,310 7,880 5,750	396 110 166	278 19 54	1.2	2,010 357 613	7.4
Water year 1951 Maximum, Sept. 1-10, 1951 Minimum, June 21-25 Weighted average	5,692	11 17 13	122 40 80	29 7.0 16	341 25 139	1.6	120 120 160	291 34 134	538 36 214	.3 .3 .3	2.0 3.5 2.2	1,400 b222 696	1.90 .30 .95	2,130 3,410 2,660	424 129	325 30	7.2	$2,440 \\ 386$	7.1
Water year 1952 Maximum, Oct. 21-31, 1951 Minimum, June 1-10, 1952 Weighted average	606 7,734 1,820	15 21 18	108 37 51	23 4.5 8.8	233 13 60	.8 1.6 2.8	196 123	191 16 54	369 16 85	.3	1.5 4.0 3.5	1,040 b187 370	1.41	1,700	266 364 111	134 204 10	5.3	1,180 1,790 290	7.1
Water year 1953 Maximum, Oct. 1-10, 1952 Minimum, Jan. 1-10, 1953 Weighted average		17 11 13	83 31 36	19 3.7 5.7	138 17 23	5.2 3.2 3.8	216 99	113 21 25	214 20 31	.2	1.5	ь739 160	.50 1.01 .22	1,820 283 4,280	163 285 93	46 108 11	3.6	608 1,210 276	7.6
Water year 1954 Maximum, Aug. 21-31, 1954 Minimum, Oct. 29-31, 1953 Weighted average		13 14 17	100 32 55	19 3.7 9.1	240 14 83	6.7 3.3 4.1	143 111	194 18 72	372 13 127	.3 .2 .4	3.6 1.8 4.8	215 1,020 b168	.29 1.39 .23	2,380 2,200 10,830	114 328 95	20 210 4	. 6	342 1,810 244	7.8
Water year 1955 Maximum, May 29-31, June 1, 9-11, 1955 Minimum, Apr. 14-21	9,837 9,624	12 12 13	105 31 60	15 4.5 8.9	225 16 95	6.9 4.2 4.9	124 105	200 18 83	370 18 145	.5 .4 .6	2.5 2.2 2.5 2.6	453 1,050 5161 498	.62	3,340 27,890 4,180	174 324 95	73 222 9	5.4	754 1,710 267	7.9 7.6
Water year 1956 Maximum, Sept. 21-30, 1956 Minimum, Feb. 14-19 Weighted average	3,212	$12 \\ 9.6 \\ 12$	127 41 95	21 4.8 14	254 53 166	7.0 4.3 5.8	127 104	300 45 185	400 77 260	.4	1.5 2.2 1.5	1,190 b318 834	.68 1.62 .43 1.13	2,920 2,380 2,760 4,860	186 404 122 294	78 300 37 183	3.0 5.5 2.1 4.2	519	7.6
Water year 1957 Maximum, Oct 1-10, 1956, Minimum, Apr. 24-30, 1957 Weighted average	593 61.290 15.290	$12 \\ 8.2 \\ 13$	130 35 50	$22 \\ 4.1 \\ 6.9$	14	75 3.2 46	$136 \\ 110 \\ 124$	307 23 54	412 16 65		1.0 3.0	1,230 161	1 - 67 - 22	1,970 26,640	415 104	304 14	5.9	2,020	7.9 7.9
Water year 1958 Maximum, Aug. 21-31, 1958 Minimum, Oct. 16-22, 1957 Weighted average See footnoles at end of table.	2,930 74,000	13 7.8 11	76	17 4.0 7.7	122 11 37	4.6	183	113 21 50	183 13 57		2.5 .5 2.0 4.2	317 b645 142 303	. 43 . 88 . 19 . 41	13,090 5,100 28,370 9,710	154 260 94 166	52 110 13 50	1.6 3.3 .5 1.2	519 1,070 246 508	

Table 3 .-- Summary of chemical analyses at daily stations on streams in the Brazos River basin, Texas, -- Continued

A. 6

Date	Maga		C=1	Mag-		Po-	Bi-						solved		Hard as C		So-	Specific con-	2
of collection	Mean Discharge (cfs)	Silica (SiQ ₈)	Cal- cium (Ca)	ne- sium (Mg)	Sodium (Na)	tas- sium (K)	car- bon- ate (HCO ₃)	Sulfate (SO ₄)	Chloride (Cl)		Ni- trate (NO ₃)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct-	
				97.	BRAZOS	RIVER	AT RI	CHMOND	Continued										
ater year 1959 Maximum, Apr. 1-7, 1959 Minimum, Apr. 11-22 Weighted average	1,320 26,950 4,450	9.2 11 12	84 35 49	19 4.6 8.0	$\begin{array}{c}124\\16\\49\end{array}$	5.1 4.0 4.5	108	125 23 51	198 22 74	0.3	0.5 2.0 1.9	b718 171 323	0.98 .23 .44	2,560 12,440 3,880	288 106 156	18	3.2 .7 1.7	1,160 298 553	3 7.
ater year 1960 Maximum, Sept. 18-30, 1960 Minimum, June 26-27, 29-30 Weighted average	954 32,180 8,869	17 11 12	81 29 54	18 3.9 9.0		34 17 48	211 100 151	110 16 50	198 18 67		.8 1.2 3.2	b694 b155 331	.94 .21 .45	1,790 13,470 7,930	276 88 172	6	3.5	1,140 245 552	5 7
ater year 1961 Maximum, Aug. 18-31, 1961 Minimum, Nov. 24-30, 1960 Weighted average	2,813 25,910 16,130	14 12 13	92 30 49	18 4.0 8.0	1	50 20 44	187 93 132	147 22 49	244 24 64	.4	1.5 1.2 2.4	b837 159 312	1.14 .22 .42	6,360 11,120 13,590	304 92 156	16	4.0 .9 1.5	1,340 268 519	7
ater year 1962 Maximum, Aug. 1-10, 1962 Minimum, June 18-21, 23 Weighted average	6,728 5,284 4,508	16 7.9 13	104 41 71	18 5.2 12	1 2	30 27 06	130 118 153	224 38 106	348 32 156	. 5	1.0 1.2 1.5	1,010 210 551		18,350 3,000 6,710	334 124 229	227 28	5.5 1.1 3.0	1,740 377 941	777
ater year 1963 Maximum, Aug. 1-19, 1963 Minimum, Dec. 26, 1962 Weighted average	700 9,120 2,759	14	94 	22		01 	171 98 140	178 21 100	308 24 145	.4	1.5	903 159 513	1.23 .22 .70	1,710 3,980 3,820	325 97 215	185 16	4.8	1,580 257 871	77
ater year 1964 Maximum, Oct. 8-29, 1963 Minimum, Sept. 28-30, 1964 Weighted average	817 9,390 1,715	9.7 18 11	107 33 58	25 4.5 11		33 12 77	178 110 151	210 22 74	362 8.7 111		2.0 1.8 1.9	1,040 154		2,290 3,900 1,940	370 101 191		5.3	1,830 272 742	77
			103.	BRAZO	S RIVER	AT HA	RRIS R	ESERVOIR	, NEAR AN		N N			-1					1
ater year 1962 Maximum, May 2, 1962 Minimum, Feb. 2-12		15 13	89 49	12 8.2		83 52	138 122	133 59	910 74	0.4	4.2	1,810 5330	2.46		272	158 56	15 1.8	3,290	
later year 1963 Maximum, Aug. 4-15, 1963 Minimum, Jan. 1-6		16 13	93 33	23 4.6		81 23	201 94	148 26	282 33	.4 .3	2.2 1.0	845 180	1.15 .24		326 101		4.4	1,500	7
/ater year 1964 Maximum, Feb. 5-7, 1964 Minimum, Mar. 23-31		15 12	77 43	9.7 6.5		36 39	122 120	130 46	745 48	. 2 . 3	2.2 4.2		2.08 .35		232 134	132 36	14 1.5	2.760 454	
			105.	BRAZOS	RIVER A	AT BRA	ZORIA	RESERVOI	R, NEAR B	RAZOR	IA								
ater year 1962 Maximum, Aug. 1-3, 1962 Minimum, Feb. 2-12		16 12	164 48	328 8.1	2,9	70 52	186 120	748 60	5,170 73	0.3	2.0	9,490 b328			1,760		31 1.8	15,300 546	
ater year 1963 Maximum, Sept. 1-6, 9-13, 1963 Minimum, Jan. 1-7		9.4 12	286 32	750 4 · 0	6,5	40 25	143 86	1,620 27	11,500 35		1.2	20,800 179			3,800 9 6		46 1.1	30,100 309	
ater year 1964 Maximum, Aug. 1-14, 17-21, 24-28, 1964		5.7 12	184 42	328 7.6	3,4	00 39	142 124	817 47	5,840 47		4.0	10,600 260			1,810 136		 1.5	17,000	

4

Wolfster-

d Mean discharge at time of sampling.
 d Mean discharge for period of record; station started October 12, 1962.

e Mean discharge for period of record; station started February 1, 1962. f Mean discharge for period of record; station started November 1, 1962. Represents 78 percent of flow for water year October 1959 to September 1960. h Represents 71 percent of flow for water year October 1959 to September 1960.

WARTN

														223	solved a lculat	enter a subscription	Hard as Ca		So-	Specific con-	
Date of collection	Discharge (cfs)	Silica (SiQ _e)	Iron (Fe)	Cal- cium (Ca)	Mag- ńe- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	Bicar- bonate (HCO ₃) (a)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	Ni- trate (NO3)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH
						1. DO	UBLE	MOUNTAIN	FORK BRAZO	OS RIVER A	T JUS	TICEB	URG								
Dec. 22, 1964 Jan. 29, 1965 May 14 June 11 June 22	b0.03 b.02 193 4.51 220 94.3	5.8 13		362 411 40 37 16 43	150 198 7.5 17 4.4 11	5 1		252 250 236 152 248 299	667 887 43 148 44 87	6,880 9,180 39 700 45 74	 1.2 1.4 1.0 2.1	2.0 1.5 2.0 .2		12,400 16,400 339 1,500 365 514			$1,520\\1,840\\131\\162\\58\\152$	1,310 1,640 0 38 0 0	2.9 17 6.8	585 2,740 623	7.
				2.	NORTH	FORK DO	UBLE	MOUNTAIN	FORK BRAZO	OS RIVER,	7.5 M	ILES	NORTH	WEST OF S	LATON						
Mar. 4, 1952 Apr. 3 Apr. 30 Aug. 5 Sept. 3	2.35 1.88 22.5 .18 .29	10 7.4 43		63 84 40 40 42	132 142 131 124 123	32	50 21 48 47 45	390 391 341 358 393	421 503 430 371 352	335 458 318 328 320	5.0	2.0 1.0 2.0 4.8 5.8		1,400 1,710 1,340 1,330 1,320	1.90 2.33 1.82 1.81 1.80		700 794 638 610 611	380 472 358 316 289		2,320 2,940 2,230 2,220 2,170	8.6
Oct. 6 Nov. 5 Dec. 2 Mar. 4, 1953 Apr. 14	.50 .61 3.20 4.37 2.02	30 12 6.0		62 62 42 48 50	127 128 144 153 158	2 2 2	48 47 82 90 96	451 458 380 411 419	375 373 475 494 516	320 318 355 370 375		5.6 5.8 4.8 9.0 11		1,390 1,390 1,500 1,570 1,620	$1.89 \\ 1.89 \\ 2.04 \\ 2.14 \\ 2.20$		676 681 697 749 774	306 306 385 412 430		2,240 2,230 2,400 2,560 2,620	8.
June 10 Aug. 3 Sept. 10 Nov. 30 Jan. 21, 1954 Mar. 18	.25 .21 .13 1.96 1.83 1.88	19 36 14 8.6		52 58 47 49	129 189 147 114 138	3 2 2	66 71 87 27 79	507 454 507 355 405	430 645 371 324 372 483	372 460 388 238 282 325	6.4 5.2 	4.5 5.8 12 1.5 4.8 3.5		1,590 1,970 1,550 1,230 1,480	2.16 2.68 2.11 1.67 2.01		812 906 749 586 690	396 534 333 294 358		2,570 3,040 2,490 1,850 2,050 2,350	8.4
							3.	LAKE BUI	FFALO SPRIM	IGS NEAR L	UBBOCI	ĸ					_				
Nov. 19, 1965		8.5		48	77	173	28	319	285	208	3.2	3.8		992			436	174	3.6	1,670	7.3
							4.	ROUGH C	CREEK AT MC	OUTH NEAR	ROTAN										
Aug. 19, 1959 Jan. 20, 1960 Aug. 9, 1961	b0.2 .08 .49					31	6.	3 95 108	935 1,140 1,010	36 56 119							1,000 1,150	922 1,060		1,730 2,020 2,080	
						7.	DOUB	LE MOUNTA	AIN FORK BE	RAZOS RIVE	R NEAL	R RUL	Е							15115	
May 11, 1964 Aug. 20 Sept. 16 Dec. 21	6.08 11.3 196 b.15	9.6 12		415 425 93 390	35 46 10 87	2	88 12 22 33	67 84 214 245	1,090 1,040 104 762	282 395 25 1,210	0.4 .6 .4	.8		2,050 2,170 372 3,210	2.79 2.95 .51 4.37		1,180 1,250 273 1,330	1,180 98	2.6	594	6.7
								8. T/	ANK CREEK N	EAR RULE				1.00	1.12	10	191	14/2	1440		
Mar. 25, 1964 Apr. 13 May 11 Sept. 16	b0.04 b.02 b.01 93.1	.1		290 285 265 87	135 124 95 14	3 1	02 74 76 22	244 188 158 166	1,330 1,290 974 138	400 380 205 30	 0.6 .2		(1) (1)	2,680 2,550 1,800 382	3.64 3.47 2.45 .52	199	1,280 1,220 1,050 274		4.9 4.6 2.4 .6	3,470 3,410 2,380 614	7.4

Table 4.--Chemical analyses of streams and reservoirs in the Brazos River basin for locations other than daily stations.

