TEXAS WATER DEVELOPMENT BOARD

REPORT 5

RECONNAISSANCE OF THE CHEMICAL

QUALITY OF SURFACE WATERS OF THE NECHES RIVER BASIN, TEXAS

By

L. S. Hughes and D. K. Leifeste

Prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board

November 1965

TEXAS WATER DEVELOPMENT BOARD

Mills Cox, Chairman Robert B. Gilmore Milton T. Potts Marvin Shurbet, Vice Chairman Groner A. Pitts W. E. Tinsley

Joe G. Moore, Jr., Executive Director

Authorization for use or reproduction of any material contained in this publication, i.e., not obtained from other sources, is freely granted without the necessity of securing permission therefor. The Board would appreciate acknowledgement of the source of original material so utilized.

> Published and distributed by the Texas Water Development Board Post Office Box 12386 Austin, Texas 78711

FOREWORD

On September 1, 1965 the Texas Water Commission (formerly, before February 1962, the State Board of Water Engineers) experienced a far-reaching realignment of functions and personnel, directed toward the increased emphasis needed for planning and developing Texas' water resources and for administering water rights.

Realigned and concentrated in the Texas Water Development Board were the investigative, planning, development, research, financing, and supporting functions, including the reports review and publication functions. The name Texas Water Commission was changed to Texas Water Rights Commission, and responsibility for functions relating to water-rights administration was vested therein.

For the reader's convenience, references in this report have been altered, where necessary, to reflect the current (post September 1, 1965) assignment of responsibility for the function mentioned. In other words credit for a function performed by the Texas Water Commission before the September 1, 1965 realignment generally will be given in this report either to the Water Development Board or to the Water Rights Commission, depending on which agency now has responsibility for that function.

Texas Water Development Board

John J. Vandertulip Chief Engineer

TABLE OF CONTENTS (Cont'd.)

ĸ

e

r

R

.

£

ý

	Page
Chloride	36
Other Constituents	36
Water Quality in Reservoirs	37
Flat Creek Reservoir	37
Lake Palestine	37
Lake Jacksonville	37
Striker Creek Reservoir	37
Lake Tyler	37
Lake Kurth	38
Sam Rayburn Reservoir	38
Dam B Reservoir	38
Water Quality at Potential Reservoir Sites	38
Lake Ponta	38
Mud Creek Reservoir	39
Weches and Fastrill Damsites	39
Village Creek Damsite	39
Pine Island Bayou Damsite	39
Salt-Water Barrier	39
CONCLUSIONS AND RECOMMENDATIONS	40
REFERENCES	41

TABLES

1.	Reservoirs with capacities of 5,000 acre-feet or more in the Neches River Basin	12
2.	Stratigraphic units in the Neches River Basin	18
3.	Results of leaching tests of clays collected in the Striker Creek watershed	27

TABLE OF CONTENTS (Cont'd.)

e

٩

2

¢,

4.	Source and significance of dissolved mineral constituents and properties of water	31
5.	Water-quality tolerances for industrial applications	35
6.	Index of surface-water records in the Neches River Basin	44
7.	Summary of chemical analyses at daily stations on streams in the Neches River Basin	49
8.	Chemical analyses of streams and reservoirs in the Neches River Basin for locations other than daily stations	53

ILLUSTRATIONS

Figures

1.	Index Map of Texas Showing Major River Basins	5
2.	Precipitation and Runoff in the Neches River Basin	6
3.	Generalized Map of Oil and Gas Fields in the Neches River Basin	9
4.	Average Annual Runoff, Drainage Area, and 1960 Population of Major River Basins in Texas, as Percentages of State Totals	10
5.	Lower Neches Valley Authority Pumping Plant at Voth	11
6.	Major Reservoirs and Potential Damsites in the Neches River Basin	13
7.	Geologic Map of the Neches River Basin	17
8.	Relation of Annual Weighted-Average Concentration of Dissolved Solids to Annual Mean Discharge, Angelina River near Lufkin and Neches River at Evadale	20
9.	Duration Curves for Dissolved Solids and Water Discharge for Angelina River near Lufkin and Neches River at Evadale, Water Years 1955-63	21
10.	Chemical-Quality Data of the Striker Creek Area	23
11.	Classification of Irrigation Waters, Neches River Basin	33

Page

TABLE OF CONTENTS (Cont'd.)

Plates

~ 1

-

--

1.	Sites on Streams in the Neches River Basin	Page 62
2.	Chemical Quality of Surface Water of the Neches River Basin	Plate 1

_

RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE NECHES RIVER BASIN, TEXAS

ABSTRACT

The kinds and quantities of minerals dissolved in the surface water of the Neches River Basin result from such environmental factors as geology, streamflow patterns and characteristics, and industrial influences. As a result of high rainfall in the basin, much of the readily soluble material has been leached from the surface rocks and soils. Consequently, the water in the streams is usually low in concentrations of dissolved minerals and meets the U.S. Public Health Service drinking-water standards. In most streams the concentration of dissolved solids is less than 250 ppm (parts per million).

The Neches River drains an area of about 10,000 square miles in eastern Texas. From its source in southeast Van Zandt County the river flows in a general southeasterly direction and empties into Sabine Lake, an arm of the Gulf of Mexico.

Л.

In the basin, the climate ranges from moist subhumid to humid and the average annual rainfall ranges from 46 inches in the northwest to more than 52 inches in the southeast. Annual runoff from the basin has averaged 11 inches; however, runoff rates vary widely from year to year. The yearly mean discharge of the Neches River at Evadale has ranged from 994 cfs (cubic feet per second) to 12,720 cfs.

The rocks exposed in the Neches River Basin are of the Quaternary and Tertiary Systems and range in age from Eocene to Recent. Throughout most of the basin the geologic formations dip generally south and southeast toward the Gulf Coast. The rate of dip is greater than that of the land surface, and, as a result, the older formations crop out to the north of the younger formations. Water from the outcrop areas of the Wilcox Group and from the older formations of the Claiborne Group generally has dissolved-solids concentrations ranging from 100 to 250 ppm. Water from the younger formations has concentrations less than 100 ppm.

The northern half of the basin has soft water, with less than 60 ppm hardness. The southern half of the basin has very soft water, usually with less than 30 ppm hardness. The chloride concentrations are less than 20 ppm in surface water in the southern half of the basin and usually range from 20 to 100 ppm in the northern half of the basin. Concentrations greater than 100 ppm are found only where pollution is occurring.

The Neches River Basin has an abundance of surface water, but uneven distribution of runoff makes storage projects necessary to provide dependable water supplies. The principal existing reservoirs, with the exception of Striker Creek Reservoir, contain water of excellent quality. Chemical-quality data for the Striker Creek drainage area indicate that streams are affected by the disposal of brines associated with oil production. Sam Rayburn Reservoir began impounding water in 1965. The water impounded should prove of acceptable quality for most uses, but municipal and industrial wastes released into the Angelina River near Lufkin may have a degrading effect on the quality of the water, especially during extended periods of low flows. Water available for storage at the many potential reservoir sites will be of good quality; but, if the proposed Salt-Water Barrier is to impound acceptable water, the disposal of oil-field brine into Pine Island Bayou should be discontinued. RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE NECHES RIVER BASIN, TEXAS

INTRODUCTION

The investigation of the chemical quality of the surface water of the Neches River Basin, Texas, is part of a Statewide reconnaissance study. This report is the second in a series presenting the results of the study, as well as summaries of available chemical-quality data. The first report, on the Sabine River Basin, Texas and Louisiana, has been published by the Texas Water Commission (Hughes and Leifeste, 1964). A report on the San Jacinto River Basin is in preparation. A report is planned for each major river basin in Texas.

Knowledge of the quality of water that will be available is essential in planning any water-use project, because the chemical character of the water determines its suitability for domestic, irrigation, or industrial purposes. For a public supply, of course, water must serve all three of these purposes. If raw water is not satisfactory for a specific use, then chemical analyses are necessary to determine the type or extent of treatment needed.

In addition to determining the suitability of water for specific uses, chemical-quality data are needed for the (1) inventory of water resources, (2) detection and control of pollution of water supplies, (3) study of techniques for preventing salt-water encroachment into coastal streams and aquifers, (4) planning for reuse of water, and (5) demineralization of water.

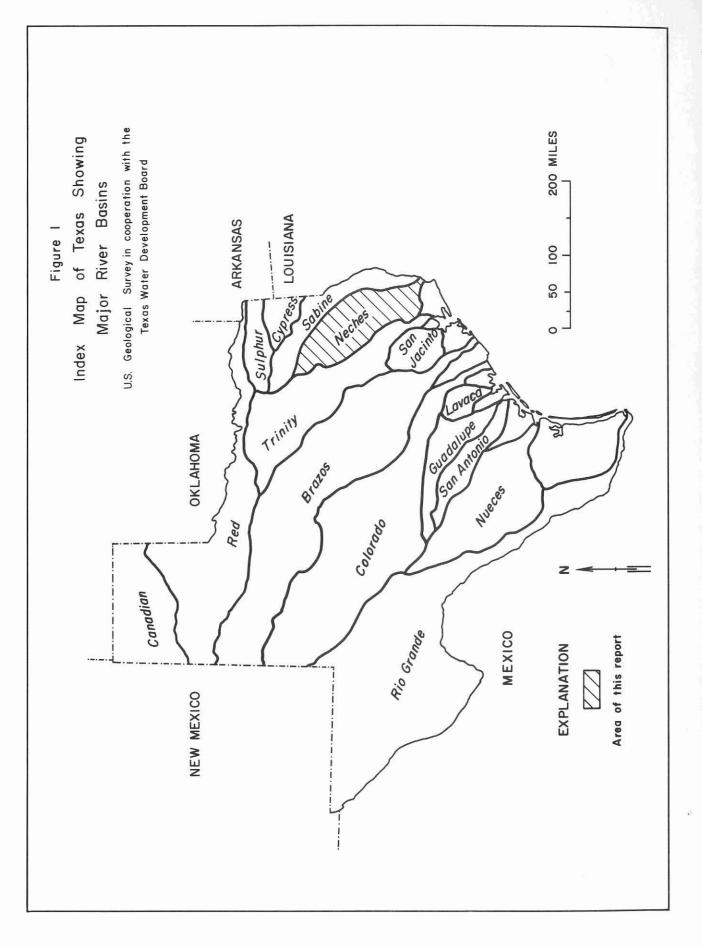
A network of daily chemical-quality stations on principal streams in Texas is operated by the U.S. Geological Survey in cooperation with the Texas Water Development Board and with other Federal and local agencies. However, this network has not been adequate to inventory completely the chemical quality of the surface waters of the entire State. To supplement the information being obtained by the network, a cooperative Statewide reconnaissance by the U.S. Geological Survey and the Texas Water Commission was begun in September 1961. In this study, samples for chemical analyses have been collected periodically at numerous sites throughout the State so that some quality-of-water information would be available for locations where water-development projects are likely to be built. These data aid in the delineation of water-quality problem areas and in the identification of probable sources of pollution, thus indicating areas in which more detailed investigations are needed. During the period September 1961 to June 1964, water-quality data were collected for the principal streams, the major reservoirs, a number of potential reservoir sites, and many tributaries in the Neches River Basin.

Agencies that have cooperated in the collection of chemical-quality and streamflow data include the U.S. Army Corps of Engineers, Lower Neches Valley Authority, Upper Neches River Municipal Water Authority, the City of Tyler, and the Texas State Department of Health.

NECHES RIVER DRAINAGE BASIN

General Description

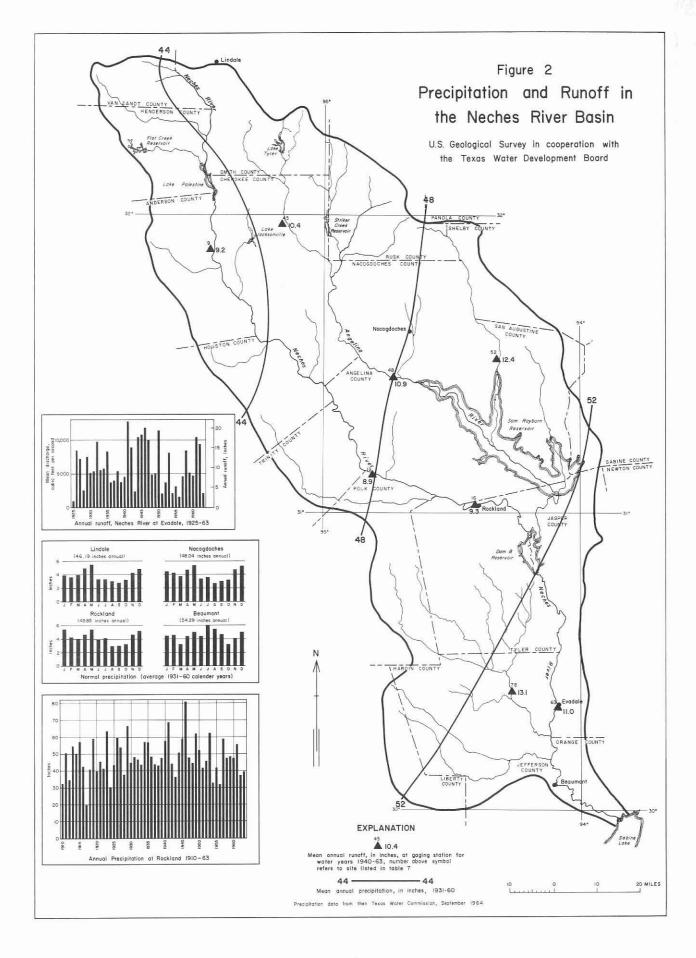
The Neches River drains an area of about 10,000 square miles in eastern Texas (Figure 1). The basin is about 200 miles long, averages about 50 miles wide, and includes all or part of 21 counties. From its source in southeast Van Zandt County (Figure 2) the Neches River flows generally southeastward and empties into Sabine Lake, an arm of the Gulf of Mexico.


Low divides separate the Neches River Basin from the drainage basin of the Sabine River on the north and east and from that of the Trinity River on the west and southwest.

The basin slopes from an altitude of about 600 feet to sea level. The northwestern third of the basin has rolling hills and grassy plains. The area from central Cherokee County southward to southern Hardin County consists of heavily forested low hills, with wide flat flood plains along the Neches River and its major tributaries. Southern Hardin County and Jefferson County have prairies and poorly drained flatlands.

The Neches River Basin is drained by two major streams and many tributaries. The Angelina River heads in southwest Rusk County and, at Dam B Reservoir, joins the Neches River. Upstream from their confluence, the Neches River drains 3,808 square miles and the Angelina River drains 3,556 square miles. Village Creek and Attoyac and Pine Island Bayous, with drainage areas of 1,113, 670, and 657 square miles respectively, are the only other tributaries that drain more than 500 square miles.

The climate in the Neches River Basin ranges from moist subhumid to humid. The average annual precipitation, about 49 inches, exceeds the average for the State of Texas by 60 percent. Within the basin, the average annual precipitation ranges from about 46 inches in the northwest to more than 54 inches in the southeast. At Rockland, in Tyler County, annual rainfall for the period 1931-60 averaged 49.85 inches. Mean annual precipitation, average (normal) monthly precipitation of four U.S. Weather Bureau stations, and annual precipitation for 1910-63 at one station are all shown on Figure 2.


Runoff is defined as that part of the precipitation appearing in surface streams, and is the same as streamflow unaffected by artificial storage or diversion (Langbein and Iseri, 1960, p. 17). In the Neches River Basin streamflow has been affected only slightly by diversions or storage. Temperature, seasonal distribution of rainfall, storm intensity, infiltration rates, and types and density of vegetation also affect the amount of runoff from a drainage basin.

- 5 -

tų.

Ø

- 6 -

Runoff data plotted on Figure 2 show that average runoff from subbasins during the period 1940-63 ranged from 8.9 to 13.1 inches annually. Runoff from the entire basin measured at the lowermost gaging station, Neches River at Evadale, averaged 11.0 inches annually for the period 1921-63. Annual runoff, expressed as mean discharge in cubic feet per second and inches per year, is shown for the Evadale station on Figure 2.

Precipitation and runoff in the Neches River Basin are subject to much greater variations than indicated by the annual and monthly averages. The yearly mean discharge of the Neches River at Evadale has ranged from 994 cfs to 12,700 cfs (Figure 2), but instantaneous flows have varied much more widely. Normal monthly rainfall at Rockland ranges from 2.88 inches for August to 5.39 inches for January (Figure 2), but in 1963 the monthly rainfall ranged from 0.00 inches in October to 8.10 inches in September. Thus, in spite of relatively high averages, precipitation so unevenly distributed in time does not sustain streamflow, and flood runoff must therefore be stored to make surface water continuously available in dependable quantities.

Population and Municipalities

The population of the Neches River Basin in 1960 was 568,000, which was about 6 percent of the total population of the State. About half of the people in the basin live on farms. No large cities are entirely within the basin, Lufkin being the only city with a population over 15,000 in 1960. Although the towns have grown, the population of most of the counties has decreased since 1940; the counties with the larger towns, however, have had an increase in population.

The principal cities of the Neches River Basin and their populations are given below.

City	Population	City	Population
Lufkin	19,000	Silsbee	6,277
Nacogdoches	12,750	Rusk	4,900
Jacksonville	9,750	Jasper	4,889

The principal cities that are on stream divides and only partly in the basin are given below, with their populations.

City	Population	City	Population
Beaumont	119,175	Henderson	9,750
Tyler	51,230		

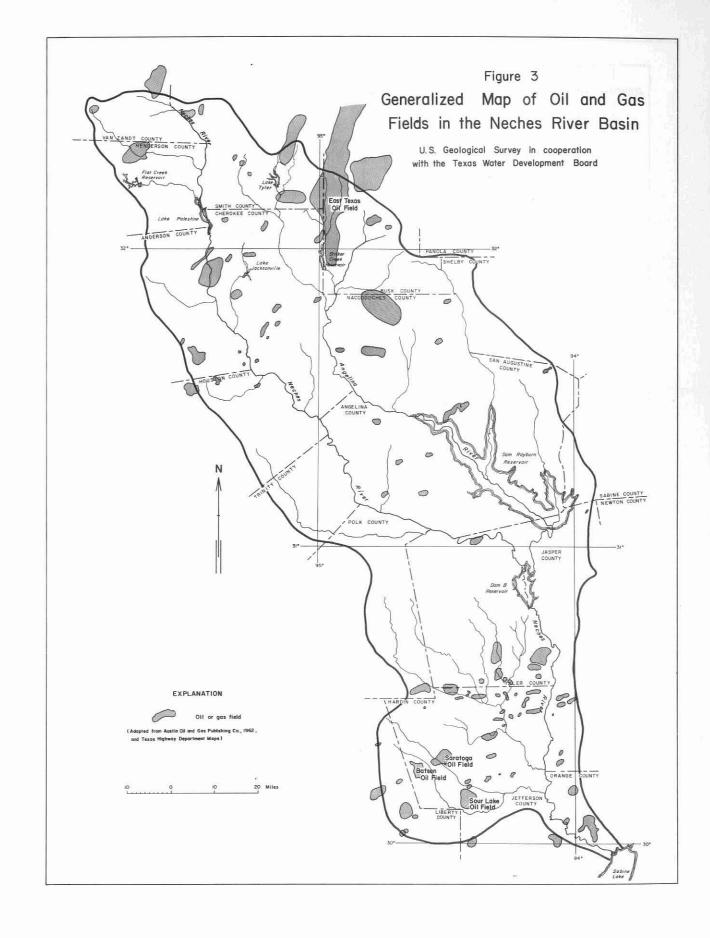
Agricultural and Industrial Development

Although the number of farms has decreased since 1940, agriculture is still of great importance to the economy of the Neches River Basin.

Corn, cotton, sorghums, rice, fruit, and truck-farm products are the principal crops. Corn, cotton, and sorghums are grown chiefly in the northern portion of the basin and rice is grown only in the southern part. Fruit and truckfarm products are grown over the entire basin. In the central part of the basin, beef cattle, poultry, dairy farming, and truck-farm products have replaced field crops as the major source of farm income.

The lumber industry is another important segment of the economy. The central and southern portions of the basin are in the great tree-growing section of Texas. Many large and small sawmills process southern yellow pine and hardwood trees in large quantities. Pulpwood and power-line poles are other forest products. Many small farms have been allowed to grow over or have been planted with trees.

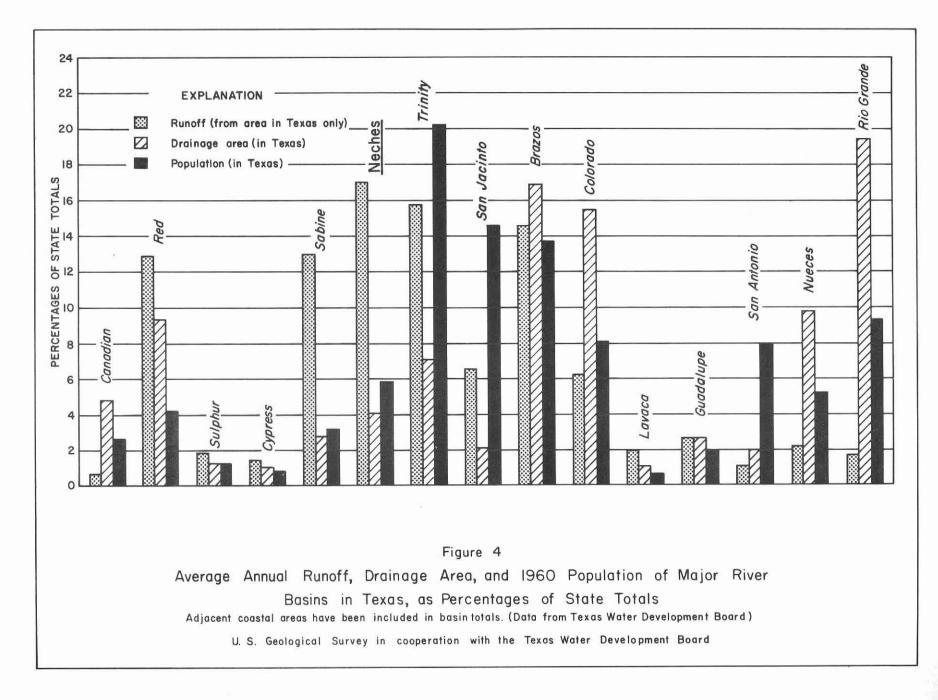
The production of oil and gas has been of great importance in the economic development of the Neches River Basin since the development of the East Texas oil field began in 1930 with the discovery of oil west of Henderson. Many other oil and gas fields are in the basin (Figure 3), with the most intensive concentration of oil production being in the southern part.


The Beaumont metropolitan area contains a variety of both light and heavy industries. Some of the more important industries include petroleum refining, and the manufacturing of oil-field equipment, petrochemicals, synthetic rubber, iron, and steel.

Development of Surface-Water Resources

With an average runoff of 11 inches per year, the Neches River Basin contributes about 17 percent of the total runoff for the State (Figure 4). As the basin has only about 4 percent of the State's total area and about 6 percent of the population, the quantity of surface water available for development is considerably more than the average for the State.

The Texas Water Development Board reported that 170,410 acre-feet of water was used in the Neches River Basin in 1959 (Texas Board of Water Engineers, 1961, p. 64). Of this amount 96,630 acre-feet was from surface-water sources. Surface water supplements ground-water supplies for some cities and provides the total supply for others. Cities using surface water impounded in the Neches River Basin include: Athens (in the Trinity River Basin), from Flat Creek Reservoir; Tyler, from Lake Tyler; Rusk, from Lake Palestine; and Jacksonville, from Lake Jacksonville.


Large quantities of surface water are used in the lower part of the basin for municipal, industrial, and irrigation purposes. The city of Beaumont uses surface water for its municipal supply. The Lower Neches Valley Authority supplies surface water to the Beaumont-Port Arthur industrial area and to rice farms west and southwest of Beaumont (Figure 5). Sea water intrudes up the river; and, the riverflow required to keep the salt water away from the intakes of the Lower Neches Valley Authority's pumping plant at Voth is about twice the average rate of use for the Beaumont-Port Arthur area. The construction of a

12

t.

- 9 -

3

4

- 10 -

物

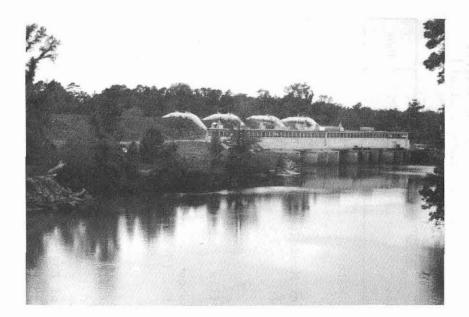


Figure 5.--Lower Neches Valley Authority Pumping Plant at Voth.

salt-water barrier on the Neches River near Beaumont is considered by the Texas Water Development Board to be one of the most important requirements in the development of the water resources of the Neches River Basin (Texas Board of Water Engineers, 1961, p. 64).

Before 1950, Lake Tyler was the only reservoir with a capacity of 5,000 acre-feet or more in the Neches River Basin. In January 1965, eight major reservoirs were in existence or under construction. Table 1 lists these reservoirs and gives their capacities and uses, and locations are shown on Figure 6. Most of the reservoirs in the basin were built by cities or by water districts to supply water for local municipal and industrial use; but Dam B Reservoir and Sam Rayburn Reservoir are joint projects of the U.S. Army Corps of Engineers and the Lower Neches Valley Authority to provide flood control and water for municipal, industrial, and irrigation use in the coastal area. When completed, Sam Rayburn Reservoir will be the largest reservoir in the basin, with a capacity of 4,478,800 acre-feet, of which 2,891,900 acre-feet will be for conservation storage.

Figure 6 also shows the location of two additional reservoir projects for which permits have been issued, and a number of locations which have been considered by various agencies as potential dam sites.

CHEMICAL QUALITY OF THE WATER

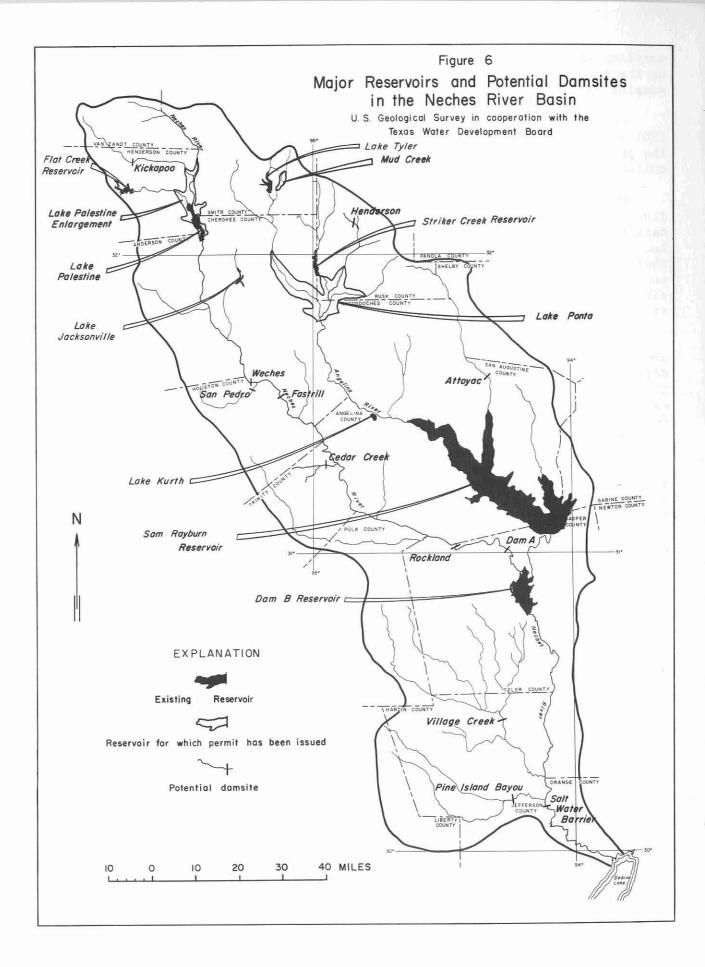
Chemical-Quality Records

The U.S. Geological Survey began the collection of chemical-quality data on surface waters of the Neches River in 1939. Samples for chemical analysis were collected intermittently for three years from the Neches River at Rockland, from Village Creek at Fletcher, and from Pine Island Bayou at Voth. Daily Table 1.--Reservoirs with capacities of 5,000 acre-feet or more in the Neches River Basin

[The purpose for which the impounded waters are used is indicated by the following symbols: M, municipal; I, industrial; D, domestic; Ir, irrigation; R, recreation; P, hydroelectric power; FC, flood control]

	Year		Total storage			
Name of reservoir	operation began	Stream	capacity (acre-feet)	Owner	County	Use
Flat Creek	1962	Flat Creek	32,840	Athens Municipal Water Authority	Henderson	М
Lake Palestine	1962	Neches River	57,550	Upper Neches River Municipal Water Authority	Anderson, Henderson, Smith, Cherokee	M,I
Lake Jacksonville	1957	Gum Creek	30,500	City of Jacksonville	Cherokee	M,R
Striker Creek	1957	Striker Creek	26,700	Angelina-Nacogdoches Counties WCID No. 1	Cherokee, Rusk	M,I
Lake Tyler	1949	Prairie Creek	43,400	City of Tyler	Smith	M,I,D
Lake Kurth	1961	Angelina River off-channel	16,200	Southland Paper Mills, Inc.	Angelina	I
Sam Rayburn	1965	Angelina River	4,478,800	U.S. Army Corps of Engineers, Lower Neches Valley Authority	Jasper, Sabine, San Augustine, Angelina, Nacogdoches	M,I, Ir,P, FC
Dam B	1951	Neches River	124,700	do	Tyler, Jasper	M,I, Ir

- 12 -


6

10

5

.3

5 . 5

sampling stations were established at Evadale in 1947, near Alto in 1960, and on the Angelina River near Lufkin in 1954. Furthermore, numerous miscellaneous samples have been collected by the Geological Survey since 1953.

Collection of chemical-quality data for this reconnaissance study began in 1961 and continued through June 1964. Samples were collected periodically from the principal tributary streams and from four reservoirs. Single samples were collected at many additional sites.

Data were collected over a wide range of water-discharge rates. At low flows, concentrations of dissolved minerals are likely to be highest; and the data commonly indicate where pollution and salinity problems exist. Data collected during medium and high flows indicate the probable quality of the water that would be stored in reservoirs. Stream-gaging stations were selected as sampling sites wherever possible in order that chemical analyses could be considered in relation to water discharge. At sites other than stream-gaging stations, water discharge was usually measured when the samples were collected.

The periods of record of all data-collection sites are given in Table 6 and the locations are shown on Plate 1 or on Figure 10. The chemical-quality data for the daily stations are summarized in Table 7, and the complete records are published in an annual series of U.S. Geological Survey Water-Supply Papers and in Bulletins of the Texas Water Commission. (See list of references.) Results of all the periodic and miscellaneous analyses are given in Table 8.

The Texas State Health Department makes available to the U.S. Geological Survey the data collected in its statewide stream-sampling program, which includes the periodic determination of pH, biochemical oxygen demand, total solids, dissolved oxygen, chloride, chlorine demand, and sulfate at 19 locations in the Neches River Basin. The data-collection sites of the State Department of Health are listed below. Some of them are at U.S. Geological Survey streamgaging stations. The numbers refer to sites shown on Plate 1 and Figure 10.

Reference no.	Data-collection site
1	Neches River near Chandler
9	Neches River near Neches
11	Neches River near Alto
13	Neches River near Diboll
16	Neches River near Rockland
23	Bowles Creek near Turnertown
39	Striker Creek near Summerfield
47	Angelina River near Alto
48	Angelina River Near Lufkin

(Continued on next page)

Reference no.	Data-collection site
50	Angelina River near Etoile
52	Attoyac Bayou near Chireno
53	Angelina River near Zavalla
	Angelina River near Jasper
62	Neches River at Town Bluff
63	Neches River at Evadale
	Village Creek near Silsbee
88	Pine Island Bayou at Voth
	Neches River at Beaumont
	Neches River near Groves

Streamflow Records

Streamflow records in the Neches River Basin date from 1903 when the U.S. Weather Bureau installed a staff gage on the Neches River at Rockland. A gaging station was established at Evadale in 1904, discontinued in 1906 and reestablished in 1921. More than 20 years of discharge records are available for several stations on the Neches and Angelina Rivers and records for more than 10 years are available for several of the smaller streams in the basin.

In 1964 the U.S. Geological Survey operated 6 stream-gaging stations on the Neches River and 11 stations on tributaries, 3 reservoir-content stations and 1 low-flow partial-record station. In addition, discharge measurements were made at other sites where samples were collected for chemical analysis.

The periods of record for all the stream-gaging stations are given in Table 6, and the locations are shown on Plate 1. Records of discharge and stage of streams, and contents and stage of lakes or reservoirs from 1903 to 1907 and from 1924 to 1960, have been published in the annual series of U.S. Geological Survey Water-Supply Papers. (See list of references.) Beginning with the 1961 water year, streamflow records have been released by the U.S. Geological Survey in annual reports on the State-boundary basis (U.S. Geological Survey, 1961, 1962, 1963). Summaries of discharge records giving monthly and annual totals have been published (U.S. Geological Survey, 1939, 1960, 1964; Texas Board of Water Engineers, 1958).

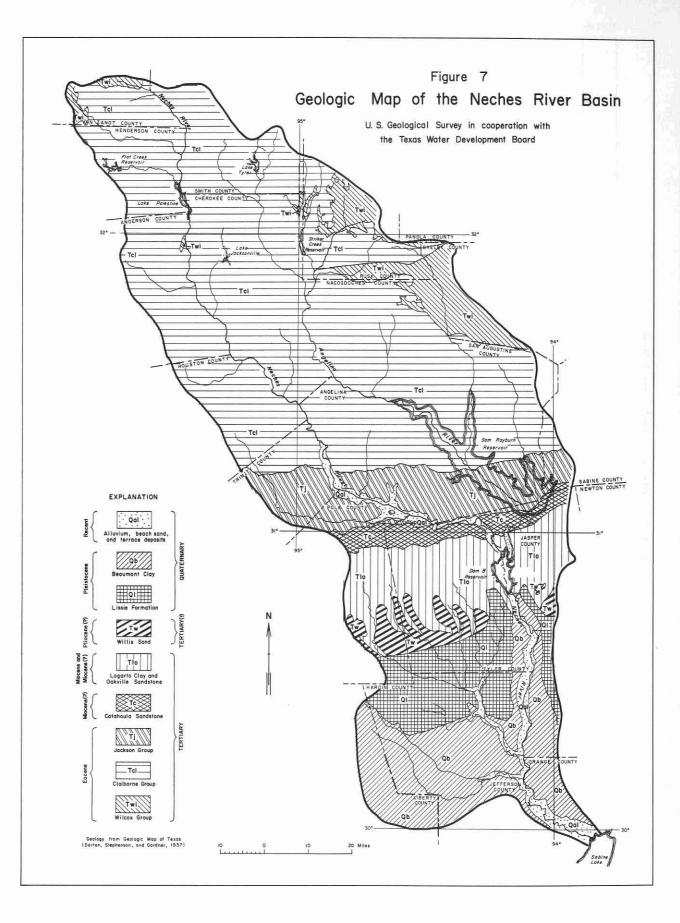
Factors Affecting Chemical Quality of Water

As soon as water from rain or melting snow comes in contact with the earth's crust, it begins to dissolve materials. The kinds and quantities of materials dissolved are the result of many environmental factors, including geology, precipitation, streamflow, and the activities of man.

Geology

The minerals in the rocks and their susceptibility to weathering and solvent action have a direct bearing on the chemical quality of the water of the area. Where industrial influences are small the chemical character of surface water is dependent primarily on the chemical and physical properties of the rocks and soils in the drainage basin. In areas of high rainfall, as in the Neches River Basin, circulating water has so leached the mantle rock and residual soil that only relatively small amounts of readily soluble minerals remain.

The rocks exposed in the Neches River Basin are of the Tertiary and Quaternary Systems and range in age from Eocene to Recent. Figure 7 is a generalized map of the geology of the basin. The rocks were deposited during repeated marine transgressions and regressions, and form an alternating sequence of marine and continential sediments which are characterized by clay, shale, mar1, and minor amounts of sand.


Throughout most of the basin the geologic formations dip generally south and southeast toward the Gulf Coast. The rate of dip is greater than that of the land surface and, as a result, the older formations crop out to the north of the younger formations. In the northern part of the basin the general slope of the formations is controlled by two major structures. The formations dip eastward and westward toward the axis of a structural trough known as the East Texas syncline. The axis of this trough strikes generally northward across the Neches River in eastern Anderson and western Smith Counties. On the eastern flank of the trough, the formations dip westward and southwestward from the Sabine uplift, a dome-shaped structural high centered in Panola County. Because of subsequent erosion on the uplift, the oldest rocks crop out along the northeast boundary of the basin. The stratigraphic succession of the outcropping formations with brief description of the rock units are given in Table 2.

Water from the outcrop area of the Claiborne Group, in the northern part of the Neches River Basin (Figure 7), generally has dissolved-solids concentrations ranging from 100 to 250 ppm (Plate 2). Water from the outcrop areas of the younger formations has concentrations less than 100 ppm. The shales and clays which predominate in some formations of the Claiborne Group (Table 2) apparently have been less completely leached of readily soluble material than have the more sandy formations in the southern half of the basin.

Streamflow

Runoff and streamflow usually have a definite influence on the chemical characteristics of water in a drainage basin. Water discharge of any stream not regulated by upstream reservoirs usually varies from day to day and even from hour to hour. As a general rule, the low flow of a stream is sustained by ground-water inflow that contains minerals dissolved from the rocks and soil particles. At high flows and during floods the dissolved-mineral concentration of the stream is diluted by the surface runoff. The effect of rates of streamflow on the dissolved-solids concentration of streams generally is greater in streams whose low-flow waters have high concentrations of dissolved minerals. In the Neches Basin only a few streams that are locally polluted by oil-field wastes have, even at low flow, high concentrations of dissolved minerals.