					Man		De	- 10						1.000000000	solved		Hard as Ca	ness aCO ₃	So-	Specific con-	ĺ.
Date of collection	Discharge (cfs)	Silica (SiQ _s)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	Bicar- bonate (HCO ₃) (a)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH
							9. 1	CDONALD	CREEK AT	MOUTH NEAR	POST										
Dec. 17, 1959 Jan. 20, 1960 Feb. 18 June 22, 1961	12.7 .22 b.01 1.90					1,160 2,53	30	172	238 1,670 1,910 59	1,730 13,200 13,600 3,960							320 702	179		5,850 33,800 35,000 12,300	7.9
		1					10.	RUNNING	WATER DRA	W AT PLAIN	IEW										
June 15, 1964 June 16 June 19	23.7 183 1.41	14 16 16		33 54 33	5.3 5.9 5.8	1	6.9 12 7.8	135 212 140	0.8 4.4 .8	2.3 3.2 1.5	0.8 .7 .7	0.2 .2 .2		132 200 138	0.18 .27 .19		104 159 106	0 0 0	0.1 .4 .1	333	6.8 6.7 6.8
							11	. WHITE	RIVER NE	AR CROSBYT	ON										
Oct. 4, 1950 Jan. 19, 1951 Jan. 20, 1954 Jan. 18, 1955 Jan. 19, 1956 Sune 18, 1959 Mar. 15, 1960 June 22 Sept. 21 Nov. 6, 1961 Aug. 9, 1962 May 8, 1963 Aug. 8	.92	36 46 48 41 		50 44 49 33 35 38 39	35 63 43 47 33 32 41 36	10 57 22 62 63	52 55 78 11 8.5 11 59 68 11 71 12.	374 528 447 446 203 366 321 350 408 384 WHITE F	48 94 63 64 77 54 60 19 50 45 40 45 40 48 45	18 40 28 23 27 22 24 8 22 20 20 20 22 20 RVOIR NEAR	 3.1 3.6 4.0 4.1 SPUR	1.0 .5 .5 1.0 .2 .0 .0 .2 .0		c447 642 539 385 406 461 439	0.16 .87 .73 .73 .52 .55 .63 .60		269 359 315 274 137 234 218 219 264 246		 1.9 1.7 2.0 1.7 2.0	1,060 879 812 914 613 782 358 698 622 659 738	8.2
June 3, 1964 Oct. 28 May 12, 1965		2.5 1.6 7.6		25 14 22	17 15 12	2	63 04 79	268 272 264	72 61 74	132 158 137	$2.4 \\ 3.0 \\ 2.6$	0.5		546 611 565	0.74 .83 .77		132 96 104	0 0 0	$6.2 \\ 9.1 \\ 7.6$	1,060	8.0 7.6 7.4
						1:	3. R	ED MUD CH	REEK AT MO	UTH NEAR C	LAIRE	MONT									
June 15, 1960 July 26 Jan. 16 Jan. 4, 1961 Mar. 9 Apr. 4 July 7	b0.01 .01 .04 .12 .10 .09 .06					186 4,680 99 152 7,210 6,590 7,300	11 6.9 4.8 	80 142 173 	620 2,010 1,400 1,640 2,990 3,830 2,820	250 7,920 158 220 11,600 10,400 12,000							630 3,320 1,540 1,800 4,060 4,380 3,990	564 1,420 1,660 		1,940 22,100 2,670 3,220 30,200 29,100 31,900	7.3
Jan. 27, 1959	b0.15					56,6		4. SALT 101	CREEK NEA	R CLAIREMO	NT 						5,380	5.300	1	43,000	7.8
Mar. 16 May 12, 1964	b.05		a	,190 863 1	803 ,050	67,5 92,9	00	85	5,980 6,380	104,000				180,000 244,000			6,270 6,470		371	52,000 64,000	

See footnotes at end of table.

. 6.

															solved alcula		Hard as Ca		So-	Specific con-	
Date of collection	Discharge (cfs)	Silica (SiQ _s)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	Bicar- bonate (HCO ₃) (a)	Sulfate (SO ₄)	Chloride (Cl)		Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pF
								15. DUC	K CREEK N	EAR JAYTON											
Mar. 17, 1964 Apr. 14 June 11, 1964	2.51 1.82 8.41			435 450 163	157 150 56	1	53 50 51	112 76 94	1,570 1,600 556	235 238 65	0.6	5.8 4.3 .2		2,620 2,630 948	3.56 3.58 1.29		1,730 1,740 637		$1.6 \\ 1.6 \\ .9$	3,140 3,140 1,310	7.
							16.	BUTTE CR	EEK AT MO	UTH NEAR JA	AYTON										
Dec. 17, 1959 Jan 4. 1961	0.60 .20				-	30 212	4.8 5.2	112 126	1,260 1,710	22 235							1,320 1,730			$2,090 \\ 3 640$	
							19.	SALT CRO	TON CREEK	NEAR ASPEI	RMONT										
/ater year 1957 Maximum, Oct. 9, 1956 Minimum, May 31,						89,700			3,370	146,000							9,860		393	166,000	-
1957 ater year 1958 Maximum, Sept.3, 1958	.43					517	12	167	1,450	800							1,580			4,810	
Minimum, Nov. 5, 1957	360					.01,000 778		140	2,590 1,060	159,000 1,130							1,110		10	144,000 5,010	
<u>ater year 1959</u> <u>Maximum, Aug. 5,</u> 1959 Minimum, July 17	.6 280					98,800 1,790			2,710 640	155,000 2,800							9,830	433		149,000 9,240	
ater year 1960 Maximum, Aug. 4, 1960	.36					98,500			2,920	156,000							10,100			152,000	1
ater year 1961 Maximum, June 1, 1961	. 54					1,970 99,6	00		800	3,220							1,060			10,600	2
Minimum, Oct.17, 1960 ater year 1962	8,400				ŀ	1,110		100	1,390	1,680							1,450	1,370		7,000	7.
Maximum, July 10, 1962 Minimum, Sept.17	.3 450			~		99,1 2,0			2,690 1,450	158,000 3,310							10, 300 1,630			135,000 11,200	
ater year 1963 Maximum, Mar. 14, 1963 Minimum, Sept.15	. 8	17				85,8 7	00 28	140	3,680 1,030	136,000 1,050		7.0					9,080 1,090	976	9.6	64,000 4,980	7.
ater year 1964 Maximum, Aug. 19, 1964 Minimum, July 2-	, , , , , , , , , , , , , , , , , , ,	6.2		549	107	100,0 6,1			3,150 1,230	158,000 9,790	10	1.4		17,800	24.5	in the second se	8,400 1,810			63,000 26,100	11

Table 4.--Chemical analyses of streams and reservoirs in the Brazos River basin for locations other than daily stations.--Continued

See footnotes at end of table.

														/ Ka-4,755	solved a loula		Hards as Ca		So-	Specific con-	
Date of collection	Discharge (cfs)	Silica (SiQ _e)	Iron (Fe)	Cal- cium (Ca)	Mag- ńe- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	Bicar- bonate (HCO ₃) (a)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH
						21.	NORTH	I CROTON	CREEK AT MC	OUTH NEAR	KNOX	CITY									
Yeb. 16, 1960 Mar. 14 Jov. 14 Jan. 3, 1961 Dec. 9, 1964	0.78 .71 2.27 5.36 3.77 .57			680	147	4,230 3,510 904 1,700 1,260 1,89	0	 68 184	2,190 2,400 1,280 1,870 1,790 1,700	6,940 5,960 1,460 2,990 2,120 3,200				7,690	10.5		2,980 3,260 1,430 2,490 2,170 2,300	1,370		20,700 18,800 6,120 11,000 8,880 10,800	7.
			n.			22	2. MT	JSTANG CR	EEK AT MOUT	TH NEAR KI	NOX C	ITY									
Dec. 15, 1959 Feb. 12, 1960 June 14 Aug. 16 Sept. 20	35.4 b.02 b.38 29.8 b.02					19 572 832 25 2,520	4.0 5.2 	68 126 94 91 	324 2,260 1,130 358 2,910	22 700 1,280 30 3,680								2,060 1,150 340		774 5,350 5,500 901 13,800	7. 7. 7.
ct.11 ay 11, 1961	.01 4.51					1,990 278	13	86	2,860 1,760	2,990 495							2,950 1,940	1,870		11,900 4,040	
				-					ERS CREEK	NEAR MUND.	AY										7
ct. 10 1962 lay 8, 1964 lay 11 ay 30 une 12	434 .9.48 2.33 1.49 2.93	13 8.6		25 32 26 32 28	5.9 9.8 4.9 11 8.8		15.0 14 11 19 17	104 162 116 174 152	4.8 9.0 7.4 15 9.0	3.0 4.2 3.3 4.4 4.5	.4 .3 .4	2.2 1.2 .2		111 161 124 177 155	0.15 .22 .17 .24 .21		87 120 85 125 106			5 288 5 216 7 336	6. 6. 7.
							:	25. MILL	ERS CREEK	NEAR SEYM	OUR										-
June 15, 1962 Sept. 14 Nov. 13 Dec. 13 Jan. 17, 1963	6.2 7.10 b.14 2.55 b.20	16 11 13		38 68 92 101 109	6.0 17 38 38 33		13 39 58 65 63	142 184 216 274 150	14 98 244 202 305	11 50 56 80 72	0.3 .3 .3 .3 .3	.8 1.0 1.0		c176 379 c638 c670 c660	0.24 .52 .87 .91 .90		120 240 386 408 408	88 209 184		1 618 3 943	
Feb. 14 Mar. 8 Apr. 8 May 9 June 11	6.42	1.2 14 10		210 228 72 47 36	115 134 25 14 7.1	2 24	18 66 53 5.5 20	316 304 188 142 137	784 956 147 77 24	280 320 63 28 17	.4 .4 .4 .2 .4	1.8 1.8 2.0		1,760 2,060 c468 c300 184	2.39 2.80 .64 .41 .25		997 1,120 282 175 119	128	3.	8 462	7. 6. 6.
		1					2	6. LAKE	TRAMMEL NE	AR SWEETW	ATER										
July 2, 1946 Apr. 22, 1964		7.6	0.00	52 57	6.8 14		7.7 25	$\begin{array}{c} 164 \\ 156 \end{array}$	16 73	16 34	0.0			c193 281	0.20		158 200		3 2 0.		7. 7.
					7		27	. LAKE S	SWEETWATER	NEAR SWEE	TWATE	R									
Jan. 18, 1952 Apr. 22, 1964		3.0 6.8		59 53			13 24	197 184	41 50	20 30	0.0		2	c270 269			201 194				7.

Ŧ.