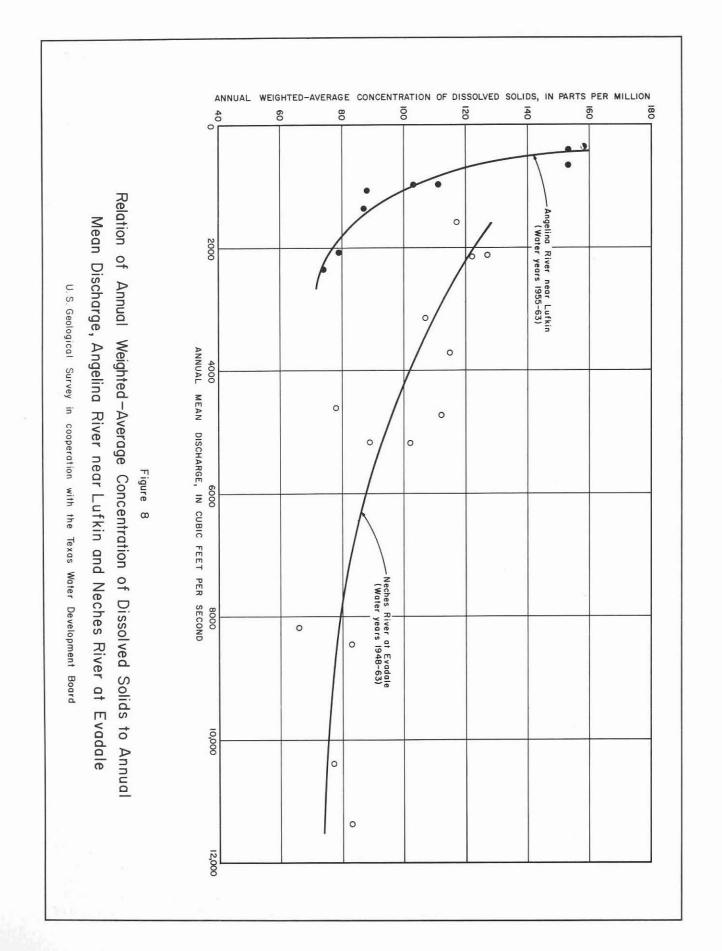
Because of the topography the rate of runoff in the Neches River Basin is much slower than in most of the other river basins in Texas. The streambed

i n
-
00
8
<u> </u>
110
2
2
-
R
-
01
Neches
Ē.
0
J.
Z
the
P.
+1
in
1020
units
12
1
-
U
-
-
7
гa
20
13
5
5
4
S
1
S
÷.
N
e
Tab
5
E

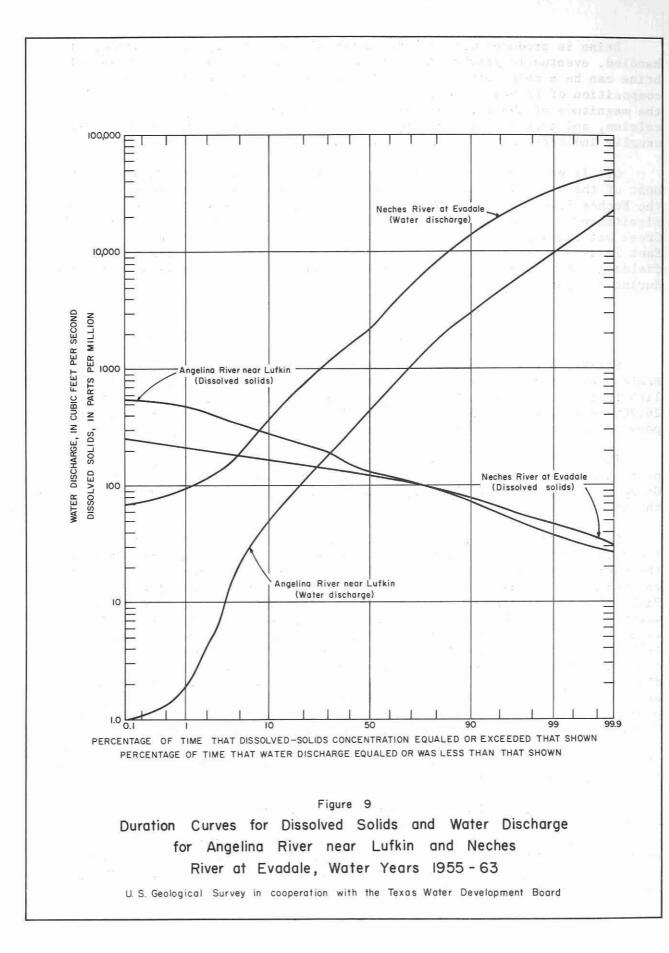
c Character of rocks	and, and Unconsolidated gravel, sand, silt, and clay.	Calcareous clay, silt, sand, and gravel.	Beds of sand, gravel, silt, and clay.	Gravel, calcareous sand, silt, and clay.	Do.	he Do.	one Sand and clay; some volcanic ash and fuller's earth.	Sand, sandy clay, clay, and volcanic ash.	Sand, sandy shale, clay, and lignite.	Predominantly shale with some sand.	Sand, interbedded with clay and shale.	Glauconitic sandstone and shale.	Medium to fine sand, silt, and clay.	Shale with thin sand layers.	Fine- to medium-grained sand, interbedded with thin shales.	Interbedded sand, sandy shale, shale, clay, and thin beds of lignite.
Stratigraphic unit	Alluvium, beach sand, and terrace deposits	Beaumont Clay	Lissie Formation	Willis Sand	Lagarto Clay	Oakville Sandstone	Catahoula Sandstone	Undifferentiated	Yegua Formation	Cook Mountain Formation	Sparta Sand	Weches Greensand	Queen City Sand	Reklaw Formation	Carrizo Sand	Undifferentiated
Group		- Fd				÷		Jackson	- 10			Claiborne				Wilcox
Series	Recent		Fleistocene	Pliocene(?)	Miocene(?)	Miocene	Miocene(?)					Eocene				
System	Quaternary			Tertiary(?)						Tertiary						

gradient of the Neches River is, for much of its length, about 1.0 foot per mile; and the river meanders through its flood plain with many sloughs, overflow channels, and marshes. For long periods after heavy rains large areas are inundated, not only because the heavy forest cover and dense underbrush prevent rapid runoff into streams but also because the clay subsoils inhibit rapid downward movement of water. Thus, the flow in the major streams is sustained for long periods by surface runoff, and changes in chemical quality occur gradually.

Streamflow records show that between periods of surface runoff the base flow of many streams in the Neches Basin is maintained by ground-water inflow. Most of this ground-water inflow is low in dissolved material, and the dissolved-solids concentration of the streamflow varies only slightly with changes in water discharge.


On Figure 8 is shown the relation of the annual weighted-average concentration of dissolved solids to the annual mean discharge of the Angelina River near Lufkin and the Neches River at Evadale. The plots for both stations show decreases in dissolved solids with increases in discharge. That part of the basin above Lufkin has the lowest rainfall, and the dissolved-solids concentration of the Angelina River near Lufkin varies over a wide range. The quality of the water of the Neches River at Evadale shows the effect of inflow from the high rainfall area where the dissolved solids are always low and subject to only slight variations. Also, streamflow at Evadale is partly regulated by Dam B, 59 miles upstream. Duration curves for the Lufkin and Evadale stations (Figure 9) show the relation of dissolved-solids concentrations to water discharge at the two stations. The curves also show the inverse relationship of rates of water discharge to the concentration of dissolved solids in the streams during water years 1955-63.

Activities of Man


The activities of man often have a significant effect on the chemical quality of surface water. Depleting streamflow by diversion for municipal and industrial uses, disposing of oil-field brines and of municipal and industrial wastes, and altering streamflow by storing water--all produce changes in water quality.

Municipal use of water tends to increase the concentration of dissolved solids in a stream system. The depletion of flow by diversion and consumptive use, the loss of water because of increased evaporation, and the disposal of municipal wastes into a stream result in higher average concentrations of dissolved solids in the remaining water. On the other hand, storage of dilute floodwater in reservoirs and subsequent controlled release of the stored water serves to improve water quality in streams below reservoirs. Floodwater released from Dam B helps to improve the average quality of water in the Neches River at Evadale and at diversion points near Beaumont.

The quality of water from the Neches and Angelina Rivers has been changed only slightly by municipal use, and the flow throughout the reaches of both rivers has been adequate to dilute the municipal wastes introduced. Nevertheless, industrial and municipal wastes released into the Angelina River in the vicinity of Lufkin are causing some local deterioration in water quality, particularly the depletion of dissolved oxygen. These wastes may have a degrading effect on the quality of water stored in Sam Rayburn Reservoir, especially during extended periods of low flows.

- 07 -

- 21 -

100

Brine is produced with oil in nearly all oil fields, and if improperly handled, eventually reaches the streams. Pollution of streams by oil-field brine can be a major problem in areas where oil production is extensive. The composition of brines varies, but the principal constituents, in the order of the magnitude of their concentration (in ppm), are generally chloride, sodium, calcium, and sulfate. The presence of brine in surface water is therefore usually indicated by an abnormally high chloride concentration.

Oil is produced in many areas in the Neches River Basin (Figure 3), but most of the brine is reinjected into wells and the effect on the main stem of the Neches River has been minor. However, the disposal of oil-field brine is significantly affecting water quality in two areas of the basin. The Striker Creek watershed and Striker Creek Reservoir are polluted with brine from the East Texas oil field; and, Pine Island Bayou receives brine from three oil fields in Hardin County. Water-quality surveys of these two areas were made during the period of this study.

Striker Creek and the East Texas Oil Field

Striker Creek, formed by the confluence of its principal tributaries, Bowles and Johnson Creeks, drains the part of the East Texas oil field that lies in the Neches River Basin (Figure 10). Striker Creek Reservoir is a 26,700-acre-foot impoundment completed in 1957. Water is used by a paper company and for condenser cooling by a steam-electric generating plant.

The East Texas oil field was discovered in September 1930 with the completion of a well in northern Rusk County. Production was soon extended into Gregg, Upshur, and Smith Counties; and the field became the most productive in the nation (Figure 3).

Soon after oil production started, wells along the western edge of the field began to yield salt water with the oil, and the handling and disposal of the water became a serious problem (Plummer, 1945). At first, all the brine was stored in earthen tanks and then drained into streams at times of rains. Fish kills in the streams, pollution of surface waters being used for public water supply, and the actual or potential pollution of shallow fresh ground water made imperative the need for another method for salt-water disposal. In 1936 a group of oil companies developed a method for returning the brine to the deep subsurface, in or below the oil-producing formation. In 1942 a salt-water disposal company was organized to collect, treat, and dispose of the salt water as a service to oil producers; and by 1947 more than 90 percent of the brine produced in the East Texas field was being reinjected (East Texas Salt Water Disposal Company, 1958, p. 17). According to an inventory by the Texas Railroad Commission, 99 percent of the salt water produced in the East Texas field in 1961 was injected underground (Texas Water Commission and Texas Water Pollution Control Board, 1963).

However, some unlined earthen surface pits are still in use, and oil wastes along the banks of water courses indicate that spills of brine still occur from these. In addition to deliberate dumpage, brine also reaches streams as the result of leaks in the collection systems, breaks in pipelines, overflow of storage tanks, and other accidents incidental to the handling of large volumes of waste water. Reports of salinity problems in the reservoir drainage area prompted waterquality surveys of Striker Creek and its tributaries in March and June 1964. Both surveys were made during base-flow conditions, but streamflow rates were much lower in June than in March. Comparison of chemical analyses for Striker Creek Reservoir (site 40, Table 8) shows that from October 1962 to March 1964 the dissolved-solids concentration increased from 342 to 525 ppm, and the chloride concentration increased from 171 to 272 ppm. This increase in salinity occurred during a period of low surface runoff, when the saline base flows in streams were seldom diluted by floodflows.

During the water-quality surveys, chemical-quality data were collected at 24 sites in the Striker Creek watershed. The data are included in Table 8 (sites 17-38, 40-41), and the pH and chloride and sulfate concentrations are given on the map (Figure 10). These data show that:

1. Bowles Creek and its tributaries are the source of most of the salinity in Striker Creek Reservoir.

2. Many streams carry acid water, with the pH as low as 3.2.

3. Sodium and chloride are the principal dissolved constituents; sulfate concentrations are generally low throughout the watershed.

4. Where acid water occurs outside the oil-field area, sulfate is the principal anion.

5. High-chloride water was not found outside the oil-field area.

6. Johnson Creek and its tributaries are relatively unpolluted, and pH's are not less than 6.0.

The absence of significant pollution in Johnson Creek is explained by the history of the occurrence and disposal of salt water. Wells on the extreme western side of the East Texas field were the first to produce salt water, and the area affected gradually increased toward the east. In 1958, wells in only the western two-thirds of the field in the Striker Creek watershed were producing water with the oil (East Texas Salt Water Disposal Co., 1958, p. 5). Thus, salt water has been produced in only a small part of the Johnson Creek drainage area, and production began after reinjection of the water was the established procedure. The pollution of the watershed by surface disposal of brine has therefore not been extensive.

A check of other sources of chemical-quality data showed that the Texas State Department of Health had investigated the Striker Creek area in August 1960, following a fish kill in Bowles Creek. Investigators found that a discharge of acid iron-bearing wastes had apparently been responsible for the fish kill, and decided that this waste material probably reached the stream as a result of well-acidizing operations at the head of Bowles Creek (oral communication, N. E. Davis, 1964). They also found acid water, with a pH as low as 4.0, in a number of small streams in the upper part of the Bowles Creek drainage area.

As a result of the fish-kill incident the Texas State Department of Health began periodic sampling of Bowles Creek at State Highway 64 near Turnertown (site 23, Figure 10) and of Striker Creek at U.S. Highway 79 (site 39, actually in the headwaters of Striker Creek Reservoir). Typical analyses for Bowles Creek, included in Table 8, show that the pH, usually has been less than 5.0 and frequently has been less than 4.0, while the chlorides and dissolved-solids concentrations indicate that almost continuous pollution exists.

The 1964 analyses by the Geological Survey showed that the occurrence of acid water in streams of the Bowles Creek drainage area was much more widespread than the earlier investigation by the State Department of Health had indicated, and that further study was warranted. Because oil-field brines in the East Texas field are not acid (Table 6, and Plummer, 1945, p. 10-12), other factors are required to explain the acidity of the streams.

Acid ground water is known to occur in wide areas of East Texas (Broom and others, 1964), generally associated with lignitic and iron-bearing formations. Dillard (1963) reports analyses for several wells outside the oil-field area in Smith County which yield acid water from the Queen City and Sparta Sands. Sulfate is the principal anion in this acid ground water, whereas in the Bowles Creek area sulfate concentrations are low in both the oil-field brine and the stream waters--with the exception of two tributaries, outside the oil-field area (sites 29 and 32), in which was found acid water containing more sulfate than chloride. Thus, the acid water in streams of the oil-field area of Bowles Creek is different in chemical type from any other East Texas acid waters known to be of natural occurrence.

The authors received the suggestion (John D. Hem, oral communication, 1964) that the source of the acidity might be hydrogen ions adsorbed on clay minerals in the soils or subsurface formations and transferred to the oil-field brine by base exchange. Clay minerals are characterized by their property of adsorbing cations which may then be exchanged for other cations present in aqueous solutions coming into contact with the clay material. Hydrogen ions are commonly adsorbed by clay minerals near the land surface in humid regions and can be displaced from the clay when the latter is wetted by a solution containing a preponderance of sodium ions. As a consequence, neutral salt solutions are made acidic by contact with certain soils (Kelley, 1948, p. 9). Thus, the oil-field brine, if passed through clays on which hydrogen ions were adsorbed, could become acid as the result of acquiring hydrogen ions in place of some of the sodium ions.

To test the application of the base-exchange theory to conditions in the Bowles Creek area, samples of clay for leaching tests were collected at three sites shown as A, B, and C on Figure 10. Sample A is sandy clay, samples B and C are silty clay, and all are from the central part of the Claiborne Group of Eocene age. A quantity of untreated oil-field brine was obtained from the brine-collection system of the East Texas Salt Water Disposal Company at its Shaw-Moyar injection well near Overton. The clay samples were broken into granular particles and 800-gram portions were poured loosely into columns 3 inches in diameter. Brine was then passed through the clays and 250-milliliter (m1) samples of the effluent were obtained. Similar clay samples were also leached with distilled water. Results of analysis of the raw brine and of the brine and distilled water effluents are given in Table 3.

Acid solutions were obtained from all three clay samples when they were leached with the brine, but when the samples were leached with distilled water the effluents were much less acid. The results of leaching sample A provide a plausible explanation for the occurrence of the acid water in Bowles Creek. The analyses show that in passing through the clay the brine became acidic (picked up hydrogen ions), decreased in sodium, sulfate, and chloride

- 26 -

Table 3.--Results of leaching tests of clays collected in the Striker Greek watershed

æ

47

Gonstituent or	Untreated	Efflue cla	Effluent from leaching clays with brine	iching .ne	Efflu clays v	Effluent from leaching clays with distilled water	leaching led water
property	brine	Clay A	Clay B	Clay C	Clay A	Clay B	Clay C
Sodium (Na)	21,700	17,900	17,600	26,700	13	200	8,010
Potassium (K)	85	92	119	62	2.7	19	19
Bicarbonate (HCO ₃)	421	0	0	0	9	80	4
Carbonate (CO ₃)	0	0	0	0	0	0	0
Sulfate (SO ₄)	246	124	191	1,590	•4	18	1,740
Chloride (C1)	37,800	33,800	36,900	48,200	32	1,160	13,600
Hardness as CaCO ₃	4,180	7,520	13,000	8,700	20	1,120	3,150
Specific conductance (micromhos at 25°C)	77,300	68,800	73,100	91,300	126	3,590	34,700
рН	7.0	3.2	4.3	4°0	6 •6	5.6	4.9

(Analyses in parts per million except as indicated)

concentration and increased in hardness. The acid effluent from Sample A, when diluted to varying degrees, will yield solutions very similar in composition to the acid surface waters of the Bowles Creek watershed. In the field such dilutions would occur naturally as the brine became mixed with uncontaminated ground water derived from precipitation.

The reasons for the results obtained by leaching clay samples B and C are not entirely clear. Clay C contained large quantities of soluble material, as shown by the results of leaching with distilled water and brine; and both liquids dissolved considerable sodium, sulfate, and chloride, and increased in hardness. The sulfate content, much greater than in the oil-field brine, suggests that at least part of the soluble material was derived from a different source, perhaps having been present when the clays were originally laid down. Clay C was almost impervious to the passage of liquid, and by the time the 250ml samples had been collected the columns of clay were so thoroughly sealed that no additional liquid could be passed through. The impermeability of clay C suggests that soluble salts, whether or not derived from oil-field brines, could be leached out only with great difficulty and that this clay layer may have little effect on the quality of water in the streams. Clay sample B was more permeable than sample C and contained much less of the soluble material. From both clays, however, sufficient hydrogen ions were displaced by the brine to yield an acid effluent.

Other locations have been found in Texas where oil-field brines apparently have become acid while passing through the subsurface. Burnitt (1962, p. 11), in his report of an investigation of ground-water pollution in the Henderson oil field (about 10 miles east of the Bowles Creek area), gives analyses of three high-chloride stream samples having pH's less than 4.0. Near Quitman in Wood County, Hughes and Leifeste (1964, p. 56) found an acid stream in which oil-field pollution appeared to be the source of the high chlorides. The acidity in these streams is also probably due to base exchange between clay minerals and the oil-field brine.

The scope of this investigation did not permit additional research into the occurrence and cause of acid saline waters; but the results obtained emphasize the need for research of considerable magnitude, having as its purpose the study of the geochemistry of oil-field brines. In the East Texas oil-field area, such research should include: the determination of base-exchange capacity of the various clays; the study of shallow ground water; an inventory of brine production and disposal, past and present; and detailed geological mapping of the study area.

The presence of oil-field brine pollution in the Bowles Creek drainage area several years after the elimination of most of the original sources points up one of the great hazards of improper disposal of oil-field brine. Brine that is added to the ground may not affect the quality of the water in wells or streams for many years, but once water quality is degraded the damage cannot be immediately corrected by stopping pollution at its source. Ground water moves so slowly that purification by leaching and dilution requires more time than did the original pollution. Residual salt left in the soils and ground water of the Bowles Creek area by earlier brine-disposal practices probably is the principal source of pollution in surface streams at present, and will cause poor water quality for many years to come.