See footnotes at end of table.

															solved s		Hard as Ci		80-	Specific con-	
Date of collection	Discharge (cfs)	Silica (SiQ _s)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	Bicar- bonate (HCO ₃) (a)	Sulfate (SO ₄)	Chloride (Cl)		Ni- trate (NO ₃)		Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pE
							2	28. LAKE	ABILENE N	EAR ABILE	NE										
Apr. 18, 1946 Apr. 22, 1964		9.6 4.0	0.25	51 49	15 21		5.1 34	210 185	21 43	15 60	0.2			c234 302	0.32 .41		189 209	17 58	3 1.0	407 555	7.
				×				29. LAK	E KIRBY NE	AR ABILEN	E										
Apr. 18, 1946 Apr. 22, 1964		5.5	0.70	44 44	12 12	13	4.9	202 182	11 23	9.0 26	1.0	0.5		c209 219	0.28		159 159	10	0.8	390 409	
		W						30. LA	KE LYTLE A	T ABILENE				1					-		
Apr. 22, 1964		8.2		61	13	4	12	210	45	54	0.4	0.2		327	0.44		206	34	4 1.3	579	7.1
•						31	FO	RT PHANTO	M HILL RES	ERVOIR NE	AR NUC	GENT							-		
Oct. 1, 1948 Jan. 18, 1952 Aug. 16, 1963 Aug. 22, 1964		4.7 1.2 4.0 .6	0.00 .05 .01		22 23 15 17		14 8.0 6	211 236 160 176	52 40 42 47	70 65 72 72	0.4 .3 .4 .4		0.17	365 c362 305 321	0.50 .49 .41 .44		173 194 176 185	38	$\begin{array}{c c} 0 & \\ 8 & 1 \cdot 8 \\ 6 & 1 \cdot 5 \\ 1 & 1 \cdot 6 \end{array}$	652 642 549 586	7.1
								33. LAKE	STAMFORD	NEAR HASK	ELL										
Oct. 2, 1953 Aug. 12, 1965		9.4 9.0	0.17	33 38	9.5 21	10	5.2	157 220	9.4 56	7.2 53	0.4	1.5	0.0	1 178 348	0.24 .47		121 182	($ \begin{array}{c} 0 & 0.4 \\ 1 & 2.0 \end{array} $	297 598	
								34. LAK	E HAMLIN N	EAR HAMLI	N						1		-		
Sept. 20, 1946 Apr. 22, 1964		9.0 .9	0.00	27 43	7.1 8.9	9.8 4.0	5.6 15	118 182	8.1 10	13 6.8	0.0			c158 178	0.21		97 144		00.1	249 330	6.1 7.5
						46.	HUB	BARD CREE	K RESERVOI	IR NEAR BR	ECKENI	RIDGE									
Sept. 30, 1963 Aug. 9, 1964 Sept. 22, 1965		3.7 2.7 3.6	0.34 d.40	72	10 15 9.2		7.8 76 51	166 148 114	16 26 15	138 182 109	0.2 .3 .3	.2	0.1	1 384 447 318	0.52 .61 .43		210 241 180	120	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	737 883 617	7.0
							47.	LAKE DA	NIELS NEAR	BRECKENR	IDGE										
Mar. 12, 1959 Mar. 4, 1963		$1.3 \\ 2.4$		36 44	4.1 4.5		5.6	123 144	9.6 8.4	18 17	0.2			c150 162	0.20		107 128		6 0.6 0 .3	274 292	
								53. LAK	E GRAHAM N	EAR GRAHA	м										
Apr. 23, 1958 Sept. 12 Apr. 8, 1959 June 10 Sept. 9		2.4 4.9 1.2 2.0 2.8	0.04	67	74 11 15 15 12	1	55 90 06 14 95	157 138 167 139 126	130 12 17 15 11	1,530 180 215 240 198	0.2 .1 .2 .3 .3	.2 .8 .0		2,750 422 504 c518 c480	3.74 .57 .69 .70 .65	1	998 184 228 221 189	71 92 107	$\begin{array}{c} 0 & 9 \\ 2 & 2 \\ 2 \\ 3 \\ 7 \\ 3 \\ 3 \\ 3 \\ 0 \end{array}$	5,020 819 1,000 1,070 854	7.8
Nev. 11 Sept. 9, 1960 June 20, 1962 Nov. 13		5.9 4.4 2.7 2.7		34 44 47 40	7.2 8.7 7.4 7.1		52 60 59 47	95 124 115 113	6.8 5.6 8.8 6.8	101 120 122 92	.2 .3 .4 .3	.0		c287 c304 c304 c252	. 39 . 41 . 41 . 34	27.400 Cartest	114 146 148 129	44 54	2.1 2.2 2.1 2.1 5 1.8	493 593 612 505	7.3

Table 4 .-- Chemical analyses of streams and reservoirs in the Brazos River basin for locations other than daily stations .-- Continued

.

See footnotes at end of table.

- 91 -

23					Maa										solved a		Hard as Ca	ness aCO ₃	So-	Specific con-	
Date of collection	Discharge (cfs)	Silica (SiQ _s)	Iron (Fe)	Cal- cium (Ca)	Mag- ńe- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	Bicar- bonate (HCO ₃) (a)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	
							Ę	56. KEECI	II CREEK N	EAR GRAFOI	RD										
ec. 11, 1962 an. 10, 1963	14.4 8.98	9.2		84	12		35	265	43	51 89	0.3	0.2		c374	0.51		259	42	0.9	643	1.1.1.1.1
ar. 12 pr. 10	2.38	8.8		84 102	20 20		3.4	227 259	11 2 111	143 161	.2	.0		c610 631	.83		292 337	106 124	2.5 2.3	974	
ay 9	14.3	11		80	12	51	3.9	230	60	83	.3	.2		c450	.61		249	60	1.4	1,080 715	
ine 11	1.46			49 74	8.2 13		36 53	146 236	29 46	59 78	.4	1.2		264 397	.36		156 238	36 44	1.3	483 680	
		L								OIR NEAR O				001	.01		200	44	1.5	080	Ľ
t. 30, 1961		7.7		42	6.0	1	5	149	12	19	0.5	0.0	T in the second se	175	0.24		129	7	0.6	323	7
v. 6 n. 4, 1962							-	154 181		21 25							130 158	4 10		330 395	7
b. 7 r. 10		4.3		50	8.1		8	212 183		30 30		.2		c236	.32		184 158	10 8	1.0	441 402	7
ne 14		7.5		28	3.8	1	4	82	17	22	.3	.2		133	.18		86	18	.7	239	
							5	8. LAKE	HAGAMAN N	EAR RANGE	2						1				L_
v. 1945 t. 30, 1963		5.0 1.7	0.04	39 36	6.2 2.7		88 .7	10 2 116	18 10	73 22	0.2	0.0		c248 147	0.34		123 101	39 6	0.7	438 275	
	I	·		L	I	1	59	. PALO I	PINTO CREE	K NEAR SAN	I ITO	L	L								
ec. 7, 1961 ur. 23, 1962	0.23			43 66	10 15		18 17	132 230	49 73	35 44	0.3	0.0		c236	0.32		148	40	1.0	415	
y 2	1.75	3.0		94 43	24 8.2	12	21	158	139	226	.3	.0 2.0		c376 c763	.51		226 333	38 204	1.4 2.9	617 1,190	7
ne 10	4,300	9.6		43	4.7		4	99 131	43 17	78 18	.3 .3	1.0 2.8		272 172	.37		141 124	60 17	1.6	485 295	
ng. 9	12.5 85			=				208		52							206	36		563	
pt. 4	22	7.5		37	4.6	2	27	117 105	12	75 50	1 .1	.5		191	. 26		149	53 25	1.1	503 358	
pt. 7 pt. 8	1,100 6,500	7.7		36 34	3.9 2.6		5	98 110.	$17 \\ 6.2$	28 13	.0	$1.0 \\ 1.0$		157 128	.21 .17		106 96	26 5	.6 .3	289 219	
pt. 10 pt. 19	640 30.6	8.4 8.5		42 48	5.1		5	133	14 27	24	.1	.2		174	.24		126	17	.6	317	
pt. 22	.01					1 2	<u> </u>	142 191		46 56	.2	.8		236	.32		147	31 30	1.0	421 539	
t. 8 t. 9	5,600 7,000	5.8		38	3.3	1.6	3.4	132 142	.8 	1.0 12	.2	1.5		121	. 16		108 125	0 9	.7	215 278	
t. 14 t. 21	48 15	9.8		58	9.8		9	188	34	56	.3	.2		c312	. 42		185	31	1.2	525	
t. 28	30					-	-	259 309		70 76							256 304	44 51		711 806	
t. 29 v. 5	78 11	9.3		97	20		5	212 270	82	75 142	.3	.2		c605	.82		232 324	58 103	2.1	671 997	7
ov. 27	240					-		159		108							232	102		763	
v. 28	56					-	÷ (173		142							273	131		971	

7

See footnotes at end of table.

					Mag		Po-								solved a		Hard as Ca		So- dium	Specific con-	
Date of collection	Discharge (cfs)	Silica (SiQ _e)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	tas- sium (K)	Bicar- bonate (HCO ₃) (a)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	N1- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH
						60	. LA	KE MINERA	L WELLS NE	AR MINERA	L WEL	LS									
Oct. 1943 Nov. 1945 Oct. 30, 1963		15 9.8 4.6	0.04	44 38 44	18 10 8.6	14 14 1	5.2	160 137 162	42 33 26	24 19 15	0.4 .2 .3	0.2		c262 c221 196	0.36 .30 .27		163 136 145	32 24 12	0.8	348	8.0 7.4 7.1
	1						6	1. PALUX	Y CREEK AT	GLEN ROS	E			L			1				L
Dec. 5, 1961 Jan. 10, 1962 Mar. 20 May 3 June 5	$ \begin{array}{r} 41.6\\ 56.8\\ 27.2\\ 27.1\\ 10.4 \end{array} $	10 9.0 9.4 10 16		45 39 31 53 39	22 26 27 22 26	2 2 2 2 2 2	2 6 3	206 200 176 213 198	45 47 52 47 43	27 28 32 34 32	0.3 .2 .3 .4 .3	0.0 .2 .2 .0 .0		c274 c269 265 c322 c276	0.37 .37 .36 .44 .38		203 204 188 222 204	34 40 44 48 42	0.7 .7 .8 .7 .7	482 465 514	7.4 7.5 7.5 7.3 7.3
July 11 Sept. 10 Sept. 18	5.18 27 5.55	14 9.4 10		40 31 37	20 11 16	2 1 1	6	196 143 179	30 20 26	23 12 16	.4 .4 .4	.0 .5 :0		c248 170 211	. 34 . 23 . 29		182 123 158	21 5 11		286	7.0
						6	2. L.	AKE PAT C	LEBURNE	NEAR CLE	BURN	1E									
May 14, 1965 June 21		3.2 5.7		44 48	3.5 3.0		0	146 159	14 12	7.2	0.2	1.8		156 165			124 132		0.4		6.9 7.4
								63. NOL	ANDS RIVER	at Blum											
Jan. 8, 1962 Feb. 12 Mar. 19 Apr. 24 June 4 July 9	17.9 14.4 4.58	1.3 1.0 .8 10 11 9.4		42 77 70 66 42 55	7.6 8.4 7.7 6.9 5.1 6.0	6 7 7 12	4 0 3 7 22	188 297 296 297 320 228	47 56 61 53 58 33	32 36 39 41 47 28	0.4 .6 .7 .7	6.0 4.0 3.2 2.2 .5		c282 c398 c401 c414 c453 c302	0.38 .54 .55 .56 .62 .41		136 226 206 193 126		1.7 2.2 2.4 4.7	667 682 666 757	77.7 7.6 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.6 7.9 7.1
Sept. 17 Oct. 10 Mar. 3, 1964	3.99	7.3	3	40 35 44	3.6 2.9 5.3	3	15 13	172 136 370	26 18 100	16 12 60	 .4 .9	.0	3	c230 169 570	.31		115 99 132	0	1.4	362	2 6.8
							66	AQUILI	A CREEK NI	EAR AQUILI	A										
Dec. 4, 1961 Jan. 8, 1962 Feb. 12 Mar. 19 Apr. 24	28.1 19.1 17.0	9.9 5.1 1.8 8.6	L 3	93 104 138 135	6.8 9.4 12 15	10		187 192 264 176 295	173 222 289 	34 49 63 68 85	0.6 .5 .7 .7 .9	5.4 4.0 4.8 3.8	3	c473 c580 c760 	.79 1.03		260 298 394 328 398	140	1.9	876 1,120 1,030	0 7.4
June 4 July 10 May 9-11, 1965 May 12-13 May 14-17 May 18-19	4.08 124 e3,527 e510 e5,630	8.7 12 9.9 11 10 12	9	$ \begin{array}{r} 108 \\ 130 \\ 87 \\ 48 \\ 71 \\ 46 \\ 63 \\ \end{array} $	9.19.72.61.53.11.53.1	6.7	72 76 17 12 22 1 2.7 20	199 299 206 126 154 124 161	210 210 73 37 83 31 57	54 45 12 4.(12 4.1 12		3.8 11 2.8	0 3 3 8	c583 c640 c328 178 289 166 251	.87 .45 .24 .39 .23		307 364 228 126 190 121 170	58 23 64 19	1.7	966 503 293 471 274	5 7.2 5 7.0 1 6.6 3 7.6 1 7.9 4 7.7 0 7.8

Table 4.--Chemical analyses of streams and reservoirs in the Brazos River basin for locations other than daily stations.--Continued

10

See footnotes at end of table.

- 93 -

Table 4.--Chemical analyses of streams and reservoirs in the Brazos River basin for locations other than daily stations.--Continued

Date			Cal-	Mag-		Po-								solved a		Hard as Ci		So-	Specific con-	
of collection	Discharge (cfs)	Silica (SiQ _n)	cium (Ca)	ne- sium (Mg)	Sodium (Na)	tas- sium (K)	Bicar- bonate (HCO ₃) (a)	Sulfate (SO ₄)	Chloride (Cl)		Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH
						67	. GREEN	CREEK NEA	R ALEXAND	ER										
Oct. 18, 1962 Jan. 18, 1963 Dec. 5 Feb. 4, 1964 Feb. 5	0.25 .65 .01 91.8 25.4		41 47 49 32 30	10 18 14 8.3 7.1	3 4 2 1 2	0 6 8	134 197 184 114 101	29 38 29 19 20	51 55 38 28 33	0.3 .4 .3 .2 .2	.2		233 299 251 168 167	0.32 .41 .34 .23 .23		143 192 180 114 104	34 30 29 21 21	1.2 1.3 .8 .7 .9		6.9
Feb. 6 Apr. 21 Apr. 29	9.95 540 2.86	5.5	35 54 45	9.2 6.4 14	2 1 3	6	118 181 168	27 16 32	43 20 54	.2 .3 .3	.0 1.0 .5		204 208 267	.28 .28 .36		125 161 170	28 13 32	$1.1 \\ .5 \\ 1.2$	389 382 503	
				A		68.	NORTH BO	SQUE RIVER	NEAR CLI	FTON								L1		
Dec. 2, 1961 Dec. 29 Jan. 31, 1962 Mar. 1 Mar. 29	114 118 82.4 73.9 56.8	9.4 8.1 4.9 6.8 6.4	82 74 79 76 49	8.6 8.1 8.8 9.5 9.2	1 2 2 2 2	3 1 5	248 234 241 239 164	36 38 38 40 37	25 23 26 29 30	0.3	4.1 4.4 2.8		c319 c300 c304 308 c252	0.43 .41 .41 .42 .34		240 218 233 228 160	37 26 36 32 26	0.5 .7 .6 .7 .9	526 536	7.4
May 1 May 29 June 29 Aug. 29 Sept. 10	$828 \\ 41.9 \\ 44.1 \\ 4.12 \\ 150$	9.0 8.4 8.0 14 8.6	52 65 57 68 34	3.7 7.4 6.1 7.2 4.5	1 1 1 2 5.6	8 3	157 209 174 228 120	21 26 20 22 11	14 21 21 26 6.0	.34.44.3	2.2 2.2 2.0 4.8 1.2		c206 c252 214 278 c138	.28 .34 .29 .38 .19		145 193 167 199 103	16 21 25 12 5	.5 .6 .4 .7 .2		6.9 6.7 7.0
Oct. 1 Oct. 9 Oct. 31 Nov. 30 Dec. 31	8.18 3,630 59.2 72.9 24.9	10 8.7 7.0 8.9 6.8	67 44 56 70 77	6.4 4.1 6.4 7.5 8.5	4.9 1 2 1	3.5 6 1	217 145 188 229 238	18 8.8 21 29 31	16 7.5 16 22 24	.2 .4 .4 .3 .4	$ \begin{array}{c} 1.2 \\ 2.0 \\ 1.5 \end{array} $		c251 154 217 273 284	.34 .21 .30 .37 .39		193 127 166 206 227	16 8 12 18 32	.4 .2 .5 .6 .5	410 274 382 480 502	6.8
Jan. 30, 1963 Feb. 28 Apr. 1 Apr. 30 May 30	$ 18.2 \\ 11.5 \\ 7.70 \\ 181 \\ 142 $	4.2 2.4 5.1 6.2 6.8	$78 \\ 74 \\ 66 \\ 64 \\ 40$	9.4 9.3 8.8 22 3.7	2 2 2 6 6.2	3 3	241 238 215 252 130	39 36 32 57 10	28 26 28 85 10	.3			c312 c292 c276 422 148	. 42 . 40 . 38 . 57 . 20		233 223 200 250 115	36 28 24 44 8	.6 .7 .7 1.7 .3		7.2
June 29 July 31 Aug. 29 Sept. 30	11.6 .27 .10 .07	12	39 66 38 32	6.5 5.9 7.6 7.8	1 2		140 210 157 142	13 20 12 11	16 21 21 24	.3 .3 .4 .3	2.8		165 247 189 178	. 22 . 34 . 26 . 24		124 189 126 112	9 17 0 0	.5 .5 .8 .9	285 418 333 316	6.9 6.7

See footnotes at end of table.

Date				Cal-	Mag-		Po-								solved		Hard as Ca		So-	Specific con-	
of collection	Discharge (cfs)	Silica (SiQ _e)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	Sodium (Na)		Bicar- bonate (HCO ₃) (a)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- stum	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH
							69.	MIDDLE B	OSQUE RIVE	R NEAR MC	GREGO	R									
Dec. 1, 1961 Dec. 28 Jan. 31, 1962 Yeb. 28 Jar. 29	96.0 60.2 28 28.3 15	8.9 6.5 5.1 7.5 6.9		70 63 70 63 50	2.8 2.5 2.6 2.6 2.5		1.1 12 12 12 12 11	199 176 198 181 141	19 21 22 22 22 22	12 13 14 13 12	0.3 .4 .4 .4 .3	8.6 9.4 8.1 4.8 2.2		229 215 c235 214 c184	0.31 .29 .32 .29 .25		186 168 185 168 135	23 23 23 20 20	0.3 .4 .4 .4 .4	373 404 375	8 7. 3 7. 4 7. 5 7. 8 7.
upr. 30 lay 29 luly 9 luly 31 lug. 29	16.1 95 15.7 .5 .06	7.5 11 8.9 14 11		55 42 56 44 38	2.5 1.8 2.6 2.5 2.3	4.8 8.6	10 2.4 1.6 2 16	158 126 169 132 107	19 10 16 19 27	13 5.5 10 12 15	.4 .3 .3 .3	.8 1.5 .0 .0		c200 c146 187 169 163	.27 .20 .25 .23 .22		148 112 150 120 104	18 9 12 12 12	.4 .2 .3 .5 .7	243 331 281	5 7. 3 6. 1 6. 1 7. 5 6.
Det. 1 Det. 31 lov. 30 Dec. 31 Jan. 30, 1963	b.05 b.04 b.05 b3.3 3.40	4.5 4.5 7.9		36 38 47 47 66	2.4 2.6 2.6 2.1 2.8	5.8	2244 13 11 11.9 11	110 110 127 136 183	17 25 28 16 29	5.5 12 12 7.0 10	.3 .5 .3 .4	.0 .0 1.2 2.0 6.0		132 150 169 157 c228	.18 .20 .23 .21 .31		100 106 128 126 176	10 15 24 14 26	.3.5.4.2.4	262 296 265	6 6. 2 7. 5 6. 5 7. 7 .
Yeb. 27 pr. 1 pr. 30 ay 29 far. 5, 1964	b3.1 .80 b3.4 32.7 4.99	1.5 4.5 9.1 9.6 3.0		55 44 50 44 62	2.6 2.5 2.4 1.0 .8		12 13 8.4 2.0 1.4	156 125 147 130 142	27 24 16 9.6 33	11 14 10 5.2 11	.4.3.4.3	1.2 .0 1.2 .8 14	-	188 163 169 142 204	.26 .22 .23 .19 .28		148 120 135 114 158	20 18 14 7 42	.4 .5 .3 .2 .3	292 291 238	5 7. 2 6. 7 . 8 6. 9 6.
pr. 9 ay 14 une 24 uly 29 ug. 12	19.0 28.2 59.0 1.06 .32		8	61 59 52 49 46	1.9 2.1 2.5 1.9 2.5		1.8 16 10 14 14	164 157 144 130 118	25 39 22 28 29	11 10 10 13 15	.4 .4 .4 .3	5.1 8.8 8.0 6.0 7.0		200 218 183 186 183	.27 .30 .25 .25 .25		160 156 140 130 125	26 27 22 24 28	.3 .6 .4 .5	350 320 317	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Sept. 1	. 39	9.3		39	1.1		12	122	16	7.6	.3	. 8		146	. 20		102	2	. 5	243	6.
							70	, WACO	RESERVOIR	NEAR WA	CO										
an. 8, 1943 eb. 29, 1952 ept. 17, 1956 ay 24, 1965		7.6 6.2 7.5	0.06	70 50 54	$ \begin{array}{r} 11 \\ 6.6 \\ \\ 2.7 \\ \end{array} $	30 15	0.6 .0 9.3	217 164 130 128	52 30 32	33 14 17 18	0.8 .3 .5 .2	5.9 .5 2.5	0.30	c335 c225 	0.26		220 152 122 146	42 18 16 41	0.3	367 312	8.7.7.7.7.
								71. BOS	QUE RIVER	NEAR WACO											
an. 18, 1962 an. 18 eb. 21 ar. 29 pr. 30	$720 \\714 \\62.2 \\73.7 \\104$	5.7 6.6 3.4 4.6		67 60 62 58	5.9 5.4 6.3 6.7		17 17 24 19	197 174 182 127 172	32 32 46 34	20 20 23 24 24	0.3 .3 .3 .3	5.3 5.8 3.8 2.0		c258 c238 258 c251	0.35 .32 .35 .34		191 172 181 172	30 29 31 31	0.5 .6 .8 	405 446 357	7.7.7.7.7.
une 7 ug. 15 ept. 19 ct. 23 ov. 28	60.7 2.28 7.54 5.84 4.08	10 9.4		53 65 54 46 64	5.5 6.7 4.4 5.8 5.9	8.7	19 43 17 3.2 16	164 188 159 148 196	32 53 36 20 32	19 52 14 12 16	.3 .3 .0 .3	.5 .0 1.0 .8 .5		c221 c325 c226 180 239	.30 .44 .31 5.84 .33		155 190 153 138 184	20 36 23 16 23	.7 1.4 .6 .3 .5	360 310	6.

Table 4 .--- Chemical analyses of streams and reservoirs in the Brazos River basin for locations other than daily stations .-- Continued

2021 - 244							-								solved a		Hard as Ca		So-	Specific con-	
Date of collection	Discharge (cfs)	Silica (SiQ _s)		Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	Bicar- bonate (HCO ₃) (a)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH
							71.	BOSQUE RI	VER NEAR W	WACOCont	inued	1									
Jan. 8, 1963 Feb. 5 Mar. 9 May 22 June 18	$ \begin{array}{r} 19.4 \\ 4.63 \\ 5.14 \\ 15.4 \\ 8.23 \end{array} $	$ \begin{array}{r} 6.3 \\ 5.6 \\ 3.2 \\ 4.8 \\ 9.4 \\ \end{array} $		57 64 62 53 46	5.5 5.6 6.3 5.8 6.1	1	13 15 19 24 51	178 193 192 162 172	25 30 33 39 58	14 18 19 23 34	0.4 .3 .3 .4 .4	0.2 .0 .0 .5 .0		c221 c246 237 230 290	0.30 .33 .32 .31 .39		165 183 181 156 140	19 25 23 23 0	0.4 .5 .6 .8 1.9	403 416	6.9 6.8
Nov. 18 Dec. 20 Jan. 28, 1964 Mar. 4 Apr. 8	bl.8 4.68 1.86 369 129	8.9 7.4 4.0 5.4 4.8		69 72 68 62 56	7.3 5.7 6.4 3.5 4.0	2	81 23 14 15	178 179 186 170 160	69 56 57 42 37	35 32 9.9 12 12	.4 .3 .3 .3 .3	$ \begin{array}{r} .0\\ 1.5\\ .2\\ 2.0\\ 3.0 \end{array} $		309 286 251 226 211	.42 .39 .34 .31 .29		202 203 196 169 156	56 56 44 30 25	.9 .7 .4 .5	520 467 399	7.0 6.7 7.8 6.9 7.0
May 13 July 29	41.6 1.12	$\begin{array}{c} 7.1\\ 12\end{array}$		54 64	$3.5 \\ 4.9$		12 20	156 186	29 42	9.9 18	.3 .3	2.2 .5		195 253	.27 .34		149 180	21 27	.4 .6	343 431	6.9 7.0
							7	3. COW C	REEK AT M	IOOREVILI	E			20							
Mar. 6, 1964 May 1 May 1 May 15 May 26	2.19 105 61.1 3.53 .55	$\begin{array}{r} 4.1 \\ 12 \\ 9.1 \\ 2.7 \\ 5.4 \end{array}$		111 82 68 85 83	5.6 2.5 2.5 3.6 3.9		27 11 10 23 25	176 212 177 165 182	176 52 45 115 97	20 5.6 5.3 15 18	0.5 .3 .3 .6 .6	2.8 1.8 2.2 .0 .0	8	434 271 229 326 322	0.59 .37 .31 .44 .44		300 215 180 227 223	156 41 35 92 74	0.7 .3 .3 .7 .7	447 387 533	7.5 6.8 6.9 7.4 7.0
							7	5. LEON	RESERVOIR	NEAR RANG	GER										
Apr. 15, 1955 Mar. 12, 1959 Mar. 4, 1963 Oct. 30		$ \begin{array}{c c} 0.7\\ 3.0\\ 1.6\\ 4.1 \end{array} $	0.01	50 48 43 40	6.6 6.6 6.7 5.2	1 2	8.6 26 21 23	186 137 118 124	7.2 24 18 14	20 46 46 38	0.4 .2 .3 .2	$1.5 \\ .1 \\ .0 \\ .0$	0.00	c205 c236 c212 186	0.28 .32 .29 .25		152 147 135 121	0 35 38 20	0.4 .9 .8 .9	415 379	
							76.	PROCTOR	RESERVOIR	NEAR PRO	CTOR										
Jan. 30, 1964 June 30 Nov. 4 Oct. 1, 1965		$ \begin{array}{c} 1.9\\.7\\6.5\\4.2 \end{array} $. 18	57 54 34 58	11 15 8.3 13		12 57 17 59	185 174 112 170	22 34 13 34	73 100 35 106	0.3 .5 .2 .3	0.2 .0 .5 .0		298 347 170 358	0.41 .47 .23 .49	AII.	187 196 119 198	36 54 27 58	1.3 1.8 .7 1.8	647 325	7.6 7.6 7.4 7.1
								77. LEC	ON RIVER NI	EAR HASSE		A									
Oct. 30, 1961 Feb. 16, 1962 May 1 June 6 July 4	$2.3 \\ 14.8 \\ 16.1 \\ 3.64 \\ 7.5$	$11 \\ 7.4 \\ 8.6 \\ 11 \\ 8.1$		75 108 96 64 52	32 55 48 54 16	10	02 50 18 13 18	248 358 301 293 167	105 160 130 143 42	160 270 265 211 84	0.5 .6 .5 .9 .4			c656 938 845 c833 c358	$0.89 \\ 1.28 \\ 1.15 \\ 1.13 \\ .49$		318 496 437 382 196	116 202 190 142 58	2.5 3.1 3.1 3.2 1.5	1,060 1,620 1,530 1,390 629	7.4 7.4 6.9
Aug. 6 Sept. 9 Sept. 9 Sept. 19	14.9 7,300 7,100 94.0	9.9 7.3 5.9 12		84 21 24 94	$15 \\ 2.5 \\ 3.1 \\ 19$	5.9	91 5.0 10 31	212 74 77 258	$\begin{array}{r} 43\\4.2\\4.4\\66\end{array}$	177 12 19 147	.3 .2 .1 .3	.0 .2 .0 .0		$524 \\ 94 \\ 104 \\ 546$.71 .13 .14 .74		271 63 73 312	98 2 10 101	2.4 .3 .5 2.0	974 158 188 980	6.9 6.5