Pine Island Bayou and the Hardin County Oil Fields

Disposal of brine produced with oil in the Sour Lake, Saratoga, and Batson oil fields in Hardin County (Figure 3) periodically affects the quality of water in Pine Island Bayou, a major tributary entering the Neches River a few miles north of Beaumont.

Large volumes of water are pumped from Pine Island Bayou by the Lower Neches Valley Authority at its Voth pumping plant (Figure 5; and site 88, Plate 1) and distributed by canal to irrigators, industrial users, and municipalities in the Beaumont-Port Arthur area. During periods of low flow in Pine Island Bayou, water from the Neches River flows upstream in Pine Island Bayou to the pumping plant and constitutes a large part of the water being pumped.

Most of the salt water produced with oil in the Sour Lake, Saratoga, and Batson fields eventually reaches the surface streams. Although one or two producers in the Sour Lake field reinject the brine underground, others store the brine temporarily in unlined pits and release it to the surface streams during flood-runoff periods. During periods following rains, Pine Island Bayou at the pumping plant frequently contains chloride in concentrations higher than desirable for some industrial uses (oral communication, Lower Neches Valley Authority, 1964).

Analyses are given in Table 8 for 9 locations in the Pine Island Bayou drainage area (sites 80 to 88). Although these analyses indicate a maximum of 114 ppm chloride in Pine Island Bayou at the Voth pumping plant, records of the Lower Neches Valley Authority show that much higher concentrations occur (written communication, 1963). Table 8 gives analyses of oil-field brine (site 82), and water from a brine-storage lake (site 83). The March 23, 1964, analysis for Jackson Creek (site 81) indicates that natural runoff in the area is very low in all dissolved constituents.

In a recent report on ground water in Hardin County, Baker (1964, p. 78) discusses the disposal of oil-field brines as a possible source of pollution of ground water. Although present damage to ground-water supplies appears to be minor, Baker stresses the long-term effects of such pollution.

Relation of Quality of Water to Use

Quality-of-water studies usually are concerned with determining the suitability of water--judged by the chemical, physical, and sanitary characteristics--for its proposed use. In the Neches River Basin, surface water is used primarily for municipal and industrial supplies and for irrigation. This report considers only the chemical character of the water and its relation to the principal uses.

Most mineral matter dissolved in water is in the form of ions. An ion is an atom or group of atoms having an electrical charge. The principal cations (positive charge) found in natural waters are calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), and iron (Fe). The principal anions (negative charge) are carbonate (CO_3), bicarbonate (HCO_3), sulfate (SO_4), chloride (C1), fluoride (F), and nitrate (NO_3). Other constituents and properties are often determined to aid in the definition of the chemical and physical quality of

- 29 -

water. Table 4 lists the constituents and properties commonly determined by the U.S. Geological Survey, and includes a resume of their sources and significance.

Surface water of the Neches River Basin is generally of excellent chemical quality. With a minimum of treatment, it is suitable for domestic, industrial, and irrigation use.

Domestic Purposes

The safe limits for the mineral constituents found in water are usually based on the U.S. Public Health Service drinking-water standards. These standards were established first in 1914 to control the quality of water used for drinking and culinary purposes on interstate carriers. These standards have been revised several times, the latest revision having been in 1962 (U.S. Public Health Service, 1962), and adopted by the American Water Works Association as minimum standards for all public water supplies.

According to the drinking-water standards, the limits in the following table should not be exceeded:

Constituent	Maximum concentration (ppm)
Sulfate	250
Chloride	250
Nitrate	45
Fluoride	릐 1.0
Dissolved solids	500

A Based on annual average of maximum daily air temperatures at Beaumont.

In the Neches River Basin concentrations of all the foregoing constituents are generally well below the maximum concentrations recommended by the U.S. Public Health Service.

Irrigation

The extent to which chemical quality limits the suitability of a water for irrigation depends on a number of factors: e.g., the nature and composition of the soil and subsoil; the topography of the land; the amount of water used and the methods of applying it; the types of crops grown; and the climate of the region, including the amounts and distribution of rainfall.

The most important characteristics in determining the quality of irrigation water, according to the U.S. Salinity Laboratory Staff (1954, p. 69), are:

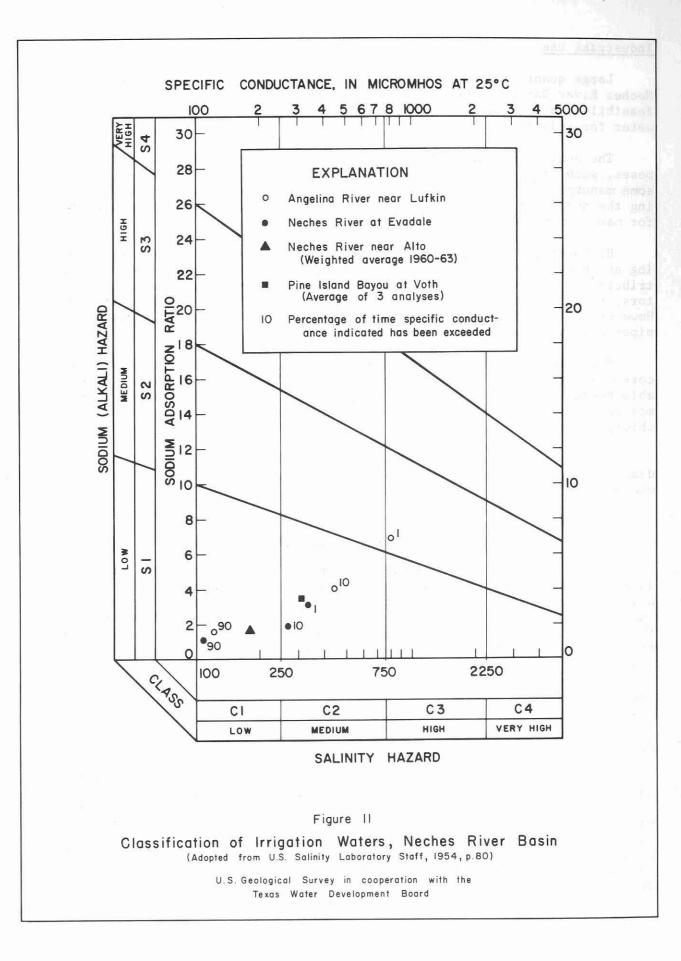
Constituent or property	Source or cause	Significance
Silica (SiO ₂)	Dissolved from practically all rocks and soils, commonly less than 30 ppm. High concentrations, as much as 100 ppm, generally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Carried over in steam of high-pressure boilers to form deposits on blades of turbines. Inhibits deterioration of zeolite-type water softeners.
Iron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equip- ment. More than 1 or 2 ppm of iron in surface waters generally indicate acid wastes from mine drainage or other sources.	On exposure to air, iron in ground water oxidizes to reddish-brown precipitate. More than about 0.3 ppm stain laundry and utensils reddish-brown. Objectionable for food processing, textile pro- cessing, beverages, ice manufacture, brewing, and other processes. U.S. Public Health Service (1962) drinking-water standards state that iron should not exceed 0.3 ppm. Larger quantities cause unpleasant taste and favor growth of iron bacteria.
Calcium (Ca) and Magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from lime- stone, dolomite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.	Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and textile manufac- turing.
Sodium (Na) and Potassium (K)	Dissolved from practically all rocks and soils. Found also in ancient brines, sea water, industrial brines, and sewage.	Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little effect on the usefulness of water for most purposes. Sodium salts may cause foaming in steam boilers and a high sodium content may limit the use of water for irrigation.
Bicarbonate (HCO ₃) and Carbonate (CO ₃)	Action of carbon dioxide in water ou carbonate rocks, such as limestone and dolomite.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon dioxide gas. In combination with calcium and magnesium, cause carbonate hardness.
Sulfate (SO4)	Dissolved from rocks and soils con- taining gypsum, iron sulfides, and other sulfur compounds. Commonly present in mine waters and in some industrial wastes.	Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. Some calcium sulfate is con- sidered beneficial in the brewing process. U.S. Public Health Service (1962) drinking-water standards recommend that the sulfate content should not exceed 250 ppm.
Chloride (Cl)	Dissolved from rocks and soils. Present in sewage and found in large amounts in ancient brines, sea water, and industrial brines.	In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosive- ness of water. U.S. Public Health Service (1962) drinking-water standards recommend that the chloride content should not exceed 250 ppm.
Fluoride (F)	Dissolved in small to minute quanti- ties from most rocks and soils. Added to many waters by fluoridation of municipal supplies.	Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of enamel calcifi- cation. However, it may cause mottling of the teeth, depending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptibility of the individual. (Maier, F. J., 1950.)
Nitrate (NO ₃)	Decaying organic matter, sewage, fertilizers, and nitrates in soil.	Concentration much greater than the local average may suggest pollution, U.S. Public Health Service (1962) drinking-water standards suggest a limit of 45 ppm. Waters of high nitrate content have been reported to be the cause of methemoglobinemia (an often fatal disease in infants) and therefore should not be used in infant feeding. Nitrate has been shown to be helpful in reducing intercrystalline cracking of boiler steel. It encourages growth of algae and other organisms which produce undesirable tastes and odors.
Dissolved solids	Chiefly mineral constituents dis- solved from rocks and soils. Includes some water of crystallization.	U.S. Public Health Service (1962) drinking-water standards recommend that waters containing more than 500 ppm dissolved solids not be used if other less mineralized supplies are available. Waters containing more than 1000 ppm dissolved solids are unsuitable for many purposes.
Hardness as CaCO ₃	In most waters nearly all the hardness is due to calcium and magnesium. All the metallic cations other than the alkali metals also cause hardness,	Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called noncarbonate hardness. Waters of hardness as much as 60 ppm are considered soft; 61 to 120 ppm, moderately hard; 121 to 180 ppm, hard; more than 180 ppm, very hard.
Specific conductance (micromhos at 25° C)	Mineral content of the water.	Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of ionization of the constituents.
Hydrogen ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydroxides, and phosphates, silicates, and borates raise the pH.	A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity. pH is a measure of the activity of the hydrogen ions. Corrosiveness of water generally increases with decreasing pH. However, excessively alkaline waters may also attack metals.

(1) total concentration of soluble salts, (2) relative proportion of sodium to other cations, (3) concentration of boron or other elements that may be toxic, and (4) the bicarbonate concentration as related to the concentration of calcium plus magnesium.

The U.S. Salinity Laboratory Staff introduced the term "sodium absorption ratio" (SAR) to express the relative activity of sodium ions in exchange reactions with the soil. This ratio is expressed by the equation:

 $SAR = \frac{Na^+}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}},$

where the concentrations of the ions are expressed in equivalents per million.


The U.S. Salinity Laboratory Staff has prepared a system for classifying irrigation waters in terms of salinity and sodium hazard. Empirical equations were used in developing a diagram which uses SAR and specific conductance in classifying irrigation waters. The diagram is reproduced in modified form as Figure 11. This classification, although embodying both research and field observations, should be used for general guidance only because of the other factors which also affect the suitability of water for irrigation. With respect to salinity and sodium hazards, waters are divided into four classeslow, medium, high, and very high. The range of this classification extends from those waters which can be used for irrigation of most crops on most soils to those waters which are usually unsuitable for irrigation.

Representative water-analyses data from the Neches River at two sites and from two tributary streams are plotted on Figure 11. Also shown for the two daily chemical-quality stations, Angelina River near Lufkin and Neches River at Evadale, is the percentage of time that the specific conductance exceeded the indicated value during the period 1955-63. For the daily station, Neches River near Alto, the values plotted are the discharge-weighted average values for the period 1960-63. The data show that the waters at these stations generally are low with respect to sodium hazard, and low to medium with respect to salinity hazard.

Results of a few determinations of boron for the Neches River at Evadale are available in the files of the Geological Survey. Concentrations are low, indicating that boron is not a problem in irrigation waters of the basin.

Rice-growing in the area near Beaumont is the principal use of surface water for irrigation in the Neches River Basin. The concentration of chemical constituents tolerated by rice varies with its stage of growth, but investigators generally agree that water containing less than 600 ppm sodium chloride (350 ppm chloride) is not harmful to rice at any stage of growth (Irelan, 1956, p. 330). As shown on the chloride map on Plate 2, concentrations are less than 100 ppm in streams draining most of the Neches River Basin. Water of the basin meets all quality requirements for rice irrigation.

Surface water is also used for supplemental irrigation of field crops, orchards, and truck gardens. For supplemental irrigation in humid and subhumid areas, water-quality requirements are not rigid; and surface water in the Neches River Basin would be classed as excellent for this use.

Industrial Use

Large quantities of surface water are used for industrial purposes in the Neches River Basin, especially in the Beaumont-Port Arthur area. The economic feasibility of a water-development project may depend on the suitability of the water for industrial use.

The quality requirements for industrial water vary widely. For some purposes, such as cooling, water of almost any quality can be used--whereas, in some manufacturing processes and in high-pressure steam boilers, water approaching the quality of distilled water may be required. The quality requirements for many types of industries are given in Table 5.

Hardness is a property of water which receives great attention in evaluating an industrial water supply. This property is objectionable because it contributes to the formation of scale in boilers, pipes, water heaters, and radiators, resulting in loss in heat transfer, boiler failure, and loss of flow. However, calcium carbonate in water sometimes forms protective coatings on pipes and other equipment, thus reducing corrosion.

High dissolved-solids concentration may be closely associated with the corrosive property of a water, particularly if chloride is present in appreciable quantities. Water containing high concentrations of magnesium chloride may be very corrosive because hydrolysis of this unstable salt yields hydro-chloric acid.

Because the water of the Neches River Basin is generally soft and low in dissolved solids, very little treatment is necessary to make it suitable for use by many industries.

Geographic Variations in Water Quality

Variations of dissolved solids, hardness, and chloride with geographic locations are shown on the maps on Plate 2. These maps are based on the discharge-weighted average concentrations, calculated from available chemicalquality records. All the streams will at times have concentrations exceeding those shown, but the averages on the maps are indicative of the type of water that would be stored in reservoirs obtaining water from the various areas. For some of the streams the data are limited, particularly on the chemical quality of floodflows; therefore, the boundaries of the areas are necessarily generalized.

Dissolved Solids

The concentration of dissolved solids in surface water of the Neches River Basin is generally less than 250 ppm (Plate 2). Water from the outcrop areas of the Wilcox Group and the older formations of the Claiborne Group generally has dissolved-solids concentrations ranging from 100 to 250 ppm. Water from younger formations has concentrations less than 100 ppm. Exceptions to these general relationships were observed in three areas (Striker Creek, Beech Creek, and Pine Island Bayou subbasins) where dissolved-solids concentrations are increased by oil-field pollution. Table 5.--Water-quality tolerances for industrial applications $\underline{\mathcal{Y}}$

[Allowable limits in parts per million except as indicated]

Gen- eral 2/	A, B C	111	c, D c, D	00	с с ВВ	0	1	<	В	111	111	1
Na2SO4 to Na2SO3 ratio	11	1 to 2 to 3 to	11	11	1111	11	1	111	1	111	111	1
$cas0_4$	11	111	100-200 200-500	11	1111	11	3	111	ł	4 1 1	111	ł
HO	11	50 40 30	11	11	1111	11	1	111	1	111	111	}
нсо ₃	11	50 50	11	11	1111	11	ł	111	1	111	111	ł
co ₃	11	200 100 40	11	11	1111	; ;	1	111	ł	111	111	ł
54	11	111		ب ا	.111	11	ł	111	1	111	111	ł
Cu	11	111		11	1111	11	1	111	ł	S	111	ł
sio2	11	40 20 5	;;	; ;]]]]	10	;	111	;	55 1 1	111	ł
A1 ₂ 0 ₃	11	5 • 5 • 05	11	11	1111	11	ł	111	ł	1 1 48.0	111	ł
Fe + Mn	0.5	111	7.7	5.5	5.5	.2	• 02	1.0		.05 .0		.2
Mn	0.5	111		2.2	2000	5.5	.02	.1.05	.05	03	.25	.2
Ρc	0.5	111		5.5	4444	0 N	.02	1.0	г.	.0.05	.25 1.0	.2
Ca	11	111	100-200 200-500	11	1111	[]	ł	111	ł	111		;
Total Solids	11	3,000-1,000 2,500- 500 1,500- 100	500 1,000	11	850 100	300	200	300	200	1 1 100	111	1
рн	11	8.0+ 8.5+ 9.0+	6.5-7.0 7.0→	11	131	11	ţ	111	ł	7.8-8.3	111	ł
linity (as CaCO ₃)	11	111	75 150	11	111 50	30-50	ł	111	ł	50 135	;;;;	;
Hard- ness	(4)	75 40 8	13	25-75	250 50	1 20	ł	180 100 100	50	8 55 50-135	20 20 20	20
Odor	11	111	Low	Low	D Low Low	11	E	[]]	ł	111	111	Low
D.C. (m1/1)	11	2 .2 0	11	11	1111	11	ţ	111	ł	111	111	1
+ 02 con- sumed	11	100 50 10	11	11	10	11	I	111	ł	111	111	1
Color	10	• 80 40 5	11	11	1 1	۱ °د	2	20 15 10	5	5 10-100	20 5-20 70	5
rur- bid- ity	10	20 10	10	10	10 10	1-5	2	50 25 15	5	5 • 3 20	اىدى	ŝ
Industry	Air conditioning <u>3</u> Baking	Boiler feed: 0-150 psi 150-250 psi 250 psi and up	Brewing: 5/ Light Dark	Canning: Legumes General	Carbonated bev- erages §/ Confectionary Cooling §/ Food, general	6	Plastics, clear, undercolored	: <u>10</u> / fite	Light paper, HL-Grade	Rayon (viscose) pulp: Production Manufacture Tanning	Textiles: General Dyeing <u>12/</u> Wool scouring <u>13</u> /	Cotton band- age 13/

The annual discharge-weighted average concentrations of dissolved solids in the Angelina River near Lufkin have ranged from 74 to 158 ppm, and in the Neches River at Evadale have ranged from 77 to 139 ppm. For the 9-year period from October 1954 to September 1963, for which concurrent records are available, the discharge-weighted average concentrations were 96 ppm for the Angelina River near Lufkin and 92 ppm for the Neches River at Evadale. The analyses showing the annual maximum and minimum dissolved-solids concentrations and the annual weighted averages for the daily stations are given in Table 7.

Time-weighted averages are higher than discharge-weighted averages. Duration curves for concentrations of dissolved solids for both of the above stations show that (at Lufkin) 130 ppm and (at Evadale) 120 ppm dissolved solids have been equaled or exceeded 50 percent of the time.

Hardness

Surface waters of the northern half of the Neches River Basin are soft, having less than 60 ppm hardness (Plate 2). In the southern half of the basin the water is very soft, usually having less than 30 ppm hardness.

Waters draining from formations of the Wilcox Group and the older formations of the Claiborne Group are soft, and waters draining the younger formations are very soft.

Water in the Striker Creek subbasin is usually hard, probably because of residual effects of oil-field pollution.

Chloride

The chloride concentration is less than 20 ppm in surface water from about half of the Neches River Basin (Plate 2), particularly in streams draining areas underlain by Quaternary and upper Tertiary rocks. Water containing 20 to 100 ppm chloride in the northern half of the basin is typical of streams draining areas underlain by rocks of the Wilcox Group or by the older formations of the Claiborne Group. Chloride concentrations over 100 ppm occur in waters of the Striker Creek subbasin, and occasionally in the Pine Island Bayou subbasin, apparently because of oil-field brines.

Other Constituents

Other important constituents in evaluating the chemical quality of a water include silica, sodium, bicarbonate, sulfate, fluoride, and nitrate.

Many streams in the Neches River Basin contain from 10 to 30 ppm silica and the weighted-average concentration of the Neches River at Evadale is 13 ppm. In some streams having low dissolved-solids concentrations, silica may constitute up to 40 percent of the dissolved material present.

Throughout much of the Neches River Basin sodium is present in slightly larger proportions than calcium plus magnesium, and chloride is usually present in greater proportion than sulfate or bicarbonate. In unpolluted streams, sodium, bicarbonate, sulfate, and chloride concentrations seldom exceed 50 ppm. Concentrations of fluoride and nitrate are low over the entire basin; fluoride concentrations range generally from 0.1 to 0.3 ppm, and nitrate from 0.0 to 1.0 ppm.

Water Quality in Reservoirs

Most of the reservoirs in the Neches River Basin were sampled during this reconnaissance study. The chemical analyses are given in Table 8; locations where water samples were collected are shown on Plate 1 and Figure 10.

Flat Creek Reservoir

Outflow samples from Flat Creek Reservoir were collected from Flat Creek (site 3) about four miles below the dam. These samples indicate that the water in Flat Creek Reservoir is soft, with a dissolved-solids concentration of about 100 ppm.

Lake Palestine

In addition to analyses for Lake Palestine (site 7) by the Geological Survey, representative analyses made by the Texas State Department of Health are included in Table 8. This water is soft and has contained from 94 to 178 ppm dissolved solids and from 21 to 48 ppm chloride. When the planned enlargement of Lake Palestine (Figure 6) is completed, the quality of the water stored will probably be improved and subject to less variation, because larger volumes of flood runoff can be stored and the effects of low-flow water will be minimized.

Lake Jacksonville

The water in Lake Jacksonville (site 10) is very soft and low in all dissolved constituents. Chloride concentrations and dissolved-solids concentrations have been less than 10 ppm and 70 ppm respectively.

Striker Creek Reservoir

Inflow into Striker Creek Reservoir (site 40) during periods of high runoff has been of good quality, but low flows carry high concentrations of sodium chloride from areas of oil production. From October 1962 to March 1964, a period of below-normal runoff, the chloride concentration in the water of the reservoir increased from 171 to 272 ppm and the dissolved-solids concentration from 342 to 525 ppm. The factors affecting the quality of water in Striker Creek Reservoir were discussed on page 22.

Lake Tyler

The water in Lake Tyler (site 43) is of excellent chemical quality. It is low in all dissolved constituents and contains less than 70 ppm dissolved solids.

Lake Kurth

The quality of the water available for storage in Lake Kurth, an offchannel reservoir, can be inferred from the chemical-quality data for the daily station, Angelina River near Lufkin. Weighted-average dissolved solids at the Lufkin station have not exceeded 250 ppm and were usually less than 150 ppm.

Sam Rayburn Reservoir

Impoundment of water in Sam Rayburn Reservoir began in 1965. The quality of the water can be predicted from chemical-quality data for Attoyac Bayou near Chireno (site 52), and for the Angelina River at the damsite (site 56), and near Horger (site 57). The water impounded in Sam Rayburn Reservoir should be of acceptable quality for most uses. Municipal and industrial wastes released into the Angelina River near Lufkin could cause significant changes in the quality, especially during extended periods of low flow; but the large volumes of water normally available for storage should be adequate to dilute the wastes.

Dam B Reservoir

The chemical quality of the water in Dam B Reservoir can be inferred from the records for the daily sampling stations on the Neches and Angelina Rivers. The weighted-average dissolved-solids concentration of the Neches River near Alto (site 11) has ranged from 94 to 147 ppm and of the Angelina River near Lufkin (site 48) from 74 to 158 ppm. Water in Dam B Reservoir probably has a dissolved-solids concentration ranging from 100 to 150 ppm.

Water Quality at Potential Reservoir Sites

One of the principal purposes of the reconnaissance study of the Neches River Basin was to appraise the quality of the water available for storage at potential reservoir sites. Many sites studied by various Federal, State, and local agencies are indicated on Figure 6. Some of the sites are alternate proposals, and the construction of one reservoir might preclude the construction of another.

The reconnaissance study has shown that the quality of water is generally good throughout the Neches River Basin. In the absence of local pollution, reservoirs, wherever constructed, will store water low in dissolved solids and suitable for municipal, industrial, and irrigation use. The water quality at several of the sites is discussed below. The evaluations are based on 1964 conditions; industrial influences in the basin may cause significant changes in water quality before some of the reservoirs are built.

Lake Ponta

A permit has been issued by the Texas Water Rights Commission for construction of a dam at the Ponta site on the Angelina River in Nacogdoches and Cherokee Counties. When completed this will be one of the larger reservoirs in the basin. Stored water will be low in all dissolved constituents, with dissolved solids ranging from 100 to 150 ppm.

Mud Creek Reservoir

A permit has been issued for construction of a reservoir on Mud Creek in Smith County. The damsite is a few miles east of Lake Tyler, and the drainage areas are similar. Water that will be stored in Mud Creek Reservoir will contain probably less than 100 ppm dissolved solids.

Weches and Fastrill Damsites

Two sites are being considered for reservoirs in the reach of the Neches River bordering Houston and Cherokee Counties. Water stored at either of these sites will consist of the outflow from Lake Palestine and the runoff from a few tributaries below Lake Palestine. Releases or spills from Lake Palestine generally will contain not more than 150 ppm dissolved solids, and tributary inflow will probably contain slightly lower concentrations. The Weches site is near the chemical-quality station Neches River near Alto (site 11) where, for the four water years 1960-63, the weighted-average dissolved-solids concentration has ranged from 94 to 147 ppm.

Village Creek Damsite

A reservoir on Village Creek at the potential damsite near Kountze in Hardin County will store water very low in dissolved constituents. Analyses of 11 samples collected at the gaging station near Kountze (site 78) at low, medium, and high discharge rates have shown a range of 21 to 118 ppm dissolved solids. According to the evidence, slight pollution from oil fields exists in the Beech Creek drainage area, but effects on water quality in Village Creek apparently have been minor.

Pine Island Bayou Damsite

At present, salt water produced with oil in the Batson, Saratoga, and Sour Lake oil fields is discharged into surface streams in the Pine Island Bayou drainage area, principally during periods of flooding following heavy rains. The construction of a water-supply reservoir on Pine Island Bayou will not be feasible until an alternate method for disposal of the salt water is adopted. The natural runoff, which from that area is of good quality, will not at all times be adequate to dilute the oil-field waste.

Salt-Water Barrier

Several plans have proposed the construction of a dam on the Neches River below the mouth of Pine Island Bayou to prevent salt-water encroachment into the lower river and to make unnecessary the wastage of much fresh water into the Gulf of Mexico. Water available for storage at the site would be very similar in quality to the water sampled at the daily quality station at Evadale (site 63, Table 7), where the weighted-average dissolved-solids concentration has ranged from 77 to 139 ppm. Additional inflow will be received from Village Creek, which is very low in dissolved solids, and from Pine Island Bayou. If the present practice of brine disposal into surface streams in the Sour Lake, Saratoga, and Batson oil fields is continued, it could at times seriously deteriorate water quality in the Pine Island Bayou arm of the reservoir.

CONCLUSIONS AND RECOMMENDATIONS

This reconnaissance showed that the Neches River Basin has an abundance of water of good quality and is remarkably free of water-quality problems; however, two areas--Striker Creek and Pine Island Bayou--require further study.

Waters in the Striker Creek drainage area are being polluted by oil-field brine. Most of the brine produced is reinjected underground; but some surface pits are used, and small quantities of brine also reach the streams as the result of leaks in the collection systems and from accidental spills. The results of this reconnaissance study show that the disposal of brine on the surface in years past still affects the chemical quality of the surface water. An extensive research project is needed to define these effects. Such a project should include the study of the base-exchange capacity of the various clays, the study of the quality of the shallow groundwater, an inventory of the production and disposal of the brine, and the detailed geological mapping of the area.

Oil-field brines also pollute the surface streams in the Pine Island Bayou drainage area. Brine is stored in unlined surface pits and released to streams during flood-runoff periods. This practice interferes with use of surface water at present, and will be even more detrimental when water-supply storage projects are built downstream. Some of the brine seeps into the ground, and further study is needed to determine the effects this seepage will have on the shallow ground water in the area.

Continued municipal and industrial growth in the Neches River Basin will increase the waste-disposal burdens of the stream systems and will require continuous effort by water-pollution control agencies to keep deterioration of water quality at a minimum.

Encroachment of sea water from the Gulf of Mexico through Sabine Lake at times makes the water of the lower reach of the Neches River unsuitable for irrigation or for municipal or industrial use. During summer low-flow periods the Lower Neches Valley Authority has had to construct a temporary barrier across the Neches River below the mouth of Pine Island Bayou to prevent salt water from reaching the Voth Pumping Plant (Lower Neches Valley Authority, oral communication, 1964). Further depletion of sustained flow as a result of increased comsumptive use and upstream storage will aggravate the encroachment problem until the proposed Salt-Water Barrier is built. The effect of the decreased flow on the marine life in bays and estuaries should be anticipated and studied.

The quality of water may be improved or degraded by impoundment. Beneficial effects include reduction of turbidity, silica, color, and coliform bacteria, stabilization of sharp variations in chemical quality, entrapment of sediment, and reduction in temperature. Detrimental effects of impoundment include increased growth of algae, reduction of dissolved oxygen, and increases in the concentration of dissolved solids and hardness as a result of evaporation. Further study is needed to determine the significance of these changes in water quality and their relation to the intended uses of the water. American Water Works Association, 1950, Water quality and treatment: Am. Water Works Assoc. Manual, 2d ed., tables 3-4, p. 66-67.

Austin Oil and Gas Co., 1962, Texas Wildcat Maps, May 1962.

- Baker, B. B., Peckham, R. C., Dillard, J. W., and Souders, V. L., 1963, Reconnaissance investigation of the ground-water resources of the Neches River Basin, Texas: Texas Water Commission Bull. 6308, 67 p., 10 figs., 11 pls.
- Baker, E. T., Jr., Geology and ground-water resources of Hardin County, Texas: Texas Water Commission Bull. 6406, 179 p., 26 figs., 8 pls.
- Broom, M. E., Alexander, W. H., and Myers, B. N., 1965, Ground-water resources of Camp, Franklin, Morris, and Titus Counties, Texas: Texas Water Commission Bull. 6517, 153 p., 13 figs., 3 pls.
- Burnitt, S. C., 1962, Henderson oil field area, Rusk County, Texas; investigation of ground-water contamination: Texas Water Commission Pub. LD-0262-MR, 13 p., 2 figs., 1 pl.
- Darton, N. H., Stephenson, L. W., and Gardner, Julia, 1937, Geologic map of Texas: Washington, U.S. Geological Survey.
- Dillard, Joe W., 1963, Availability and quality of ground water in Smith County, Texas: Texas Water Commission Bull. 6302, 160 p., 8 figs., 17 pls.
- East Texas Salt Water Disposal Co., 1958, Salt water disposal, East Texas oil field: University Texas Petroleum Extension Service, 131 p., 79 figs.
- Hughes, L. S., and Leifeste, D. K., 1964, Reconnaissance of the chemical quality of surface waters of the Sabine River Basin, Texas and Louisiana: Texas Water Commission Bull. 6405, 64 p., 12 figs., 2 pls.
- Irelan, Burdge, 1956, Quality of water, in Jones, P. H., Hendricks, E. L., Irelan, Burdge, and others, Water resources of southwestern Louisiana: U.S. Geol. Survey Water-Supply Paper 1364, p. 323-441.
- Kelley, Walter P., 1948, Cation exchange in soils: New York, Reinhold Publishing Co., 144 p.
- Langbein, W. B., and Iseri, Kathleen T., 1960, General introduction and hydrologic definitions: U.S. Geol. Survey Water-Supply Paper 1541-A, p. 1-29.
- Maier, F. J., 1950, Fluoridation of public water supplies, Jour. Am. Water Works Assoc., v. 42, pt. 1, p. 1120-1132.
- Plummer, F. B., 1945, Investigations dealing with disposal of East Texas oilfield water: University of Texas Bureau of Engineering Research mimeographed report, 104 p., 35 figs.
- Texas Board Water Engineers, 1958, Compilation of surface water records in Texas through September 1957: Texas Board Water Engineers Bull. 5807A, 503 p., 4 pls.

- Texas Board Water Engineers, 1961, A plan for meeting the 1980 water requirements of Texas: Texas Board Water Engineers, 198 p., 25 pls.
- Texas State Department of Health, 1960, Chemical analyses of public water systems, 99 p.
- Texas Water Commission, and Texas Water Pollution Control Board, 1963, A statistical analysis of data on oil field brine production in Texas for the year 1961 from an inventory conducted by the Texas Railroad Commission: Summary volume, 81 p.
- U.S. Bureau of Reclamation, 1953, Water supply and the Texas economy, an appraisal of the Texas water problem: U.S. 83d Cong., 1st sess., Doc. 57, 91 p.
- U.S. Geological Survey, 1939, Summary of records of surface water of Texas, 1898-1937: U.S. Geol. Survey Water-Supply Paper 850, 154 p.

1960, Compilation of records of surface waters of the United States through September 1950, Part 8, Western Gulf of Mexico basins: U.S. Geol. Water-Supply Paper 1312, 633 p., 2 figs., 1 pl.

1961, Surface water records of Texas, basic data release.

1962, Surface water records of Texas, basic data release.

1963, Surface water records of Texas, basic data release.

1964, Compilation of records of surface waters of the United States, October 1950 to September 1960, Part 8, Western Gulf of Mexico basins: U.S. Geol. Survey Water-Supply Paper 1732, 574 p., 2 figs., 1 pl.

- U.S. Public Health Service, 1962, Drinking water standards 1962: U.S. Public Health Service Pub. 956, 61 p.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture Handbook 60, 160 p.

Quality-of-water records for the Neches River Basin are published in the following U.S. Geological Survey Water-Supply Papers and Texas Water Commission (before January 1962, Texas Board of Water Engineers) Bulletins:

Water year	Water-Supply Paper no.	TWC Bull. no.	Water year	Water-Supply Paper no.	TWC Bull. no.
1940-45		*1938-45	1954	1352	*1954
1946	1050	*1946	1955	1402	*1955
1947	1102	*1947	1956	1452	5905
1948	1133	*1948	1957	1522	5915
1949	1163	*1949	1958	1573	6104
1950	1188	*1950	1959	1644	6205
1951	1199	*1951	1960		6215
1952	1252	*1952	1961		6304
1953	1292	*1953	1962	1944	6501

* "Chemical Composition of Texas Surface Waters" was designated only by water year from 1938 through 1955.

The following U.S. Geological Survey Water-Supply Papers contain results of stream measurements in the Neches River Basin, 1903-60:

Year	Water-Supply Paper no.	Year	Water-Supply Paper no.	Year	Water-Supply Paper no.
1903	99	1934	763	1948	1118
1904	132	1935	788	1949	1148
1905	174	1936	808	1950	1178
1906	210	1937	828	1951	1212
1924	588	1938	858	1952	1242
1925	608	1939	878	1953	1282
1926	628	1940	898	1954	1342
1927	648	1941	928	1955	1392
1928	668	1942	958	1956	1442
1929	688	1943	978	1957	1512
1930	703	1944	1008	1958	1562
1931	718	1945	1038	1959	1632
1932	733	1946	1058	1960	1712
1933	748	1947	1088		

Table 6.--Index of surface-water records in the Neches River 'asin

	Areg	01 1001			Standard - Contraction			
Sochies River mear Choudler Rickapoo Creek near Brownshoro Plat Creek at FM Road 607 near Athens Saline Creek at FM Road 607 near Athens Saline Creek at FM Road 507 near Athens Saline Creek at FM Road 344 near Bullard Frick Run 7 miles NW of Bullard Saline Greek at FM Road 344 near Bullard Saline Greek at FM Road 344 near Bullard Saline Greek at FM Road 344 near Bullard Noches River near Peches Noches River near Neches Noches River near Alto Neches River near Pollok Neches River near Pollok Neches River near Pollok Neches River near Righway 94 near Groveton Reches River near Rockland Roches River near R	(sel miles)	01-1061	1911-20	1921-30	1931-40	1941-50	1951-60	1961-65
Kickapoo Greek near Brownshoro Flat Greek at FM Road 607 near Athens Saline Greek at FM Road 344 near Bullard Frick Run 7 miles NW of Bullard Saline Greek at FM Road 344 near Bullard Saline Greek at FM Road 344 near Bullard Lake Palestine near Frankston Noches River near Neckes Noches River near Neckes Noches River near Jacksonville Neches River near Jacksonville Neches River near Dilok Neches River near Dilok Neches River near Dilok Reches River near Rockland Roches River near Rockland Roches River near Roc							-	
Flat Creek at FM Road 607 near Athens Saline Creek at county road 7 miles NW of Bullard Saline Creek at county road 344 near Bullard Saline Creek at FM Road 344 near Bullard Saline Creek at FM Road 344 near Bullard Saline Creek at FM Road 344 near Bullard Saline Creek at Frankston Iake Palestine near Frankston Nochus River near Neese Noches River near Jacksonville Neches River near Alto Neches River near Pollok Neches River near Pollok Neches River near Riboul Reches River near Rould Reches River near Rould Reches River near Pollok Neches River near Rould Reches River near Rould Reches River near Rould Roules Creek at State Highway 94 near Groveton Reches River near Rockland Reches River near Rockland Roules Creek near Old London Right Fork Bowles Creek near Old London	232							
Saline Creek at county road 7 miles NW of Bullard Frick Run 7 miles NW of Bullard Saline Creek at FM Road 344 near Bullard Lake Falestine near Frankston Nuches River near Frankston Neches River near Neches Neches River near Neches Neches River near Nich Neches River near Alto Neches River near Pollok Neches River near Pollok Neches River near Recond Neches River near Pollok Neches River near Pollok Neches River near Pollok Neches River near Pollok Reches River near Routon Reches River near Routon Reches River near Pollok Reches River near Routon	21.6							2
Frick Run 7 miles NW of Bullard Salthe Greek at FM Road 344 near Bullard Lake Palcetine near Frankston Nöches River near Neches Nöches River near Alto Nöches River near Pollok Neches River near Diboll Pluey Greek near Roceton Camoy Creek at State Highway 94 near Groveton Neches River near Rockland Neches River near Rockland Reches River near Rockland Right Fork Bowles Greek near Old London								2
Saline Greek at FM Road 344 near Bullard Lake Palestine near Frankston Nachus River near Reese Naches River near Neches Iake Jacksonville near Jacksonville Neches River near Alto Neches River near Pollok Neches River near Pollok Neches River near Pollok Reches River near Robel Reches River near Pollok Reches River near Pollok Reches River near Pollok Reches River near Pollok Reches River near Rockland Reches River near Rockland Reches River near Rockland Reches River near Rockland Right Fork Bowles Greek near Old London Right Fork Bowles Greek near Old London	-							2
Lake Palestine near Frankaton Nochus River near Reese Seches River near Neches Iake Jacksonville near Jacksonville Noches River near Jacksonville Noches River near Alto Neches River near Alto Neches River near Pollok Neches River near Pollok Neches River near Routon Seches River near Routon Reches River near Routon Seches River near Rockland Neches River near Rockland Neches River near Rockland Neches River near Rockland Reches River near Rockland Rowles Creek at Overton Right Fork Bowles Creek near Old London								5
Nuchus River near Reese Nechus River near Neches Lake Jacksonville near Jacksonville Neches River near Alto Neches River near Pollok Neches River near Pollok Neches River near Pollok Suches River near Pollok Neches River near Rould Reches River near Routon Bitey Creek at State Highway 94 near Groweton Neches River near Rockland Neches River near Rockland Reches River near Rockland	839							3
Naches River naar Naches Lake Jacksonville near Jacksonville Naches River naar Alto Naches River naar Pollok Naches River naar Pollok Naches River naar Diboll Naches River naar Diboll Pfluey Creek near Croveton Caney Creek at State Highway 94 near Groveton Naches River near Rockland Naches River near Rockland Naches River near Rockland Right Fork Bowles Creek near Old London	883							
Lake Jacksonville near Jacksonville Noches River near Alto Neches River near Pollok Neches River near Pollok Neches River near Croveton Piney Creek at State Highway 94 near Groveton Camey Creek at State Highway 94 near Groveton Neches River near Rockland Neches River near Rockland Neches River near Rockland Right Fork Bowles Creek near Old London	1,145							
Noches River near Alto Neches River near Pollok Neches River near Pollok Neches River near Groveton Finey Creek at State Highway 94 near Groveton Canay Creek at State Highway 94 near Groveton Neches River near Rockland Neches River near Rockland Bowles Creek at Overton Right Fork Bowles Creek near Old London						4 X		1111
Neches River near Pollok Neches River near Diboll Piney Creek near Groveton Caney Creek at State Highway 94 near Groveton Seches River near Rockland Neches River near Rockland Bowles Greek at Overton Right Fork Bowles Creek near Old London	1,945							
Noches River near Diboll Piney Creek near Groveton Caney Creek at State Highway 94 near Groveton Neches River near Rockland Neches River near Rockland Bowles Creek at Overton Right Fork Bowles Creek near Old London							5	
Pinuy Greek near Groveton Camey Creek at State Highway 94 near Groveton Neches River near Rockland Bowles Creek at Overton Right Fork Bowles Creek near Old London	2,724							
Caney Creek at State Highway 94 near Groveton Neches River near Rockland Bowles Creek at Overton Right Fork Bowles Creek near Old London	0.91							
Neches River near Rockland Bowles Greek at Overton Right Fork Bowles Creek near Old London								4
	3,637							
								1
-								2
Unnamed troutery to Lett Fork bowles treek at state Highway 323 near Old London								2
20 Left Fork Bowles Creek at FM Road 838 near Old London								2