1

See footnotes at end of table.

					Mag		Po-								solved s alculat		Hard as Ca		S0-	Specific con-	
Date of collection	Discharge (cfs)	Silica (SiQ _g)	Iron (Fe)	Cal- cium (Ca)	Mag- ńe- sium (Mg)	Sodium (Na)	tas- sium (K)	Bicar- bonate (HCO ₃) (a)	Sulfate (SO ₄)	Chloride (Cl)		Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate		duct- ance (micro- mhos at 25°C)	pН
							1	78. LAKE	EANES NEA	R COMANCHI	E										
Mar. 20, 1946 Oct. 30, 1963		$ \begin{array}{c} 6.4 \\ 2.4 \end{array} $	0.08	54 36	13 7.6	32 13	5.2 6.7	200 133	47 22	36 18	0.2			292 171	0.40 .23		188 121	24 12	1.0 .5		$\begin{array}{c} 7.4\\ 7.0 \end{array}$
							79	. LAKE	COMANCHE N	EAR COMAN	CHE		-				_				
Oct. 30, 1963		3.6		36	13	1	29	146	34	36	0.4	0.0		224	0.30		143	24	1.1	408	7.2
							8	D. LAKE	HAMILTON N	EAR HAMIL	TON										
Mar. 19, 1946 Sept. 24, 1964		7.8 2.7	0.22	59 34	5.2 3.7	9.4 6.7	4.8	183 110	25 18	13 9.5	0.2			226 133	0.31 .18		169 100	19 10	0.3		8.0 6.9
							8	1. BELTO	N RESERVOI	R NEAR BE	LTON		1				1				
Sept. 9, 1955 Aug. 22, 1956 Aug. 28 June 17, 1957 Mar. 24, 1958		6.4 2.9 2.8 9.6 9.0	0.01 .02 .02 .04 .04		4.4 5.0 5.0 3.4 9.1		16 15 15 8.2 22	159 163 157 122 201	9.2 7.9 17 10 30	15 14 19 7.5 35	0.2 .3 .4 .2	·5 ·2 2.2		c196 170 185 138 c300	0.27 .23 .25 .19 .41		128 131 142 106 204	0 0 13 6 40	0.6 .6 .5 .3 .7	317 338 245	7.3 7.4 7.9 7.2 8.1
Nov. 13, 1963 May 26, 1964 Nov. 6 Oct. 1, 1965		6.4 4.4 4.5 5.8	. 02	45 40	13 12 10 8.7		39 33 15 24	160 158 138 182	37 33 19 22	59 48 28 36	.4 .3 .2 .3	.5		280 254 185 242	. 38 . 35 . 25 . 33		168 162 141 173	38 32 28 24	1.3 1.1 .5 .8	464 351	7.3 7.8 7.5 7.0
								82. LEC	ON RIVER NE	AR BELTON	-		-			-					
Mar. 28, 1961 May 31, 1962 June 8 June 22 July 11	e2,130 32 103 440 225	8.4 7.0 5.2 3.4 4.4		65 62 52 52 49	9.5 11 12 11 13		18 22 26 26 23	206 215 185 178 171	28 29 34 32 33	27 28 34 36 36	0.3 .3 .3 .4	2.0		c272 267 255 249 243	0.37 .36 .35 .34 .33		201 200 179 175 176	32 24 28 29 36	0.6 .7 .8 .9 .8	475 449 447	7.5 7.0 7.3 7.4 6.8
Aug. 16 Sept. 5 Sept. 17 Oct. 23 Nov. 27	6.48			42 53 51 48 45	15 13 13 13 13		66 24 27 26 26	196 189 186 171 163	57 31 30 32 32	62 35 38 39 38	. 5 . 4 . 3 . 4 . 4	.5		348 c262 c276 c258 c258 241	.36		166 186 181 173 166	6 31 28 33 32	2.2 .8 .9 .9	454 458 453	6.9 7.0 6.8 6.8 6.9
Jan. 10, 1963 Feb. 4 Mar. 14 Apr. 24 May 23		5.7 4.9 6.0 6.3 7.0		38 56 54 54 54	11 13 13 12 13		22 32 36 37 39	132 194 194 192 192	26 36 37 35 39	37 46 48 49 52	. 4 . 4 . 4 . 5			205 c292 c301 289 299	. 40 . 41 . 39		140 193 188 184 188	32 34 29 26 30	1.1 1.2	515 514 505	6.9 6.8 6.9 7.7 6.9
June 19 July 23 Aug. 28 Oct. 2 Nov. 6	13.2 3.66 6.6	1 6.6		46 50 47 48 55	$ \begin{array}{r} 14 \\ 13 \\ 14 \\ 14 \\ 13 \end{array} $		36 46 60 43 43	$160 \\ 184 \\ 191 \\ 186 \\ 198$	38 41 49 37 36	56 60 69 56 58	.34.54.4			275 308 342 296 311	. 42 . 47 . 40		172 178 175 178 190	42 28 18 25 28	2.0	538 611 543	7.3 6.7 6.8 6.9 6.8

Table 4.--Chemical analyses of streams and reservoirs in the Brazos River basin for locations other than daily stations.--Continued

See footnotes at end of table.

- 97 -

Table 4 .-- Chemical analyses of streams and reservoirs in the Brazos River basin for locations other than daily stations .-- Continued

2.4					Mag		De							12.8	solved a	4	Hard as Ca		So-	Specific con-	
Date of collection	Discharge (cfs)	Silica (SiQ _g)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	Bicar- bonate (HCO ₃) (a)	Sulfate (SO4)	Chloride (Cl)		Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pE
						8	32. 1	LEON RIVE	R NEAR BEL	TONCont	nued										
ec. 9, 1963 an. 13, 1964 eb. 17 ar. 23 pr. 30	5.45 5.44 21.0 9.1 2,230			54 52 54 54 49	14 13 13 13 13	443	13 10 10 14 17	201 184 189 188 171	36 36 36 34 37	58 57 56 49 55	0.5 .4 .4 .4 .4	0.8 .8 1.8 1.8 .2		314 297 302 284 281	0.43 .40 .41 .39 .38		192 183 188 188 188 176	28 32 33 34 36	1.4 1.3 1.3 1.1 1.2	566 543 537 521 513	7. 7. 7.
une 2 uly 6 ug. 10	15.0 1,330 5.0	6.9 6.2 9.3		57 40 51	$\begin{array}{c}12\\6.4\\7.5\end{array}$	1	33 18 21	189 132 180	35 21 17	50 25 25	.3 .4 .4	$1.2 \\ .0 \\ 2.8$		288 182 223	.39 .25 .30		192 126 158	36 18 11	1.0 .7 .7	531 335 392	6.
							83.	SULPHU	R CREEK BE	LOW LAMPAS	SAS										
uly 7, 1964	6.01	6.2		77	53	43	9	192	20	840	0.3	0.0		1,530	2.08		410	252	9.4	2,890	6.
							84.	LAMPAS	AS RIVER N	EAR KEMPNI	ER										-
ine 3, 1963 ir. 20, 1964 ine 2	$\begin{array}{r}10.1\\227\\23.5\end{array}$	5.3 7.8 5.7		56 50 61	40 9.5 26	23 2 14	20	192 170 195	21 16 17	440 36 285	0.4 .2 .3	0.1 .8 .2		887 204 639	1.21 .30 .87		302 164 259	144 24 99	$5.8 \\ .7 \\ 4.0$	418	7.
						86	3. NC	ORTH SAN	GABRIEL RI	VER AT GEO	RGETC	OWN									
eb. 24, 1961 ar. 28 an. 4, 1962 ug. 24 ept. 8	b80 121 23.0 1.88 	11 7.4 16 10		92 65 29 48	15 19 18 5.4	ī	13 17 25 3.5	310 234 244 123 163	22 27 24 22 11	18 27 32 54 3.5	0.2 .3	21 6.6 .1 3.5		c364 c302 c237 167	0.50 .41 .32 .23		$291 \\ 238 \\ 240 \\ 146 \\ 142$	37 46 40 46 8	0.3	586 529 520 392 284	7.7.7.
ct. 31 ov. 26 an. 11, 1963 eb. 5 ar. 22	15.7 4.56 1.63 5.53 5.92	5.7 3.6		45 41 47 5.1 48	9.2 20 15 21 18	1	2.0 3 1 4	162 175 154 216 196	12 24 42 26 24	10 30 21 33 26	.3 .2 .3 .3 .3 .3	$ \begin{array}{r} & .0 \\ 1.2 \\ 2.0 \\ 2.2 \\ .8 \\ .8 $		c178 221 220 c268 232	. 24 . 30 . 30 . 36 . 32		150 185 179 224 194	17 41 53 46 33	.2 .4 .4 .4 .4	307 409 394 480 428	7. 6. 7.
pr. 25 ay 27 une 20	4.53 1.75 .64			39 33 32	19 16 19	1	20 16 24	$173 \\ 152 \\ 140$	19 15 21	40 30 52	.5 .3 .3	.2		c237 195 238	. 32 . 27 . 32		175 148 158	34 24 43	.7 .6 .8	420 344 401	7.
					T	87	7. SC	DUTH SAN	GABRIEL RI	VER AT GE	DRGETC	OWN									
eb. 24, 1961 ar. 28 an. 4, 1962 ct. 31 lov. 26				74 57 43 44	14 15 12 14	ī	14 17 14 1.5	254 230 211 137 141	25 29 26 42 45	18 25 23 21 20	 0.2 .3 .2	17 9.1 .0 2.0		c311 c258 c217 c216	0.42 .35 .30 .29		242 220 204 157 167	34 32 31 44 52	0.4 .5 .5 .4	520 505 449 368 379	7. 7. 6.
an. 11, 1963 eb. 5 ar. 18 pr. 25 ay 27	10.8 1.32 2.61 1.66 .04	$ \begin{array}{c} 4.2 \\ 7.3 \end{array} $		50 52 45 36 28	18 16 15 15 17	1	.8 17 14 16 16	194 180 158 137 126	21 44 41 37 29	24 25 22 23 28	.3 .3 .7 .3	5.5 3.5 1.2 .8 .5		231 c254 221 203 188	.31 .35 .30 .28 .26		199 196 174 152 140	40 48 44 39 36	. 3 5 5 6 6	422 436 388 347 340	7.7.7.
une 30	.25	6.8		28	18	1	16	136	26	25	.3	6.0		193	.26		144	32	. 6	334	7

See footnotes at end of table.

- 98 -

×.