Stream and Location	Drainage			+			$\left \right $			Calendar		Years							ļ	
	Area (sq. miles)	5	01-1061		161	1911-20		192	1921-30		36I	1931-40		1941-50	~		1951-60	60	1961	1961 – 65
Jackson Creek at Stare Highway 105 near Sour Lake																_				2
Ditch below Stafe Highway 105, 0.5 mile west of Sour Lake					1															1
																				2
Pine Island Bayou at State Highway 326 near Sour Lake																_				4
Pine Island Bayou at State Highway 105 near Sour Lake																				1
Little Pine Island Bayou at State Highway 326 near Sour Lake																				1
Little Pine Island Bayou 1.5 miles from mouth																				1
																				2
			-																	
																				_
																_				
				-																
																-				
																	-			-

- 45 -

Table 6, --Index of surface-water records in the Naches River Basin+-Continued

-	-	Shuinin							
ance no.	Stream and Location	(sq. miles)	01-1061	1911-20	1921-30	1931-40	1941-50	1951-60	1961-65
61	Dam B Reservoir at Town Bluff	7,573							
62	Neches River at Town Bluff	7,573						III ESPECTOR AND	
63	Neches River at Evadale	7,952							
	Village Creek at U.S. Highway 69 near Kountze							18	
65	Hickory Creek 3.5 miles west of Warren							1	
66	Hickory Creek at U.S. Highway 69 near Warren							N #2	
67	Big Turkey Creek at Woodville								
68	Big Cypress Creek at U.S. Highway 190 near Woodville							2	5
69	Horsepen Greek 9.5 miles west of Woodville							1	
70	Horsepen Greek 9 miles SW of Woodville							31	
12	Little Cypress Creek near Woodville								2
72	Big Cypress Greek near Hållister								1
73	Big Turkey Creek 6 miles SE of Warren							3	
74	Beech Creek at FM Road 1013 near Spurger							1	
75	Beech Greek 2.5 miles NW of Fred								
76	Theuvenins Creek 7 miles SE of Warren							21	
11	Beech Creek near Village Mills								1
78	Village Creek near Kountze	861				*			
79	Cypress Creek near Kountze							5	
80	Jackson Creek 2.5 miles NW of Sour Lake								

ł		Drainage			Cale	Calendar Years			
ence no.	Stream and Location	Area (sq. miles)	01-1061	1911-20	1921-30	1931-40	1941-50	1951-60	1961-65
41	Buford Branch near New Salem								2
42	Angelina River near Sacul								
43	Lake Tyler near Whitehouse	45.3							
	Kickapoo Greek near Arp								<u>ı</u>
	Mud Creek near Jacksonville	376				<u> </u>			
46	Mud Creek near Ponta	475							
	Angelina River near Alto	1,276							
	Angelina River near Lufkin	1,600							
	Paper Mill Creek near Herty								5
	Angelina River near Etolle								
-	Arenosa Creek near San Augustine	75.3							
-	Attoyac Bayou near Chireno	503				2			
53	Angelina River near Zavalla	2,892							
-	Áylsh Bayou at San Augustine	15.8							
-	Ayish Bayou near San Augustine	89.0							
56	Angelina River below Sam Rayburn Dum								
-	Angelina River near Horger	3,486						sessantin internet	
-	Wolf Creek near Town Bluff								
-	Rush Creek near Town Bluff							2.	
-	Sandy Creek near Jasper							7	

Daily chemical quality

Periodic discharge measurements

- 47 -

 \mathbf{x}

Table 6.--Index of surface-water records in the Neches River Basin--Continued

	Stream and Location	Area		01-10												
		(sq. miles)		01-1061	161	1911-20	192	1921-30	51	1931-40		1941-50	_	1951-60	1961	61-65
	Unnamed Creek at FM Road 838 at Old London															7
	Unnamed tributary to Bowles Creek at county road 2 miles NN of Turnercown															2
	Bowles Greek near Turnertown															2
24 M	Wright Branch near Wright City															2
25 H	Henson Creek near Wright City															2
26 D	Denton Greek at FM Road 15 near Wright City															1
27 D	Denton Greek at county road 5 miles south of Wright City															2
28 B	Bowles Greek at county road 7 miles south of Wright City															2
29 H	Horsepen Branch at FM Road 15 near Troup													-		1
30 M	McNeil Creek near Price															1
31 B	Bowles Creek at FM Road 13 near Price															2
32 H	Hampton Creek near Henry Chapel															1
33 B	Bowles Greek at county road 6 miles SE of Price															1
34 J	Johnson Creek near Old London															2
35 J	Johnson Greek near Price															2
36 J	Johnson Creek at county road 6 miles south of Price															1
37 ^U	Unnamed tributary to Johnson Creek at county road 6 miles south of Price															1.
38 N	Willis Ditch at county road 6 miles NE of New Summerfield															1
39 S	Striker Creek at U.S. Highway 79 near New Summerfield	146														
40 1	Lake Striker near New Salem	182														ł
Dischar	Discharge munummun Gage heights only munummunu	Gage heights and	ights	ind discharge		measurements	1			Reservoir	contents	1				
Periodi	Periodic discharge measurements management Daily	chemical quality	l quali	ty		Periodic	chemical		lity www	quality www.		er temp	erature 🗸	×		Water temperature according

'n

Table 7.--Summary of chemical analyses at daily stations on streams in the Neches River Basin

(Analyses listed as maximum and minimum were classified on the basis of the values for dissolved solids only; values of other constituents may not be extremes. Results in parts per million except as indicated)

Hardness as CaCO,

Dissolved solids

	Mean dis-		Iron	Cal-	Mag-			_	Chlo-	Fluo-	Ni-	å	Dia	Dissolved solids	ida	Hardness as CaCO,	CO,	Per-	So- dium	Specific conduct-	
Date of collection	charge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	aium (Mg)	dium aium (Na) (K)	(HCO ₁)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	Hq
								11. NECI	NECHES RIVER NEAR ALTO	NEAR AL	TO										
Mater year 1960 Maximum, June 18, 1960 Minimum, June 13-15	374	17		11	5.0	51	a33	17	81	0.2	0.2		198	0.27	200	48	21	70	3.2	354	8.8
26-28	817 1,194	16 16		6.5 9.0	3.3	16 23	19 19	15 26	22 33	9.1.	1.8		90 122	.12	199 393	30 42	14 26	54 54	1.3 1.5	139 204	6.2
Water year 1961 Maximum, Oct. 2, 1960- Miximum Tuno 10.20	234	29		14	.3	80	25	39	122	÷	1.5		304	.41	192	19	40	74	4.5	508	7.0
1961	4,400 2,327	6.4 14		3.0 7.5	1.6 3.5	6.4 2.0 17	11 18	8.6 19	7.8 24	.2	ς. s.		42 94	.06	165 591	14 33	5 18	45 53	.7	62 153	6.2
Water year 1962 Maximum, July 1-15, Minimum, Mny 1-2 Weighted average	686 5,385 1,139	19 12 16		11 4.6 9.0	4.6 4.4		33 16 24	14 12 21	56 16 33	1 2 2	1.2 .5		165 68 121	.22 .09	306 989 372	46 22 41	19 9 21	62 55 54	2.2	280 109 220	6.6 2.2
Water year 1963 Maximum. Aug. 1-5, 1963	48.6 596 418	14 14 15		17 6,5 11	5.7 2.9 4.8	77 20 30	34 22 28	14 11 22	135 29 46		1.0 1.8 .8.		281 96 147	.38 .13	36.9 154 166	66 28 47	38 10 24	72 61 58	4.1 1.6 1.9	548 158 245	6.5
							4	48. ANGEI	ANGELINA RIVER NEAR LUFKIN	NEAR LI	UFKIN										
Mater year 1955 Maximum, Nov. 4-18, 26-30, 1954	259	18		18	7.5	109	4	52	180	ľ	0.5		412	0.56	288	76	72	76	7 5	017	er er

- 49 -

6.3 7.0 6.5 5.5 9.9 6.9 80 249 710 55 138 581 123 249 649 .7 5.6 1.5 2.5 5.4 5.5 .4 1.4 76 46 66 78 28 57 80 61 68 48 3 10 72 5 25 30 6 18 76 18 36 50 22 35 61 15 28 48.6 45.6 1,410 259 407 286 988 288 56 .07 .45 .11 .50 412 53 365 42 88 333 80 153 $1.5 \\ 1.0$.5 1.1 5 S 8 $\{\cdot\}$ $I = I \cdot I$ £. 14 6.8 50 5.0 23 159 154 16 51 9.3 22 6.4 12 12 17 19 37 20 16 14 24 19 20 16 15 22 6.3 17 7.2 66 92 16 34 2.5 2.1 5.0 3.1 6.3 14 2.5 6.0 12 3.7 7.2 3.1 13 17 14 16 13 14 46.3 1.42 12,4501,089 2,843 4,572 413 1955------Minimum, May 4-8, 11-14, 1956------Minimum, May 24-29, 1955------Water year 1956 Maximum, Oct. 11-20.

a Includes the equivalent of 11 parts per million of carbonate (CO $_3$).

e

et.

Table 7, -- Summary of chemical analyses at daily stations on streams in the Neches River Basin--Continued

Date of collection	Mean		1	Cal-	Mag-	Ś	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Dii	Dissolved solids	sbi	Har as C	Hardness as CaCO,	Per-	So-	Specific conduct-	
	dia- charge (cfa)	Silica (SiO ₂)	lron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO,)	fate (SO.)	ride (Cl)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium		ance (micro- mhos at 25° C)	Hd
								48. ANG	ELINA RIV	ANGELINA RIVER NEAR LUFKINContinued	LUFKIN	Continue	eđ									
Water year 1958 Maximum, Apr. 11-13, 20-22, 1958	810	8,6		12	6,2	0	39	32	28	60	1	0.0		1 78	0,24	389	55	29	90	2.3	303	7.2
Minimum, Oct. 18-16. 1957 Weighted average	$\frac{3}{2},470$	8.2 14		1.6	1.8 2.8	3.6	3.0 14	13 18	6.6 14	3.5 18	E I	28.		36 79	.05	337	11 26	0	34 54	5	48 123	6.5
Water year 1959 Maximum, Aug. 27-31, 1959	152	16		9.8	5.0	4	44	30	14	71	ï	8.		186	.25	76.3	45	20	68	2.8	316	6.3
Minimum, Apr. 13-14, 18-23	2,214	14 14		4.57.5	2.7 4.0	8.0	1 1.9 22	18 22	12 19	10 32	1-1	1.0		63 111	.09	377 298	22 35	8 17	41 58	.7 1.6	98 190	6.7
Mater year 1960 Maximum, Aug. 5-17, 1960 Minimum, Feb. 22-29 Weighted average	66.2 2,698 984	17 13 15		12 3.8 6.6	6.3 2.6 4.1	7 1 1	70 1.4 19	29 16 19	18 11 21	117 8.0 26	: -: !	2 1.0		2.54 56 1.03	.35 .08 .14	45.4 408 274	56 20 33	32 7 18	73 41 55	4.1 .7 1.4	456 85 166	6.5 6.5
Mater year 1961 Maximum, Oct. 2-3, 1960 Miofmum, Mar 18-21	915	14		12	6.2	2	75	6	20	135	-5	.2		267	.36	660	55	48	75	4.4	509	6.4
1961	4,178 2,353	11 14		3.8 5.2	1.8 3.3	4.1 L	1.4	15 18	5.2 L3	6.5 17	1	1.0		42 74	.10	474 470	17 26	5 12	32 50	4. 1.0	59 116	6.0
Mater year 1962 Naximum, Sept. 1-8, 1962 Minimum, Nay 1-8 Weighted average	85.5 5,321 1,372	5 14 7.2 14		10 3,3 6,2	5.6 1.9 3.6	4.3 L 5	56 1.9 5	133 19	15 6.8 16	90 7.8 21	°; ≓	 		209 38 87	.28 .05	48.2 546 322	48 16 30	21 7 14	72 34 51	3.5 .5 1.1	376 60 142	5.9
Mater year 1963 Maximum, Sept. 1-6, 1963 Minimum, Apr. 7-9 Weighted average	60.0 1,673 365	5 <u>1</u> 2		18 5.0 9.0	9.0 1.8 5.3	13 3	137 14 36	25 15 19	30 14 29	232 16 53	ŋ	8.8.5		452 70 158	.61 .10 .21	73.2 316 156	82 20 44	62 8 29	78 60 65	6.6 1.4 2.4	870 102 275	6.9 6.6
								63.		NECHES RIVER AT EVADALE	EVADALI											
Water year 1948 Naximum, Nov. 1-10, 1947	572	18		81	6.2	40	6.4	39	14	78	1.2	1.5		212	0.29	32.7	70	38	59	2.1	337	6.9
Nanamum, Feb. 14-20, 1948	18,610 4,802	=		5,8 7,8	3.6	- ~	15	8 17	15 22	28 30	1-1	.5		115 96	.19	5,780 1,820	29 36	23	53 55	1.2	110	1 1

- 50 -

So- Po- Bicar- dium tas- bonate
(K)
63. NECHES RIVER AT EVADALEContinued
00
3.3
29 60 14
4.9 1 1.5 9 8.
33 16 32
6.6 1 2.8 16 9 17 22 17
32 42 23
12 10 20 21 20 24
28 35 18
6.7 1 1.7 9 11 15 1.7 1 17 16
34 42 19
11 12 12 20 20 21
2.3 16 .9 44 25 25 25

- 51 -

' Table 7.--Summary of chemical analyses at daily stations on streams in the Neches Kiver Basin--Continued

J

 t^{\pm}

ö

Po- Bicar- Sul- tas	Bicar- Sul-	Mag- So- Po- Bicar- Sul- ne tas	Mag. So. Po. Bicar. Sul- ne tas	So. Po. Bicar. Sul.	Bicar- Sul-	Sul-			Chlo-	Fluo-	Ni-	Bo-				as CaCO,	Ś	Per-	So-	conduct-	Ţ
dium (Na)	- 0		sium (Mg)			sium (K)	bonate (HCO ₃)	fate (SO.)	(CI)	ride (F)	(NO ₃)	ron (B)	Parts per lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	-os min	tion ratio	(micro- mhos at 25° C)	
							63. NEC	NECHES RIVER	AT	DALECo	EVADALEContinued										
51	3.4 51				51		24	25	75	1	0,2		218	.30	566	41	22	73	ي. ي	348	1
14 17	1.5 14 2.9 17	11 21241	1.5 2.9	11 21241	14		15 20	14 16	14 22	11	.8 .7		96 122	.13	4,040 1,650	17 27	5 11	64 57	1.5 1.4	107 144	6.9
33	4.0 33		4.0		33		21	15	23	0.0	1.0		173	.24	2,280	38	20	65	2.3	226	6.8
2 11	3.8 2 3.6 11		3.8 9.6		2 11	2.1	18 20	5.4 12	8.0 18	0.0.	1.0 .9		46 83	.06	4,490 2,550	28 31	13 15	14 43	.2	65 115	7.3
38	5.2 38	12	12	12	38		58	14	54	ε.	1.5		206	.28	464	56	6	60	2,2	31.0	7.7
7.5 29	2.1 7. 4.3 29		2.1		29	5	11 27	11 23	7.5	1.2	1.0		56 139	.08	268 766	16 40	7 18	51 62	.8 2.0	75 222	6,6
42	3.8 42				42		47	22	51	.2	5		180	.24	336	43	ŝ	68	2.7	2.90	7.6
14 22	2.7 14 3.7 22		2.7		14 22		18 23	17 22	15 27	44	1.2 1.3		78 115	.11	2,550 1,150	24 34	9 15	57 59	1.3 1.7	111 174	6.7
42	3.8 42				42	2	70	8.1	47	5	1.5		171	.23	90.5	43	0	68	2.8	2.92	7.3
4. 11	1.4 4. 2.4 11	411	1.4 4 2.4 11	411	4. 11	8.	17	5.9 11	4.5 13	ůů	.8		36 66	.05	$4,590 \\ 1,460$	18 24	4 6	36 49	.5	58 109	6.8
36 17 24	5.7 2.3 3.4 2.4		5.7 2.3 3.4		36 17 24		81 17 25	8.6 14 17	44 21 32	ပ်ဆံပဲ	.8 2.5 1.5		188 88 127	.26 .12	1,780 704	61 25 34	0 11 14	56 60	2.0 1.5 1.8	299 139 194	7.7 7.0
46	5.2 46	2	2		95		86	6.7	52	4.	2.8		203	.28	105	56	0	64	2.7	330	7.6
12 21	2.0 12 2.8 21		2.0 2.8		12 21		16 22	11	14 27	۰. 4	.5		62 107	.08	319 910	21 31	8 13	55 59	1.1 1.6	101 169	6.8
46	3.1 46	C	C	C	46		48	14	60	.5	1.0		199	.27	268	40	O	72	3.2	2.99	7,0
17 26	1.7 17		-							E	0		C B	۹Ę	1.550	23	12	19	5	138	6.2

Table 7, --Summary of chemical analyses at daily stations on streams in the Neches River Basin -- Continued

- 52 -

Table 8.--Chemicul analyses of streams and reservoirs in the Neches River Basin for locations other than daily stations