					Mag		De								solved alcula		Hard as Ca		So-	Specific con-	
Date of collection	Discharge (cfs)	Silica (SiQ ₈)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	Bicar- bonate (HCO ₃) (a)	Sulfate (SO ₄)	Chloride (Cl)		Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH
							88,	SAN GAB	RIEL RIVER	AT GEORG	ETOWN										
eb. 24, 1961 ar. 28 ec. 11 an. 4, 1962 an. 17	e527 e201 62.5 53.9 43	9.8 7.6 7.0 7.5		75 70 68	15 17 18 18		14 14 14	262 248 256 249	24 28 21 23 23	18 26 24 26 26	.2	11		c309 c297 c298	0.42 .40 .41		248 246 248 244	34 43 38 40	0.4 .4 .4	532 538 520 523	7. - 7.
Mar. 29 May 1 June 11 Aug. 17 Sept. 21	34 89.3 50.5 8.08 11	7.2 7.6 11 12 9.1		33 53 58 78 76	17 13 14 19 18		14 12 11 15 13	138 199 219 297 286	23 18 18 17 18	28 18 17 26 22	.2 .2 .3 .3 .2	7.0 4.0 3.0 7.6 9.8		197 c240 240 321 307	.27 .33 .33 .44 .42		152 186 202 272 264	39 23 23 29 29	.5 .4 .3 .4 .3	357 396 421 567 531	7. 7. 7.
Nov. 14 Nov. 26 Jan. 11, 1963 Feb. 5 Mar. 18	13 17 19.7 16 21	7.6 7.3 4.0 6.9 6.8		65 74 39 71 66	19 18 12 19 17	7.8	15 12 1 .6 13 15	$255 \\ 274 \\ 146 \\ 266 \\ 250$	20 23 14 23 24	24 22 16 24 23	.3 .3 .2 .2 .3			286 298 171 307 296	.39 .41 .23 .42 .40	5	240 258 147 255 234	31 34 27 37 30	.4 .3 .4 .4	509 537 333 529 495	7. 7. 7.
Apr. 25 May 27 June 20 Aug. 1 Sept. 5	7.95			76 80 76 39 86	17 19 20 19 22		19 13 16 16 11	286 304 300 198 342	21 18 18 16 14	26 21 26 21 19	.7 .3 .3 .3	7.3 8.8 6.8 1.2 8.1		c318 318 321 224 340	.43 .43 .44 .30 .46	100 - 35 	260 278 272 175 305	25 28 26 13 24	.5 .3 .4 .5 .3	521 542 549 393 596	7.7.7.
					9	91. LIT	TLE B	RAZOS RIV	ER AT STAT	E HIGHWAY	21 N	EAR B	RYAN								
Dct. 24, 1962 Jan. 2, 1963 Mar. 13 May 22 July 25		15 11 15		43 51 56 59 84	8.7 11 13 13 23		68 60 68 84 34	209 152 146 200 318	40 76 94 89 178	55 70 86 88 258	0.4 .3 .3 .4 .3	.0 .0		c341 c370 c424 448 948	0.46 .50 .58 .61 1.29		144 172 193 200 304	0 48 74 36 44	2.5 2.0 2.1 2.6 5.8	573 596 681 734 1,560	6. 6.
Dct. 8 Dec. 18 Feb. 24, 1964 Mar. 24 June 19	.15 3.80 9.06 28.2 11.1	7.3		45 51 48 41 60	17 10 10 11 14	1	59 34 87 38 27	176 350 196 98 280	23 62 79 71 93	100 76 76 52 106	.4 .5 .3 .3 .4	.2 .0 1.5		342 513 402 275 558	.47 .70 .55 .37 .76		182 168 161 148 207	38 0 67 0	$ \begin{array}{c} 4.5 \\ 3.0 \\ 1.4 \end{array} $	618 880 658 488 932	7. 8. 6.
Aug. 20	4.14	12		53	28	2	60	430	153	212	. 3	. 0		929	1.26		247	0	7.2	1,550	7.
								94. LA	KE MEXIA N	EAR MEXIA											
Feb. 13, 1962								128		120				350			125	20		630	7.

Table 4.--Chemical analyses of streams and reservoirs in the Brazos River basin for locations other than daily stations.--Continued

See footnotes at end of table.

Table 4 .-- Chemical analyses of streams and reservoirs in the Brazos River basin for locations other than daily stations .-- Continued

														2	solved a		Hard as Ca		So-	Specific con-	-
Date of collection	Discharge (cfs)	Silica (SiQ _s)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	Bicar- bonate (HCO ₃) (a)	Sulfate (SO ₄)	Chloride (Cl)		Ni- trate (NO ₃)		Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	1
						99	э. ві	G CREEK	AT FARM RO	AD 1994 NI	EAR GU	J¥									
ay 2, 1962 une 9 ec. 3 eb. 14, 1963 ct. 15	- b50 - b890 - b2 - b1.3									22 18 10 75 310	-									219 195 116 564 1,550	
eb. 6, 1964 ar. 2										16 4.7										190 398	
						10	00. E	IG CREEK	AT FARM R	OAD 762 NI	AR GU	JY									1
ay 2, 1962 une 9 ec. 3 eb. 14, 1963 ct. 15	b60 b1,100 b2 b1.8									402 13 6,890 85 292										1,480 176 18,700 652 1,500	
eb. 6, 1964 ar. 2										13,000 9,150										$33,400 \\ 25,100$	
	1				1	01. BI	G CREE	K AT COUN	TY ROAD 9	MILES NO	THEAS	ST OF	GUY								
ay 2, 1962 une 9 ec. 3 eb. 14, 1963 ct. 15	- b60 - b1,100 - b2 - b2.2									225 18 5,460 121 298				(a)						934 232 15,300 954 1,470	
feb. 6, 1964 lar. 2										8,850 63										24,100 457	
					102.	COW CI	REEK A	T KITTY N	NASH ROAD	8 MILES NO	RTHEA	ST OI	7 DAM	DN							-
pr. 10, 1962 ec. 3 eb. 14, 1963 ug. 15 ct. 15	- b45 - b.3 - b220									$208 \\ 10 \\ 46 \\ 12 \\ 645$										943 164 320 180 2,510	
eb. 4, 1964 eb. 6 ug. 18	- b220									15 21 121										187 199 772	
					1	04. VAI	RNER C	REEK AT S	STATE HIGH	WAY 35 AT	EAST	COLUM	IBIA								
ay 2, 1962 ec 3 eb. 14, 1963 ug. 15 an 14, 1964	b13 b.08 b45									$40 \\ 1,060 \\ 1,520 \\ 385 \\ 305$				×.						$262 \\ 3,460 \\ 5,000 \\ 1,540 \\ 1,500 $	
Feb. 5, 1964 June 16 Sept. 17	- b2.2									$\begin{smallmatrix}&&61\\2,600\\&910\end{smallmatrix}$										325 7,830 3,040	

A 2

a Includes the equivalent of any carbonate $({\rm CO}_3)$ present. b Field estimate.

c Residue on evaporation at 180°C. d Total Iron.

2 8

e Mean daily discharge.

Station	Stream and location		Perc	ent of d	ays	
(Fig. 3)		10	25	50	75	90
6	Double Mountain Fork Brazos River near Aspermont 1949-51, 1957-64 water years: Sulfate (SO ₄) Chloride (Cl) Dissolved solids Hardness as CaCO ₃	1,900 1,950 5,750 2,470	1,720 1,520 4,850 2,110	1,480 1,050 3,770 1,670	870 425 2,000 900	425 170 1,040 460
20	Salt Fork Brazos River near Aspermont 1949-51, 1957-64 water years: Sulfate (SO ₄) Chloride (C1) Dissolved solids Hardness as CaCO ₃	3,000 29,400 51,500 4,650	2,920 25,500 45,000 4,400	2,600 18,700 33,900 3,800	1,720 7,800 15,000 2,300	780 2,280 4,900 1,030
23	Brazos River at Seymour 1960-64 water years: Sulfate (SO ₄) Chloride (Cl) Dissolved solids Hardness as CaCO ₃	1,910 6,200 12,400 2,300	1,740 5,200 10,700 2,100	1,500 3,750 8,100 1,750	980 1,650 4,100 1,060	600 720 2,120 630
35	California Creek near Stamford 1963-64 water years: Sulfate (SO ₄) Chloride (C1) Dissolved solids Hardness as CaCO ₃	2,550 2,600 7,100 2,600	2,220 2,200 6,150 2,300	1,930 1,800 5,200 2,000	1,220 1,100 3,500 1,400	440 380 1,460 640

1.6

Table 5.--Concentrations of selected constituents (in parts per million) that were equaled or exceeded for indicated percentage of days of flow.

Station	. Stream and location		Perc	ent of a	lays	
(Fig. 3)	2	10	25	50	75	90
47	Hubbard Creek near Breckenridge 1956-61 water years:					
	Sulfate (SO ₄)	220	140	62	25	14
	Chloride (Cl)	930	580	240	92	48
	Dissolved solids	1,810	1,280	680	335	210
	Hardness as CaCO ₃	740	550	320	175	115
	1963-64 water years:					
	Sulfate (SO ₄)	340	. 72	18	13	11
	Chloride (C1)	275	155	115	94	80
	Dissolved solids	1,000	470	330	278	250
	Hardness as CaCO3	525	258	184	156	141
49	Clear Fork Brazos River at Eliasville 1962-64 water years:					
	Sulfate (SO ₄)	620	400	205	64	30
	Chloride (Cl)	880	650	410	190	120
	Dissolved solids	2,210	1,600	1,000	500	365
	Hardness as CaCO ₃	890	640	410	225	175
54	Brazos River below Possum Kingdom Dam, near Graford 1943-1964 water years:					
	Sulfate (SO ₄)	390	340	305	280	245
	Chloride (C1)	650	565	500	450	380
	Dissolved solids	1,710	1,510	1,350	1,230	1,080
	Hardness as CaCO ₃	515	465	425	395	370
64	Brazos River below Whitney Dam, near Whitney 1949-51 water years:					
	Sulfate (SO ₄)	330	300	245	148	59
	Chloride (Cl)	510	470	400	250	102
	Dissolved solids	1,380	1,290	1,120	770	395
	Hardness as CaCO ₃	450	425	375	275	
		450	425	575	275	165

3.1

d.

Table 5.--Concentrations of selected constituents (in parts per million) that were equaled or exceeded for indicated percentage of days of flow.--Continued

- 102 -

tation	Stream and location		Perc	ent of d	ays	
Fig. 3)		10	25	50	75	90
64	Brazos River below Whitney Dam, near Whitney 1953-64 water years:					
	Sulfate (SO ₄)	280	245	200	155	113
	Chloride (C1)	445	400	330	265	195
	Dissolved solids	1,230	1,120	960	795	635
	Hardness as CaCO ₃	405	375	330	280	235
85	Lampasas River at Youngsport 1962-64 water years					
	Sulfate (SO ₄)	28	23	20	15	12
	Chloride (Cl)	280	215	170	117	81
	Dissolved solids	660	550	468	370	298
	Hardness as CaCO ₃	295	262	235	200	172
89	Little River at Cameron 1961-64 water years:	-				
	Sulfate (SO ₄)	59	50	42	36	30
	Chloride (Cl)	81	66	52	43	32
	Dissolved solids	447	385	325	289	242
	Hardness as CaCO ₃	269	234	202	182	156
90	Brazos River at State Highway 21, near Bryan 1962-64 water years:					1
	Sulfate (SO ₄)	195	172	143	107	71
	Chloride (Cl)	330	280	220	152	89
	Dissolved solids	960	850	720	560	400
	Hardness as CaCO ₃	338	312	280	240	196

Table 5.--Concentrations of selected constituents (in parts per million) that were equaled or exceeded for indicated percentage of days of flow.--Continued

A substitution of the state of

swin provisions and selected constrained a (10 parts per stillion) care were equaled or exceeded to

- 103

I.