ð

æ

.....

as CaCO, Per- dium	Tons Cal. Non- so- adsorp- (micro- per cum, carbon- dium ratio mhos at day sium ate 25°C)		0.18 41 23 57 1.7 207 6.8	-	0.12 20 8 63 1.6 117 5.8 .11 28 12 48 1.0 125 6.5 .11 25 10 49 1.0 109 6.8 .11 26 3 50 1.0 109 6.9 .11 26 4 5.0 1.0 109 6.9	29 22 59 1.5 158 45 29 55 1.7 221 39 15 54 1.7 221 42 12 47 1.1 168 10 0 56 1.0 63 12 0 56 1.0 63		0.41 146 133 34 1.3 479 6.6 .45 176 152 28 1.0 510 6.3		59 48 246 7.3		146 134 565 7.5			
Contra (contra	per mil- lion		a130	-	85 78 78 78 84	104 a146 116 112 54 58	BULLARD	304 329						111 135 124 111 128 128 128 128	94 94
Ni- Bo- trate ron		ANDLER	1.8	R ATHENS	0.5 1.2 1.0 .5	N 80 N 90 N	OF	0.0	BULLARD		NEAR BULLARD		STON	0.4 4 4 5 5 4 0 0	4.10
Fluo- ride	E	NECHES RIVER NEAR CHANDLER		FLAT CREEK AT FM ROAD 607 NEAR ATHENS	0.2 .2 .1	8 - 3 - 3 - 5 - 5 - 5 - 5 - 7 - 5 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	MILES NORTHWEST	0.1	NORTHWEST OF		344		LAKE PALESTINE NEAR FRANKSTON	0 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ų v
Chlo- ride		ECHES RIVI	29	AT FM ROAL	20 17 14 14 14 14	26 39 30 23 23 8	TY ROAD 7	48 41	MILES NORT	35	AT FM ROAD	78	LESTINE N	24 29 24 30 41	23 26
r- Sul- te fate	-	T.	33	AT CREEK	12 12 13 8.0 7.8		K AT COUNTY	136 154	RUN 7		INE CREEK		LAKE PA.	32 23 14 14 24 32	20 21
Bicar-			22	3. FL/	15 19 19 28 26	8 20 29 29 36 29 29 20 29 20 20 20 20 20 20 20 20 20 20 20 20 20	SALINE CREEK	17 30	5. FRICK	13	6. SALINE	15	7.	12 26 54 53 28 18	21 23
So- Po- dium tas-	(Na) sium (K)		25		16 122 111 122 133	$\begin{array}{c c} 19 \\ 26 \\ 21 \\ 7.0 \\ 7.4 \\ 7.4 \\ 27 \\ 1. \\ 2 \end{array}$	4. SAI	35 31						15 19 17 19 10 26	16 18
Mag- ne-	(Mg)		4.8		2.7 3.1 2.5 2.5 2.5	3.2 5.2 4.3 4.4 1.1		22						4 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	с. .5
Cal- cium	(Ca)		8.6		3.5 6.0 6.0	6.2 9.5 9.5 2.5 3.0		34 49						9 12 13 13 10 12	9 9.5
a Iron														7 1 B 1	2.629
Silica (SiO.)			12		11.2 23 27.6 17 8.88 21 1.66 21 4,31 24	53.6 20 11.9 15 4.12 21 2.57 23 .11 23 .26 23		.2 26		3				10 14	4.6
Dis- charge	(cfs)				11 27 8 8 4	233 11 24		4 9 9		- b0.3		b5			
Date of collection			Feb., 27, 1952		Nov. 14, 1961 May 2, 1962 June 5	Nov. 28. 963 Mar. 13, 1963 Abr. 18. 963 Say 21 July 30 Oct. 8		Mar. 25, 1964		Mar. 25, 1964		Mar. 25, 1964		#Jun. 23, 1962 May 17	*May 15

a Residue at 180°C. b Field estimate. * Analysis by Texas State Department of Health.

Table 8,...Chemical analyses of streams and reservoirs in the Neches River Basin for locations other than daily stations - Continued

				Cal-	I. Mag-	Ś	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Diss (c	Dissolved solids (calculated)		Hardness as CaCO,	0°.	Per-	So.	Specific conduct-	
10. LARE JACESONTLE REAL JACESONTLE 1 1 1 0 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>tas- sium (K)</th><th>bonate (HCO₃)</th><th>fate (SO_i)</th><th>ride (CI)</th><th>ride (F)</th><th>trate (NO₃)</th><th>I (B)</th><th>Parts per mil- lion</th><th></th><th>[ona per day</th><th></th><th>Non- carbon- ate</th><th></th><th>adsorp- tion ratio</th><th>ance (micro- mhos at 25° C)</th><th>Hq</th></th<>							tas- sium (K)	bonate (HCO ₃)	fate (SO _i)	ride (CI)	ride (F)	trate (NO ₃)	I (B)	Parts per mil- lion		[ona per day		Non- carbon- ate		adsorp- tion ratio	ance (micro- mhos at 25° C)	Hq
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $									E JACKSO	NVILLE NE	AR JACK	ITTI ANOS	197									
12. Richels RUDA 1 20 7/2 4.6 23 27 21 31 1.0 36 16 77 0.8 186 - 0.20 7/3 4.6 23 27 21 31 1.0 1.0 36 16 77 0.8 186 186 1 3.5 1/3 3.6 1/3 3.6 1/3 1/	25, 1962	11 6	2	9		7.3		34 44	5.2 6.6	7.8 7.2	$^{0.1}_{.1}$	0.0		59 64	0.08 09,0		26 30	00	36 4.5	0.3 .9	92 112	6.2 7.1
$ \begin{bmatrix} 20 & & 1' & 4,6 & 23 & 27 & 21 & 11 & 10 & & 1,0 & & $								12.	NECHES	RIVER	AR POLI	,0K							č			
14. PINPY CREEK NAM GRONT/ON 14. PINPY CREEK NAM GRONT/ON 10.50 5.2 5.2 1.5 5.1 1.3.6 5.1 1.3.6 5.2	. 18, 1953	20	-	-			23	27	21	31		1.0		a146	0.20		38	16	57		184	6.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	-		14.	PINEY	CREEK NEA	R GROVE	NOT										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 1 020	+	0			-	3 8	13	16	6 8		0.0		53	0 07		0.0	0	50	0 2	00	$L \sim h$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					_			12	10	7.8		0.0		54 14	90.		17	2	36	9.	73	6.0
$ \begin{bmatrix} J_{0}^{0} J_{0}^{0} & J_{$	1		U.	22				23	81 6 n	58 5		ώĸ		4251 31	.34		86	67	54	2.2	400	0.1 9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1		n	21	_			30	68	55		i di		a247	22		81	56	54	5.1.	370	1.0
15. CANEY CREEK AT STATE HIGHMAY 94 NEAR GROVETOR 21, 1961 50.1 16 19 184 40 308 0.2 1.16 248 214 62 5.1 1.30 9, 1961 50.0 44 130 67 248 214 62 5.1 1.30 9, 1961 50.00 44 130 67 2,180 0 34 3,990 1 6,450 8.79 600 84 11,30 9, 1961 50.0 44 0 34 3,990 3 5,990 1 6,450 8.79 600 84 11,30 9, 1961 50.0 32 3,990 0.0 0.0 878 10 10 110 110 11 17,30 9, 1961 50.1 23 0.0 0.0 878 0.0 878 11 19 11 11,30 11,30 9, 1961 50.1 21 0.3 0.0 0.1 0.0 878 116 110 11 11,30 11,30	3, 1964		20 20	7 1			3.6	20	7.6 9.6	1.6		jó		55	-00		26	c 01	42 30	<u>.</u>	7L 92	6.1 6.1
21, 1961 b0.1 16 68 19 184 40 308 208 0.2 1,2 16 248 214 62 5.1 1,30 9, 1964 b0.00 44 130 67 2,900 34 5,990 5 6,450 8.79 600 600 84 11,300 9, 1964 b0.03 32 26 11 228 0 34 5,990 5 6,450 8.79 600 600 84 11,300 9, 1964 b0.3 32 0 9,6 320 0.3 0.0 878 1.19 110 110 81 1,300 9, 1964 b0.3 32 0.3 0.0 878 1.19 10.0 81 12 1,300 9, 1964 b0.3 27 0.3 0.0 878 1.19 10.0 81 1.130 1.230 9, 1964 b0.3 21 1.6 322 0.3 0.0 878 1.10 110 11 1.230							15	0.40	CREEK AT			NEAR	SROVETON									
17. BOMLES CREEK AT OVENTOR 17. BOMLES CREEK AT OVENTOR 9, 1964 b0.00 44 130 67 2,180 0 34 3,990 5 6,450 8.79 600 600 84 11,300 9, 1964 b0.01 44 130 67 2,180 0 9.6 520 0.3 0.0 878 1.19 101 81 1 170 9, 1964 b0.03 27 26 11 278 0.9 9.6 520 0.3 0.0 878 1.19 110 810 81 1.770 9, 1964 b0.03 27 21 10 9.6 520 0.3 0.0 878 1.10 110 81 12 1.770 9, 1964 b0.03 27 10 1.6 362 0.3 0.2 610 0.83 8.4 1.2 1.770 9, 1964 b0.03 20 1.6 362 0.3 0.2 0.1 0.83 8.4 1.2 1.770 <td>21, 1961</td> <td>-</td> <td>_</td> <td>68</td> <td></td> <td>1</td> <td>.84</td> <td>40</td> <td>308</td> <td>208</td> <td>0.2</td> <td>1.2</td> <td></td> <td>a856</td> <td>1.16</td> <td></td> <td>248</td> <td>214</td> <td>62</td> <td>5.1</td> <td>1,350</td> <td>6,3</td>	21, 1961	-	_	68		1	.84	40	308	208	0.2	1.2		a856	1.16		248	214	62	5.1	1,350	6,3
9, 1964 b0.00 44 1 130 67 2,180 0 7 3,990 1 54,59 8.79 8.79 600 600 600 84 11,300 11,300 9, 1964 b0.3 32 12 11, 12 12 12, 11,300 9, 1964 b0.3 32 12 11 12 12, 11,300 9, 1964 b0.3 32 12 11 12 12 12, 11,300 9, 1964 b0.05 27 12 12 10 11 12 12 13 12 11,300 9, 1964 b0.05 27 12 10 11 10 110 110 110 110 110 110 110		-						11		CREEK		ION										
9, 1964 b0.3 32 11 278 0 9.6 520 0.3 0.0 878 1.19 110 110 110 110 11 1,770 9, 1964 b0.3 27 1 278 0 9.6 520 0.3 0.0 878 1.19 110 110 81 12 1,770 9, 1964 b0.05 27 21 10 9.6 0.3 0.3 0.3 0.6 9.6 8.4 1,770 9, 1964 b0.05 27 21 10 0.8 0.1 9.6 0.3 0.3 0.3 0.9 9.6 8.4 1,770 25, 1964 b0.05 27 10 1.6 0.8 0.9 1.4 0 8.4 1,230 25, 1964 b0.4 31 0 1.4 0.3 0.3 0.0 9.4 9.0 9.4 80 8.4 1,230 25, 1964 b0.4 31 0 0.3 0.3 0.3 0.3 0.4 </td <td>9, 1964</td> <td>1</td> <td>-</td> <td>130</td> <td>-</td> <td>2,1</td> <td>180</td> <td>0</td> <td>34</td> <td>3,990</td> <td></td> <td></td> <td></td> <td>6,450</td> <td></td> <td></td> <td>600</td> <td>600</td> <td>84</td> <td></td> <td>11,300</td> <td>c3.2</td>	9, 1964	1	-	130	-	2,1	180	0	34	3,990				6,450			600	600	84		11,300	c3.2
9, 1964 b0.3 32 1 278 0 9.6 520 0.3 0.0 878 1.19 110 110 81 12 1.770 9, 1964 b0.3 27 27 0.3 0.0 9.4 610 0.83 110 110 81 12 1.770 9, 1964 b0.05 27 21 10 188 0 1.6 362 0.3 0.2 610 0.83 94 80 8.4 1.230 25, 1964 b0.05 27 21 10.5 0.5 0.3 0.2 610 0.83 94 80 8.4 1.230 25, 1964 b0.4 31 0.0 1.6 362 0.3 0.2 610 0.83 94 80 8.4 1.230 25, 1964 b0.4 31 0.3 0.3 0.3 0.0 8.4 1.230 8.4 1.230 25, 1964 b0.4 31 0.3 0.3 0.3 0.3 0.4 94 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>FORK</td><td>WLES CREE</td><td></td><td>INOT TON</td><td>NOU</td><td></td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							-		FORK	WLES CREE		INOT TON	NOU		6							
9. 1964 b0.05 27 21 10 188 0 1.6 362 0.3 0.2 610 0.63 94 80 8.4 1,230 25. 1964 b0.05 27 10 1.6 362 0.3 0.2 0.1 610 0.63 94 80 8.4 1,230 25. 1964 b0.4 31 0 1.6 0.83 94 80 8.4 1,230 25. 1964 b0.4 31 0.9 12 620 0.3 0.0 1,210 1,65 126 83 14 2,020 25. 1964 b0.4 31 394 0 13 620 0.3 0.0 1,420 126 14 2,420	9, 1964	-		26		4	278	0	9.6	52.0	0.3	0.0		878	61,1		110	110	81	12	1,770	d3,5
9. 1964 b0.05 27 21 10 188 0 1.6 362 0.3 0.2 610 0.83 94 80 8.4 1,230 25. 1964 b0.4 31 0.0 13 1.6 0.3 0.1 0.83 94 80 8.4 1,230 25. 1964 b0.4 31 0.09 13 620 0.3 0.0 1,210 1.65 126 124 144 813 14 2,020					19.	UNNAMED	TRIBUTARY	10	FORK BOW	LES CREEK	C AT STA	ATE HIGH	MAY 323	NEAR OLD	LONDON							
25. 1964 b3. 31 0.09 36 13 394 0 13 620 0.3 0.0 1,210 1,65 126 126 14 124 144 144 2,090	9. 1964	-		21			188	0	1.6	362	0.3	0.2		610	0,83		94	94	80	8.4	1,230	e3,7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								FT FORK I	OWLES CR	EEK AT FN	1 ROAD 8	338 NEAR	OLD LON	DON								
	25, 1964	-	0.0				394	00	13	620 720	0.3	0.0		1,210	1,65		126 144	12 6 144	28	14	2,090 2,420	d3.6 d3.9

- 54 -

Table 8,--Chemical analyses of streams and reservoirs in the Neckes River Basin for locations other than daily stations--Continued

Hardness -Dissolved solids (Results in parts per million except as indicated--Continued)

	i			Cal-	Mag-	Se- Po	- Bicar-	- Sul-		Fluo-	ż	Bo-	Δ	Dissolved solids (calculated)	ed)	Har as C	Hardness as CaCO,	Per-	So-	Specific conduct-	
Date of collection	Dia- charge (cfa)	Silica (SiO ₂)	(Fe)	cium (Ca)	ne- aium (Mg)	dium tas- (Na) (K)	š		e ride			s 40012072	Parta per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	Hq
							21 • UNNA	MED CREE	UNNAMED CREEK AT FM ROAD 838 AT OLD LONDON	0AD 838	AT OLD L	NOUNO									
June 9, 1964	b0.01	58		3.8	1.6	29		7 15	40	0.2	0.5		151	0.21		91	10	80	3.2	198	5.4
					22.	UNNAMED TRIB	TRIBUTARY TO F	TO BOWLES CREEK	REEK AT COUNTY	UNTY ROAD	D 2 MILE	TAON S.	2 MILES NORTHWEST OF T	TURNERTOWN							
Mar. 25, 1964	b0.1 b.05	41 38	6.6	55 128	16 54	483 2,000		0 38	940 3,480		1.5		1,590	2.16 7.79		2 03 542	203 542	77 - 88	15 37	3,230	f3.2 g3.6
								23. BOWL	BOWLES CREEK NEAR TURNERTOWN	NEAR TUR	NERTOWN	c.									
*Sept. 15, 1960 #Oct. 18 *Dec. 6								215 175 11 27 25	960 3,600 150 620 300				1,980 7,050 1,320 1,320 670						=		0.000 0.000 0.4
*Junc 18								9 8 20 24 23	730 1,060 880 490 1,900				1,560 2,190 1,830 3,900								4.0 4.0 8.8
жлине 25 млиу. 28 Макоv. 28 макоv. 28 макрт. 26 Мат. 25, 1964	b8		0,11					19 14 15 21 21 21 21 	2,050 1,500 780 66 580 580		6		4,380 3,450 1,190 1,820 207		-	86	86			1,990	4.6 4.6 4.1 4.1 6.7 h3.5
							24		WRIGHT BRANCH NEAR WRIGHT CITY	EAR WRIG	HT CITY										
June 9, 1964	b0.2	32		20	0.6	252		0 21	465	0.3	0.2		800	1.09		87	87	18	12	1,650	13.5
							25		HENSON CREEK NEAR WRIGHT	EAR WRIG	SHT CITY										
June 9, 1964	b0.1	34		12	5,8	78		0 11	157	0.3	1.0 8		298	0.41		54	54	73	4.6	294	e3.8
							26. DENTON	TON CREEK	ΛT	AD 15 NE	FM ROAD 15 NEAR WRIGHT CITY	IT CITY									
June 9, 1964	b0.02	41		32	14	173		0 72	332	0.3	3 0.2		665	06'0		138	138	69	6.4	1,320	d3.5
						27.	DENTON CRI	SEK AT CO	DENTON CREEK AT COUNTY ROAD		5 MILES SOUTH OF WRIGHT	IF WRIGH	HT CITY								
Mar. 25, 1964	b0.15	10	0.12				-	0	352							122	122			1,360	h3.5
b Field estimate to contains 0.6 ppm total acidity as M+1 e Contains 0.2 ppm total acidity as H+1 f Contains 2.3 ppm total acidity as H+1 f Contains 1.3 ppm total acidity as H+1 h Contains 0.7 ppm total acidity as H+1 h Contains 0.9 ppm total acidity as H+1 a contains 0.9 ppm total acidity as H+1	otal acid otal acid otal acid otal acid otal acid otal acid State Den	dity as dity as dity as dity as dity as lity as l		÷							2	 1 2 					10	1-14	all.	湖明	

~

ç.