Station	Stream and location		Perc	ent of da	ays	
(Fig. 3)		10	25	50	75	90
93	Yegua Creek near Somerville 1962-64 water years:					
	Sulfate (SO ₄)	275	212	125	66	41
	Chloride (Cl)	170	142	86	42	23
	Dissolved solids	800	635	390	220	143
	Hardness as CaCO ₃	382	300	180	98	62
96	Navasota River near Bryan 1959-64 water years:	e.				
	Sulfate (SO ₄)	49	43	37	30	24
	Chloride (Cl)	260	180	122	76	49
	Dissolved solids	570	427	320	225	165
	Hardness as CaCO ₃	150	125	103	80	61
97	Brazos River at Richmond					
	1943-51 water years:					
	Sulfate (SO ₄)	196	149	86	53	36
	Chloride (C1)	330	240	127	72	45
	Dissolved solids	960	750	465	315	235
	Hardness as CaCO ₃	347	290	206	156	126
	1955-64 water years:					1
	Sulfate (SO ₄)	182	137	92	60	40
	Chloride (Cl)	300	219	136	82	51
	Dissolved solids	895	695	490	345	255
	Hardness as CaCO ₃	330	275	215	166	134

6

12

Table 5.--Concentrations of selected constituents (in pasts per million) that were equaled or exceeded for indicated percentage of days of flow.--Continued

- 104 -

		Dissolv	ed solids	Chlo	ride	Sulf	ate
Water Year	Water discharge (cfs)	Weighted- average concentration	Load (tons per day)	Weighted- average concentration	Load (tons per day)	Weighted- average concentration	Load (tons per day)
		6.	DOUBLE MOUNTAIN	FORK BRAZOS RI	VER NEAR ASPERMO	DNT	
1949 1950 1951 1957 1958	139 171 63.0 352 130	916 1,010 1,430 910 1,390	344 466 243 865 488	150 148 203 123 265	56.3 68.3 34.5 112 93.0	380 460 700 400 592	143 212 119 380 208
1959 1960 1961 1962 1963	219 149 398 173 164	999 977 1,180 1,140 1,120	591 393 1,270 532 496	168 159 237 217 220	99.3 64.0 255 101 97.4	429 410 472 455 457	254 165 507 213 202
1964	18.8	2,090	106	466	23.7	875	44.4
Avg. 1949-51 1957-64	180	1,090	530	189	91.9	458	223
Avg. 1949-64	184	1,040	520	180	90	430	215
			20. SALT FORK	BRAZOS RIVER N	EAR ASPERMONT		• 67
1949 1950 1951 1957 1958	157 166 64.5 299 71.4	4,080 4,870 7,380 3,220 8,500	1,730 2,180 1,290 2,600 1,640	1,820 2,230 3,560 1,360 4,410	771 999 620 1,050 850	709 786 1,020 625 826	301 352 178 505 159
1959 1960 1961 1962 1963	126 80.2 253 63.2 80.8	5,020 5,660 5,030 9,150 6,070	1,710 1,230 3,440 1,560 1,320	2,420 3,820 2,290 4,490 2,900	823 611 1,560 766 633	666 653 817 1,200 854	227 141 558 205 186
1964	19.1	18,600	959	9,960	514	1,570	81.0
Avg. 1949-51 1957-64	125	5,270	1,780	2,480	837	776	262
Avg. 1949-64	132	4,890	1,740	2,300	820	725	260
			23. BR	AZOS RIVER AT SI	EYMOUR		
1960 1961 1962 1963 1964	279 807 308 299 87.7	2,510 2,270 2,750 2,850 3,390	1,890 4,950 2,290 2,300 803	975 817 1,060 1,110 1,410	734 1,780 881 896 334	576 592 659 646 711	434 1,290 548 522 168
Avg. 1960-64	356	2,540	2,440	962	925	616	592
			47. HUBBARI	D CREEK NEAR BRI	ECKENRIDGE		2
1956 1957 1958 1959 1960 1961	22.7 633 204 47.9 83.0 134	212 180 332 325 330 300	13.0 308 183 42.0 74.0 109	58 46 129 121 120 109	3.55 78.6 71.1 15.6 26.9 39.4	11 10 23 24 25 20	0.67 17.1 12.7 3.10 5.60 7.24
Avg. 1956-61	187	240	121	77	38.9	15	7.57

Table 6.--Annual summaries of water discharge and dissolved solids, chloride, and sulfate loads at selected stations in the Brazos River basin.

		Dissolv	ved solids	Chl	oride	Sul	fate
Water Year	Water discharge (cfs)	Weighted- average concentration	Load (tons per day)	Weighted- average concentration	Load (tons per day)	Weighted- average concentration	Load (tons per day)
			49. CLEAR FOR	K BRAZOS RIVER	AT ELIASVILLE		
1962 1963 1964	540 194 71.7	505 661 627	736 346 121	156 203 273	227 · 106 52.9	95 149 63	139 78.0 12.2
Avg. 1962-64	269	553	402	178	129	105	76.3
		54.	BRAZOS RIVER BEL	OW POSSUM KING	OOM DAM, NEAR GRA	FORD	
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1956 1957 1958 1959 1960 1961 1962 1963 1964 Avg. 1949-64	1,161 164 528 502 1,343 470 769 898 603 294 220 1,052 1,120 983 4,145 1,226 458 749 1,409 1,138 867 231	994 1,310 1,390 1,320 1,380 1,460 1,500 1,230 1,320 1,320 1,390 1,610 1,260 1,370 443 1,180 1,130 1,360 1,320 1,320 1,380 1,320 1,380	3,110 580 1,980 1,790 5,000 1,850 3,110 2,980 2,150 1,100 956 3,410 3,810 3,640 4,960 3,910 1,400 2,830 6,850 4,180 3,090 861 3,080	370 498 561 519 530 510 531 451 490 527 636 460 448 445 119 443 425 546 697 500 496 515	1,160 221 800 703 1,920 647 1,100 1,090 798 418 378 1,310 1,350 1,180 1,350 1,180 1,330 1,470 526 1,100 2,650 1,540 1,160 321 1,110	201 274 256 262 303 374 375 280 291 295 322 245 301 379 108 248 235 288 398 313 286 307	630 121 365 355 1,100 475 779 679 474 234 191 696 910 1,010 1,210 821 291 582 1,510 962 669 191 701
Avg. 943-64	924	1,160	2,890	422	1,050	260	649
		64	. BRAZOS RIVER	BELOW WHITNEY D	AM, NEAR WHITNEY		
1949 1950 1951 1952 1953	1,566 1,520 840 348 141	765 748 1,190 912 651	3,230 3,070 2,700 857 248	242 244 437 332 209	1,020 1,000 991 312 79.6	172 157 260 167 112	727 644 590 157 42.6
1954 1955 1956 1957 1958	912 997 1,571 6,213 2,322	1,040 1,030 1,010 459 604	2,560 2,770 4,280 7,700 3,790	392 374 333 126 170	965 1,010 1,410 2,110 1,070	198 205 255 96 122	488 552 1,080 1,610 765
1959 1960 1961 1962 1963 1964	681 1,882 2,054 1,737 1,215 434	893 705 1,040 1,030 896 1,070	1,640 3,580 5,770 4,830 2,940 1,250	309 229 373 364 309 396	568 1,160 2,070 1,710 1,010 464	165 130 213 227 189 226	303 661 1,180 1,060 620 265
Avg. 949-64	1,527	777	3,200	257	1,060	163	672

Table 6.--Annual summaries of water discharge and dissolved solids, chloride, and sulfate loads at selected stations in the Brazos River basin.--Continued Table 6.--Annual summaries of water discharge and dissolved solids, chloride, and sulfate loads at selected stations in the Brazos River basin.--Continued

			. An and the second	9 1 1					
		Dissol	ved solids	Chl	oride	Sul	fate		
Water Year	Water discharge (cfs)	Weighted- average concentration	Load (tons per day)	Weighted- average concentration	Load (tons per day)	Weighted- average concentration	Load (tons per day)		
			85. LAME	PASAS RIVER AT Y	OUNGSPORT				
1962 1963 1964	102 57.4 86.5	354 373 301	97.5 57.8 70.3	98 119 84	27.0 18.4 19.6	22 20 15	6.1 3.1 3.5		
Avg. 1961-64									
	- AL	······	89. I	ITTLE RIVER AT	CAMERON	E-			
1961 1962 1963 1964 Avg.	4,154 854 475 573	279 302 301 263	3,130 696 386 407	27 43 46 40	303 99.1 59.0 61.9	31 37 44 29	348 85.3 56.4 44.9		
1961-64	1,514	282	1,150	32	131	33	135		
					AY 21, NEAR BRYA				
1962 1963 1964	3,538 1,896 1,334	669 703 511	6,390 3,600 1,840	196 217 143	1,870 1,110 515	134 146 96	1,280 747 346		
Avg. 1962-64	2,256	647	3,940	191	1,160	130	792		
			93. YEG	UA CREEK NEAR S	OMERVILLE				
1962 1963 1964	131 234 41.4	319 194 162	113 123 18.1	65 39 26	23.0 24.6 2.9	98 57 45	34.7 36.0 5.0		
Avg. 1962-64	135	231	84.2	46	16.8	69	25.2		
			96, NA	VASOTA RIVER NE.	AR BRYAN				
1959 1960 1961 1962 1963 1964	529 532 1,373 289 48.7 52.0	226 248 143 328 288 317	323 356 530 256 37.9 44.5	80 85 44 125 110 141	114 122 163 97.5 14.5 19.8	25 33 19 40 43 30	35.7 47.4 70.4 31.2 5.7 4.2		
Avg. 1959-64	471	203	258	70	89.0	26	33.1		
			97. BR	AZOS RIVER AT R	I CHMOND				
1946 1947 1948 1949 1950	10,220 8,765 2,687 4,645 5,783	299 425 479 423 368	8,250 10,100 3,480 5,310 5,750	53 100 118 103 87	1,460 2,370 856 1,290 1,360	39 70 84 76 58	1,080 1,660 609 953 906		
1951 1952 1953 1954 1955	1,418 1,820 4,105 2,727 2,168	696 370 215 453 498	2,660 1,820 2,380 3,340 2,920	214 85 31 127 145	819 418 344 935 849	134 54 25 72 83	513 265 277 530 486		

		Dissol	ved solids	Chlo	oride	Su	lfate
Water Year	Water discharge (cfs)	Weighted- average concentration	Load (tons per day)	Weighted average concentration	Load (tons per day)	Weighted average concentration	Load (tons per day)
			97. BRAZOS R	IVER AT RICHMON	DContinued		
1956 1957 1958	2,158 15,290 11,870	834 317 303	4,860 13,090 9,710	260 65 57	1,510 2,680 1,830	185 54 50	1,080 2,230 1,600
1959 1960	4,450 8,869	323 331	3,880 7,930	74 67	889 1,600	51 50	613 1,200
1961 1962 1963 1964	16,130 4,508 2,759 1,715	312 551 513 419	13,590 6,710 3,820 1,940	64 156 145 111	2,790 1,900 1,080 514	49 106 100 74	2,130 1,290 745 343
Avg. 949-64	5,651	367	5,600	85	1,300	62	946
Avg. 946-64	5,899	368	5,860	84	1,340	61	972

Table 6.--Annual summaries of water discharge and dissolved solids, chloride, and sulfate loads at selected stations in the Brazos River basin.--Continued

	Contributing		ed-solids eld		oride .eld		ilfate vield
Sub-basin and location	drainage area (square miles)	Tons per day	Tons per sq mile per year	Tons per day	Tons per sq mile per year	Tons per day	Tons per sq mile per year
Upper Brazos River basin (area up- stream from Possum Kingdom Dam)	13,310	3,080	84	1,110	30	700	19
Double Mountain Fork sub-basin upstream from Aspermont station.	1,510	520	125	90	21	215	52
Salt Fork sub-basin upstream from Aspermont station	2,060	1,740	308	820	145	260	46
Salt Croton Creek sub-basin upstream from Aspermont station.	64.3	850	4,830	485	2,750	30	170
Remainder of contributing area in upper Brazos River basin	9,740	. 825	31	200	8	230	9
Middle Brazos River basin (area betweer Possum Kingdom and Whitney Dams)	3,620	267	28	21	2	21	2
Palo Pinto Creek sub-basin upstream from Santo station	567	39	25	5	3	3	2
Lower Brazos River basin (area between Whitney Dam and Richmond station)	17,850	2,580	53	281	6	304	6
Bosque River sub-basin upstream from Waco station	1,655	222	49	17	4	33	7
Little River sub-basin upstream from Cameron station	6,982	968	51	110	6	114	6
Yegua Creek sub-basin upstream from Somerville station	1,008	125	45	25	9	37	13
Navasota River sub-basin upstream from Bryan station	1,429	220	56	76	19	28	7

Table 7.--Summary of estimated yields of dissolved solids, chloride, and sulfate for selected drainage areas, 1949-64 water years.

Table 8.-- Observed average concentrations and loads of dissolved solids, chloride, and sulfate at selected sites on the Brazos River for the 1957-64 water years and hypothetical averages based on partial control of natural salinity.

Constituent		weighted rage	(2 cfs of Sal	With low flow (2 cfs or less) of Salt Croton Creek removed.) percent t load of roton removed.	With 90 percent of salt from Salt Croton Creek controlled, plus partia control of other source			
	ppm	Tons per day	ppm	Tons per day	ppm	Tons per day	ppm	Tons per day		
	<u>a</u> / 54	. BRAZOS R	IVER BELOW	POSSUM KING	GDOM DAM NI	EAR GRAFORD				
Dissolved solids	1,020	3,510	861	2,970	794	2,740	765	2,640		
Chloride	365	1,260	270	930	239	825	229	790		
Sulfate	226	780	223	770	218	750	212	730		
		63. BRAZO	S RIVER BEI	LOW WHITNEY	DAM NEAR W	VHITNEY				
Dissolved solids	705	3,930	608	3,390	566	3,160	548	3,060		
Chloride	228	1,270	168	940	150	835	143	800		
Sulfate	145	810	143	800	140	780	136	760		
97. BRAZOS RIVER AT RICHMOND										
Dissolved solids	343	7,590	318	7,050	308	6,820	304	6,720		
Chloride	75	1,660	60	1,330	55	1,220	54	1,190		
Sulfate	57	1,260	56	1,250	56	1,230	55	1,210		

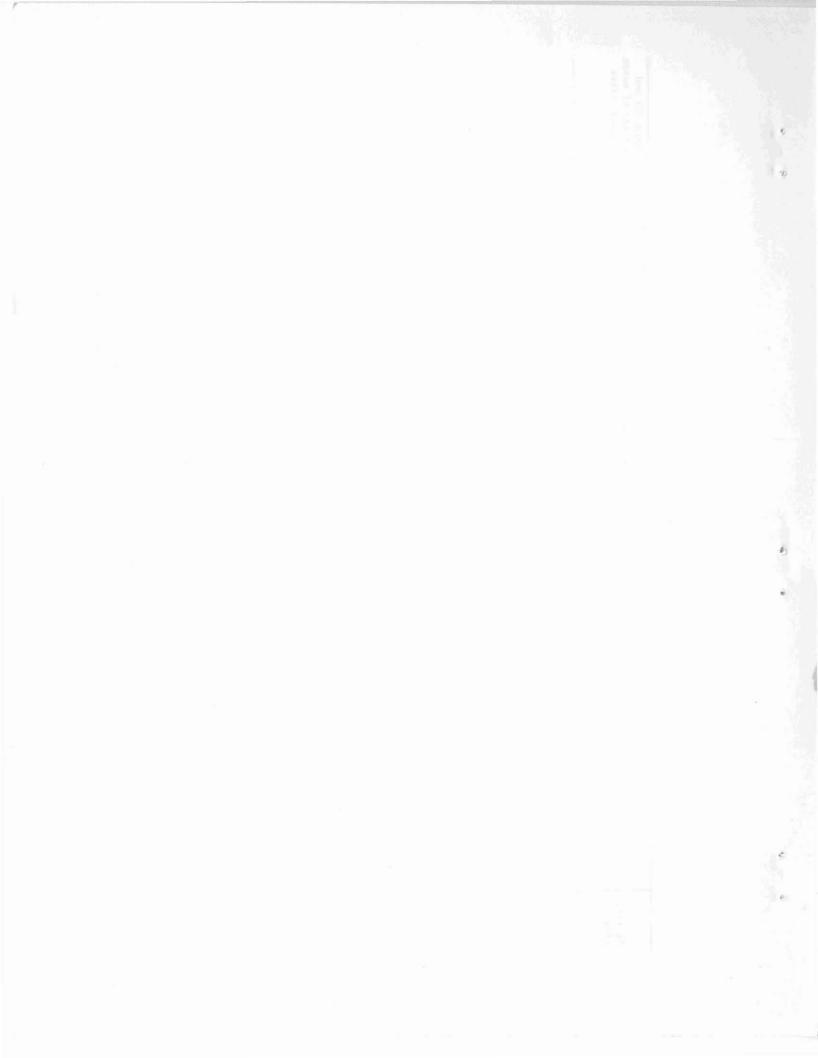
a/ Data from Hughes (1965, p. 6)

Table 9.--Source and significance of dissolved mineral constituents and properties of water.

Constituent or property	Source or cause	Significance
Silica (SiO ₂)	Dissolved from practically all rocks and soils, commonly less than 30 ppm. High concentrations, as much as 100 ppm, generally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Carried over in steam of high pressure boilers to form deposits on blades of turbines. Inhibits deterioration of zeolite-type water softeners.
Iron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equip- ment. More than 1 or 2 ppm of iron in surface waters generally indicate acid wastes from mine drainage or other sources.	On exposure to air, iron in ground water oxidizes to reddish-brown precipitate. More than about 0.3 ppm stain laundry and utensils reddish-brown. Objectionable for food processing, textile pro- cessing, beverages, ice manufacture, brewing, and other processes. U.S. rublic Health Service (1962) drinking-water standards state that iron should not exceed 0.3 ppm. Larger quantities cause unpleasant taste and favor growth of iron bacteria.
Calcium (Ca) and magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from lime- stone, dolomite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.	Cause most of the hardness and scale-forming properties of water; soap consuming (See hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and in textile manu- facturing.
Sodium (Na) and potassium (K)	Dissolved from practically all rocks and soils. Found also in ancient brines, sea water, industrial brines, and sewage.	Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little effect on the usefulness of water for most purposes. Sodium salts may cause foaming in steam boilers and a high content may limit the use of water for irrigation.
Bicarbonate (HCO ₃) and carbonate (CO ₃)	Action of carbon dioxide in water on carbonate rocks such as limestone and dolomite.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon dioxide gas. In combination with calcium and magnesium, cause carbonate hardness.
Sulfate (SO4)	Dissolved from rocks and soils con- taining gypsum, iron sulfides, and other sulfur compounds. Commonly present in mine waters and in some industrial wastes.	Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. Some calcium sulfate is con- sidered beneficial in the brewing process. U.S. Public Health Service (1962) drinking-water standards recommend that the sulfate content should not exceed 250 ppm.
Chloride (Cl)	Dissolved from rocks and soils. Present in sewage and found in large amounts in ancient brines, sea water, and industrial brines.	In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosive- ness of water. U.S. Public Health Service (1962) drinking-water standards recommend that the chloride content should not exceed 250 ppm.
Fluoride (F)	Dissolved in small to minute quanti- ties from most rocks and soils. Added to many waters by fluoridation of municipal supplies.	Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of enamel calcifi- cation. However, it may cause mottling of the teeth, depending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptibility of the individual. (Maier, 1950)
Nitrate (NO ₃)	Decaying organic matter, sewage, fertilizers, and nitrates in soil.	Concentration much greater than the local average may suggest pollution. U.S. Public Health Service (1962) drinking-water standards suggest a limit of 45 ppm. Waters of high nitrate content have been reported to be the cause of methemoglobinemia (an often fatal disease in infants) and therefore should not be used in infant feeding. Nitrate has been shown to be helpful in reducing inter-crystalline cracking of boiler steel. It encourages growth of algae and other organisms which produce undesirable tastes and odors.
Dissolved solids	Chiefly mineral constituents dis- solved from rocks and soils. Includes some water of crystallization.	U.S. Public Health Service (1962) drinking-water standards recommend that waters containing more than 500 ppm dissolved solids not be used if other less mineralized supplies are available. Waters containing more than 1000 ppm dissolved solids are unsuitable for many purposes.
Hardness as CaCO ₃	In most waters nearly all the hardness is due to calcium and magnesium. All the metallic cations other than the alkali metals also cause hardness.	Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called non-carbonate hardness. Waters of hardness as much as 60 ppm are considered soft; 61-120 ppm, moderately hard; 121-180 ppm, hard; more than 180 ppm, very hard.
Specific conductance (micromhos at 25°C)	Mineral content of the water.	Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of ionization of the constituents.
Hydrogen ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydroxides, and phosphates, silicates, and borates raise the pH.	A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity. pH is a measure of the activity of the hydrogen ions. Corrosiveness of water generally increases with decreasing pH. However, excessively alkaline waters may also attack metals.

Table $\stackrel{\circ}{,} 10$.--Water-quality tolarances for industrial applications \underline{M}

Industry	Tur- bid- icy	Color	Color + 02 con- sumed	D.C. (ml/l)	Odor	Hard- ness	Alka- linity (as CaCO ₃)	Hđ	Total solids	Cæ	Fe	£	Pe + Mn	AL ₂ 0 ₃	\$10 ₂	σ	r co ₃	 BCO _S OII	CaS04	NagS04 to NagS05 ratio	Gen-2/ eral2/
Air conditioning <u>3</u> /- Baking	101	19	11	11	::	: (9)	::	::	11	11	0.5	0.5	0.5	11	11		11	 11	11	11	4. B
Boiler Feed: 0-150 pst 150-250 pst 250 pst and up	20 10	89,5	100 50 10	2 .2 0	111	75 40 8		8.8 9.9	3,000-1,000 2,500-500 1,500-100	111	111	111	111	5 .5 .05	40 20 5		200	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	111	1 to 1 2 to 1 3 to 1	111
Brewing: 5/ Light	10	11	11	11	Low	11	75	6.5-7.0	500	100-200 200-500	11		11	::	11			 11	100-200 200-500	88	с. 9 С. 9
Canning: Legumes	10	1-1		: :	Low	25-75	11	::	11	11	<u>1</u> 7	1 1 1	44	11	11		 _	 	11	11	00
Carbonated bev- erages <u>9</u> / Confactionary Cooling <u>9</u> /	2 : 2 10	9111	9111	::::	0 1 1 10	250	8111	1811	850 100	1111	4454	44 5 4	<i></i>	11:1	1111	-	1111	 	1111	1111	v¦* v,*
Ice (raw water) <u>9</u> / Laundering Plastics, clear, undercolored	1-5 2	5 2	11 1	11 1	11 1	181	30-50	11 1	300 200	11 1	.2 .02	27. 20.	2 2 02	11 1	91 1		11 1	 11 1	:: :	tî t	°
Paper and pulp: <u>10</u> Groundwood Kraft pulp Soda and suffica Light paper. HL-Grade	50 25 15 5	20 10 5	111 1	111 1	111-1	180 100 50	111 1	111 1	300 200 200	111 1	1.0 .1 .1	 .1. .05	1.0 .1 .1	111 1	111 1		111 1	 111 1	111 1	1:11-1	ء :: >
Rayon (viscose) pulp: Production Manufacture Tanning <u>11</u> /	5 .3 20	2 10-100	111	:::	111	8 55 50-135	50 51	7.8-8.3	100		2005	.03 2.	.05 2 05	48.0	811	Ŷ		 	111	111	111
Textiles: General Dyeing <u>12</u> / Gool scouring <u>13</u> /- sgs <u>13</u> /		20 5-20 70 5	111-1	111 1	::: sol	20 20 20	111 1	111 1		111 1	.25 .25 1.0	.25 1.0		111 1	111 1		111 1	 111 1	111 1	111 1	111 1


A-Ho corrotiveness; B-Ho silme formation; C-Conformance to Paderal drinking water standards necessary; D-Nacl, 275 ppm.
 Mater with alge and hyrrogen suffice odors are most unsuitable for air conditioning.
 Mater for distribution management in equivalence of a single distribution.
 Mater for distribution management in equivalence.
 Mater for distribution management in character.
 Mater for any requesting mater for a statistic or distribution.
 Mater for distribution management in character.
 Mater for any requestion mater and carbonization.
 Mater for any requestion of a statistic ordination.
 Mater for any requestion of a statistic ordination of a statistic ordination.
 Mater for any requestion of a statistic ordination.
 Mater for any requestion of a statistic ordination of a statistic ordinatin a statistic ordination.
 Mater for and requestin

b

Station (Fig. 3)	Source	Date or period	Salinity that was percentag daily che	equaled e of day	or excee s of flo	ded for w at sel	indicated	Salinity hazard (C) and sodium hazard (S) of water from miscellaneous sites
		period	10	25	50	75	90	
6	Double Mountain Fork Brazos River near Aspermont	1949-51, 1957-64	C4-S4	C4-S4	C4-S3	C4-S2	©3-S1	
20	Salt Fork Brazos River near Aspermont	1949-51, 1957-64	C4-S4	C4-S4	C4-S4	C4-S4	C4-S4	
23	Brazos River at Seymour	1960-64	C4-S4	C4-S4	C4-S4	C4-S4	C4-S3	
24	Millers Creek near Munday	Oct. 10, 1962						C2-S1
49	Clear Fork Brazos River at Eliasville	1962-64	C4-S2	C4-S2	C3-S1	C3-S1	C2-S1	
54	Brazos River below Possum Dam, near Graford	1943-64	C4-S2	C4-S2	C4-S2	C3-S2	C3-S2	
59	Palo Pinto Creek near Santo	Oct.14, 1962						C2-S1
61	Paluxy Creek at Glen Rose	June 5, 1962						C2-S1
62	Lake Pat Cleburne near Cleburne	May 14, 1965	,					C2-S1
64	Brazos River below Whitney Dam, near Whitney	1953-64	C3-S2	C3-S2	C3-S2	C3-S1	C3-S1	
70	Wace Reservoir near Waco	May 24, 1965						C2-S1
76	Proctor Reservoir near Proctor	Oct. 1, 1965						C2-S1
81	Belton Reservoir near Belton	Oct. 1, 1965						C2-S1
85	Lampasas River at Youngsport	1962-64	C3-S1	C3-S1	C3-S1	C2-S1	C2-S1	
89	Little River at Cameron	1961-64	C3-S1	C2-S1	C2-S1	C2-S1	C2-S1	
93	Yegua Creek near Somerville	1962-64	C3-S1	C3-S1	C2-S1	C2-S1	C1-S1	
96	Navasota River near Bryan	1959-64	C3-S1	C3-S1	C2-S1	C2-S1	C2-S1	
97	Brazos River at Richmond	1955-64	C3-S1	C3-S1	C3-S1	C2-S1	C2-S1	

Table 11.--Suitability of waters for irrigation

- 113 -