Table 8 .-- Chemical analyses of streams and reservoirs in the Neches River Basin for locations other than daily stations -- Continued

Act of elements Tage State	Out of calling of the part of t					ç	Mae-		-od	ä	-		5		s	Diss	Dissolved solids		Hardness as CoCO,			ŝ.	Specific conduct-	
3. Models cereer At Control for 0 3.2 3.0 6.2 1.00 1.39 100 1.3 10 1.3 12 2.000 3.3 3. 1 yobici 0.00 21 3.1 0.3 6.2 0.3	3. Non-the other and the intervent of the inte	Date of collection	Dia- charge (cfa)	Silica (SiO ₂)	lron (Fe)	cium (Ca)	ne- sium (Mg)	So- dium (Na)	tas- sium (K)	Bicar- bonate (HCO ₃)	Sul- fate (SO,)	Chlo- ride (Cl)	ruo- ride (F)	Ni- trate (NO ₃)	Bo- (B)		Tons per acre- foot	Tons per day				dium adsorp- tion ratio	ance (micro- mhos at 25° C)	Hd
55, 1964 012 02 02 02 02 120 130 130 130 130 131 131	53, 1966 012 0.04 0.2 23 0.04 0.23 0.04							28			AT COUNT	ROAD 7	MILES	OUTH OF	WR IGHT	CLTY								
3. Real France 9. 1966 1006 1 20 10.3 10.9 10.3	9. J 30 J 3. J 3. <th< td=""><td>Mar. 25, 1964</td><td>b12</td><td>29</td><td>60.0</td><td>36</td><td>9.2</td><td>6</td><td>123</td><td>0</td><td>42</td><td>580</td><td>0.3</td><td>0.2</td><td></td><td>1,020</td><td>1.39</td><td></td><td>130</td><td>130</td><td>81</td><td>12</td><td>2,040</td><td>d3.7</td></th<>	Mar. 25, 1964	b12	29	60.0	36	9.2	6	123	0	42	580	0.3	0.2		1,020	1.39		130	130	81	12	2,040	d3.7
v, 1964 0.00 21 23 10 21 0.0 132 131 236 0.9 336 25, 1964 9.0 12 3 10 12 34 0.9 343 39 0.0 39 99 90 343 343 90 10 123 30 90 10 343 90 10 343 90 10 10 30 90 30 30 90 90 343 90 1	0, 0666 0.00 0.1 0.								21		PEN BRAN	ICH AT FM	ROAD 15	NEAR TI	ROUP									
30. Note:II. CREEX NAME FAICE 31. Note:II. CREEX NAME FAICE 35. Undet b0.4 3.2 144 156 43 30 0.6 0.3 0.9 </td <td>30. Used: 10^{-3} 30. Used: 10^{-3} 30. Used: 10^{-3} 30. 11^{-3} 30. 11^{-3}<!--</td--><td>1964-</td><td>100.0d</td><td>21</td><td></td><td>33</td><td>17</td><td></td><td>25</td><td>2</td><td>168</td><td>21</td><td>0.3</td><td>0.0</td><td></td><td>286</td><td>0.39</td><td></td><td>152</td><td>151</td><td>26</td><td>0.9</td><td>455</td><td>5.5</td></td>	30. Used: 10^{-3} 30. Used: 10^{-3} 30. Used: 10^{-3} 30. 11^{-3} </td <td>1964-</td> <td>100.0d</td> <td>21</td> <td></td> <td>33</td> <td>17</td> <td></td> <td>25</td> <td>2</td> <td>168</td> <td>21</td> <td>0.3</td> <td>0.0</td> <td></td> <td>286</td> <td>0.39</td> <td></td> <td>152</td> <td>151</td> <td>26</td> <td>0.9</td> <td>455</td> <td>5.5</td>	1964-	100.0d	21		33	17		25	2	168	21	0.3	0.0		286	0.39		152	151	26	0.9	455	5.5
32 , 1964 , \dots 90.4 23 34 196 65 62 616 612 616	35, 1906 b0.5 3.2 3.2 136 4.5 136 6.5 136 0.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>30</td> <td></td> <td>CREEK</td> <td>VEAR PRI</td> <td>CE</td> <td></td>									30		CREEK	VEAR PRI	CE										
31. Bourds CRERK AT PH RoLOD 13 NEAR PRICE 31. Bourds CRERK AT PH RoLD 13 NEAR PRICE $92, 196, \dots, 10$ 103 29 13 204 22 24 512 0.0 901 1.23 116 116 $11,3$ $11,3,100$ $9, 1964,\dots, 10$ 100 20 16 23 0.1 0.0 22 0.30 22 23 120 120 104 11 $1,310$ $9, 1964,\dots, 10$ 100 20 16 32 0.1 0.0 22 24 100 22 23 10 100 22 120 120 100 120 11 11 $11,300$ $23, 1964,\dots, 10$ 100 20 10 100	31. Boold SERK AT PH MOD 1 KUAK RYCE 32. U964 13 3 3 3 3 1 3 1 3 <th< td=""><td>1964-</td><td>b0.4 b.5</td><td>28</td><td></td><td>7.2</td><td>5.3</td><td></td><td>44</td><td>156 234</td><td>45</td><td>190 79</td><td>0.6</td><td>0.2</td><td></td><td>424</td><td>0.58</td><td></td><td>93 40</td><td>00</td><td>89</td><td>6.9</td><td>994 702</td><td>7.2 7.1</td></th<>	1964-	b0.4 b.5	28		7.2	5.3		44	156 234	45	190 79	0.6	0.2		424	0.58		93 40	00	89	6.9	994 702	7.2 7.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	33, 1966 b1, 1 18 0.03 29 13 0.03 0.01 13 116 116 116 11 1130 114 1130 114 1130 11										LES CREEK	C AT FM RO	N EI GAC	IEAR PRI	CE									
32. NAMPTON CREEK NEARM TEARM TEA	9. 1964 90.01 20 16 7.8 33 0 109 32 0.1 0.0 72 72 78 1.5 36 1.5 35 1.5 1.5 1.5 7 7 7 7 7 3 35 35 1.5 0.0 109 1.5 0.5 1.5	far. 25, 1964	b20 b 1.5	18	0.03	29	13	2	94	0 22	24	528 512	0.3	0.0		106	1.23		114 126	114 108	84		i,810 1,740	j4.3 6.4
9, 1964 b0.01 20 16 7.8 35 0 109 32 0.1 0.0 72 73 46 1.8 382 5, 1964 b40 15 0.00 24 8.8 20.5 0.5 6.72 0.91 96 95 83 9.5 1,300 5, 1964 b40 15 0.00 24 8.8 30.5 0.5 672 0.91 96 95 83 1,300 9, 1964 b0.1 30 8.0 32 14 24 0.5 0.91 196 95 19.5 1,300 9, 1964 b0.1 30 8.0 32 0.0 14 24 0.2 0.91 104 0.14 29 1,100 25, 1964 b0.1 30 8.0 12 0.0 12 12 12 12 12 12 12 12 12 12 12 12	0, 1964 No.0 20 16 7.8 35 0 100 32 0.1 0.0 220 0.30 12 72 64 1.8 382 25, 1964 b40 15 0.00 24 8.8 215 1 40 366 0.2 0.5 672 0.91 96 95 813 9.5 1.300 9, 1964 b0.1 30 23 14 24 0.2 0.5 0.91 96 95 813 95 1.300 9, 1964 b0.1 30 12 14 24 0.2 0.0 104 0.1 96 95 813 195 9, 1964 b0.1 30 14 24 0.2 0.0 104 0.14 33 17 49 11 199 25, 1964 b0 1 12 0.1 12 0.1 10 19 19 19 10<										O NOT MAL	JREEK NEAL		CHAPEL										
35, 1964 b40 15 0.00 24 8.8 215 1 40 368 0.5 672 0.91 96 95 83 9.5 1,300 9, 1964 b0.1 30 2.6 368 0.2 0.5 0.91 96 95 83 9.5 1,300 9, 1964 b0.1 30 2.2 15 20 14 24 0.2 0.0 144 33 17 49 1.1 169 25, 1964 b0.1 30 1 2 0.12 0.0 104 0.14 33 17 49 1.1 169 25, 1964 b6 1 2 0.12 0.0 104 0.14 23 17 49 11 169 33 15 166 11 169 33 15 169 11 169 164 161 164 164 164 164 164 164 164 164 164 164 164 164 164 164 164	35, 1964 b40 15 0.00 24 8.8 215 1 40 368 0.5 672 0.91 96 95 83 9.5 11,300 9, 1964 b0.1 30 24 23 0.2 0.5 104 196 95 83 9.5 11,300 9, 1964 b0.1 30 12 13 14 24 0.2 0.0 104 33 17 49 11 169 9, 1964 b0.1 30 12 14 24 0.2 0.0 104 13 40 141 169 25, 1964 b6 1 1 142 142 1 104 0.14 33 17 40 11 169 25, 1964 b6 1 1 142 142 1 104 101 107 40 11 169 11 169 11 169 11 169 11 169 11 169 11 169 11 169 <t< td=""><td>9, 1964</td><td></td><td></td><td></td><td>16</td><td>7.8</td><td></td><td>35</td><td>0</td><td>109</td><td>32</td><td>0.1</td><td>0.0</td><td></td><td>220</td><td>0.30</td><td></td><td>72</td><td>72</td><td>48</td><td>1.8</td><td>382</td><td>e4.1</td></t<>	9, 1964				16	7.8		35	0	109	32	0.1	0.0		220	0.30		72	72	48	1.8	382	e4.1
55, 1964 b40 15 0.00 24 8.8 10	55, 1964 bd 15 0.00 24 8.8 1 40 15 0.01 96 95 83 9.5 1,300 9, 1964 b0.1 30 8.0 3.2 15 0.1 24 0.2 0.0 104 0.14 33 17 49 1.1 169 9, 1964 b0.1 30 8.0 3.2 15 20 14 24 0.2 0.0 104 0.14 33 17 49 1.1 169 25, 1964 b6 3 1 12 142 12 0.1 104 0.14 33 166 1 169 161 169 169 169 169 169 161 169 161 169 161 161 164 11 169 11 169 11 169 11 169 11 169 11 169 11 169 11 169 11 164 11 164 11 164 11 164 164 161							1473		LES CREE	C AT COUP	ATY ROAD (6 MILES	SOUTHEA	ST OF P	RICE								
34. JOHNSON CREEK NEAR OLD LONDON 9, 1964 b0.1 30 8.0 3.2 15 20 14 24 0.14 104 0.14 33 17 49 1.1 169 25, 1964 b6 3 8.0 3.2 15 20 14 0.2 0.014 0.14 33 17 49 1.1 169 25, 1964 b6 1 5 142 142 142 142 143 164 17 49 1.1 169 5.4 5.4 5.4 <	9, 1964 b0.1 30 8.0 3.2 15 20 14 24 0.2 0.0 104 0.14 33 17 49 1.1 169 35, 1964 b6 27 0.0 104 0.14 33 17 49 1.1 169 35, 1964 b6 24 142 142 73 66 73 79 566 24, 1964 b20 19 0.02 14 61 122 0.14 73 66 78 566 533 545 56			15	00.0	24	8.8	274	215	T	40	368	0.2	0.5		672	16.0		96	95	83	9.5	1,300	4.8
9, 1964 b0.1 30 8.0 3.2 15 20 14 24 0.2 0.0 104 0.14 33 17 49 1.1 169 25, 1964 b6 3 3 15 14 142 142 143 144 153 144 153 144 153 146 153 146 153 146 153 146 153 146 146 153 146 153 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154	9, 1964 b0.1 30 8.0 3.2 15 20 14 24 0.2 0.0 14 17 49 1.1 49 1.1 169 25, 1964 b6 1 1 12 142 142 142 14 13 66 1 268 116 268 25, 1964 b6 1 1 142 142 142 1 13 66 1 268 168 26, 1964 b20 19 0.02 14 61 97 18 142 169 0.15 66 1 268 164 169 173 164 173 66 1 264 163 26, 1964 b20 19 0.14 0.14 153 0.05 0.15 164 164 173 164 163 164 1 164 164 164 164 164 164 164 164 164 164 164 164 164 164 164 164 164 164<									34.	JOHNSON C	CREEK NEAD	R OLD LO	NOUN										
25, 1964 b6 14 142 142 142 53 56 56 56 58 58 26, 1964 b6 14 142 142 142 142 59 56 56 56 58 58 24, 1964 b20 19 0.02 149 0.2 0.0 333 0.45 60 54 78 5.4 631 25, 1964 b0.01 81 61 0.1 0.1 0.33 0.45 60 54 78 5.4 64,400 25, 1964 b0.01 81 284 114 153 20,400 611.ES 533 0.45 60 54 78 5.4 64,400 25, 1964 b0.01 81 284 114 153 20,400 66.7 3300 46.7 78 54 64,400 54,400 54,600 54,60 54 78 54,400 54,400 54,400 54,600 54,60 54,60 54,60 54,60 54,60 54,60 54,60 <t< td=""><td>25, 1964 b6 b6 73 66 73 66 588 24, 1964 b20 19 0.02 14 142 142 507 69 73 66 73 588 24, 1964 b20 19 0.02 14 0.1 0.2 0.0 333 0.45 60 54 78 5.4 631 25, 1964 b0.01 8.1 0.1 97 8 24 169 0.2 0.0 333 0.45 60 54 78 5.4 631 25, 1964 b0.01 8.2 0.19 93 114 153 20,400 33,600 46.7 33,900 33,300 33,300 88 46,400 51d estimate: 114 153 20,400 33,600 46.7 33,300 33,300 33,300 33,300 38 46,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400</td><td>9, 1964</td><td></td><td>30</td><td></td><td>8.0</td><td></td><td></td><td>15</td><td>20</td><td>14</td><td>24</td><td>0.2</td><td>0.0</td><td></td><td>104</td><td>0.14</td><td></td><td>33</td><td>17</td><td>65</td><td>1.1</td><td>169</td><td>6,0</td></t<>	25, 1964 b6 b6 73 66 73 66 588 24, 1964 b20 19 0.02 14 142 142 507 69 73 66 73 588 24, 1964 b20 19 0.02 14 0.1 0.2 0.0 333 0.45 60 54 78 5.4 631 25, 1964 b0.01 8.1 0.1 97 8 24 169 0.2 0.0 333 0.45 60 54 78 5.4 631 25, 1964 b0.01 8.2 0.19 93 114 153 20,400 33,600 46.7 33,900 33,300 33,300 88 46,400 51d estimate: 114 153 20,400 33,600 46.7 33,300 33,300 33,300 33,300 38 46,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400 14,4,400	9, 1964		30		8.0			15	20	14	24	0.2	0.0		104	0.14		33	17	65	1.1	169	6,0
25, 1964 b6 b 7 6 7 78 66 7 78 788 77 20 777 70 6 1142 7 71 747 77 70 77 77 70 77 77 77 77 77 77 77 77	55, 1964 b6 73 66 73 66 588 24, 1964 b20 19 0.02 14 6.1 97 8 24 169 0.2 0.03 133 0.45 60 54 78 5.4 631 24, 1964 b20 19 0.02 14 6.1 97 8 24 169 0.2 0.0 333 0.45 60 54 78 5.4 631 25, 1964 b0.01 8.2 0.15 84 11,800 33 114 153 20,400 61.15 33,600 46.7 3,390 3300 88 46,400 5.4 64.00 5.4 66.7 5.4 66.7 5.4 63.6 6.4 63.4 63.4 63.4 63.4 63.4 64.400 5.4 66.7 5.4 66.7 66.7 78 78 5.4 64.400 5.4 66.7 78 78 76.4 66.4 66.7 66.7 78 76.4 66.7 66.7 78 76.4									n		SON CREEK		NICE										
36, 1964 19 0.02 14 6.1 97 8 24 169 0.2 0.0 333 0.45 60 54 78 5.4 631 25, 1964 b0.01 8.2 0.15 0.6 0.2 0.00 333 0.45 60 54 78 5.4 631 25, 1964 b0.01 8.2 0.14 153 20,400 611.ES 5.350''' 53 66 54 78 5.4 631	36. JOHNSON CREEK AT COUNTY ROAD 6 MILES SOUTH OF PRICE 24 , 1964 $b20$ 19 0.12 97 8 24 169 0.2 0.0 333 0.45 60 54 78 631 25 , 1964 $b0.01$ 8.2 0.1 169 0.2 0.0 333 0.45 60 54 78 5.4 631 25 , 1964 $b0.01$ 8.2 0.19 891 284 $11,800$ 33 114 153 $20,400$ 46.7 $3,390$ $3,300$ 88 $46,400$ 0.5 pm total acidity as H_{11}^{+1} . 114 153 $20,400$ $33,500$ 46.7 $3,390$ $3,300$ 88 $46,400$	Mar. 25, 1964								8		142							73	66			588	6.2
24, 1964 b20 19 0.02 14 6.1 97 8 24 169 0.2 0.0 73 33 0.45 60 54 78 5.4 631 631 53.4 54 78 5.4 631 53.4 1664	24, 1964 b20 19 0.02 14 6.1 97 8 24 169 0.2 0.0 133 0.45 60 54 78 5.4 631 37. UNAMED TRIBUTARY TO JOHNSON CREFK AT COUNTY ROAD 6 MIJES SOUTH OF PRICE 25, 1964 b0.01 8.2 0.19 891 284 11,800 33 114 153 20,400 33 114 23 20,400 46.7 3,390 3,390 88 46.400 Field estimate Contains 0.2 ppm total acidity as H^+_{11} :									HNSON CR	EEK AT CO	OUNTY ROA	D 6 MILE	IS SOUTH	OF PRI	CE								
25, 1964 b0.01 8.2 0.19 891 284 11,800 33 114 153 20,400 33,600 46.7 3,390 38 46,400	25, 1964 b0.0i 8.2 0.19 891 284 11,800 33 114 153 20,400 33,600 46.7 3,390 3,300 88 46,400 Field estimate. Contains 0.5 ppm total acidity as H ⁺¹ . Contains 0.2 ppm total acidity as H ⁺¹ . 23,000 46.7 3,390 3,300 88 46,400	Mar. 24, 1964	b20	19	0.02	14	6.1		57	8	24	169	0.2	0.0		333	0.45		60	54	78	5.4	631	6.4
25, 1964 b0.01 8.2 0.19 891 284 11,800 33 114 153 20,400 33 144 153 20,400 46.7 33,500 46.7 3,390 3,390 88 46,400	25, 1964 b0.01 8.2 0.19 891 284 11,800 33 114 153 20,400 3 33,600 46.7 3,390 3,300 88 46,400 Field estimate: Fonctions 0.2 ppm total acidity as H ⁺¹ contains 0.2 ppm total acidity acidity as H ⁺¹ contains 0.2 ppm total acidity a						2.3		MED TRIB	UTARY TO	NOSNHOL	CREEK AT	COUNTY	ROAD 6	MILES S	OUTH OF PB	ICE							
		Mar. 25, 1964		8	0.19	168	284		33		153	20,400				33,600	46.7		3,390	3,300	88		46,400	6.7

- 56 -

Interplane Difference Result Result <t< th=""><th></th><th></th><th></th><th></th><th></th><th>Cal-</th><th>Mag-</th><th>ŝ</th><th>Po-</th><th>Bicar-</th><th>Sul-</th><th>Chlo-</th><th>Fluo-</th><th>Ni-</th><th>Bo-</th><th>Dia (o</th><th>Dissolved solids (calculated)</th><th>ds ()</th><th>Har as C</th><th>Hardness as CaCO,</th><th>Per-</th><th>-So-</th><th>Specific conduct-</th><th></th></t<>						Cal-	Mag-	ŝ	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Dia (o	Dissolved solids (calculated)	ds ()	Har as C	Hardness as CaCO,	Per-	-So-	Specific conduct-	
38. MILLIS DITCH AT COUNTY RAND 6 MILES ORTHRAT OF \dots $b5$ 11 11 13 1 12 0.5 20 10 <t< th=""><th>Date</th><th>of collection</th><th>Dis- charge (cfs)</th><th>Silica (SiO₂)</th><th>(Fe)</th><th>cium (Ca)</th><th>ne- sium (Mg)</th><th></th><th></th><th>bonate (HCO₁)</th><th>fate (SO,)</th><th>ride (Cl)</th><th>ride (F)</th><th>trate (NO₃)</th><th>I (B)</th><th>Parts per mil- lion</th><th>Tons per acre- foot</th><th>Tons per day</th><th>Cal- cium, magne- sium</th><th>Non- carbon-</th><th>cent so- dium</th><th>adsorp- tion ratio</th><th>ance (micro- mhos at 25° C)</th><th>Hq</th></t<>	Date	of collection	Dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)			bonate (HCO ₁)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₃)	I (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon-	cent so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	Hq
								8.	MILLIS	DITCH AT	COUNTY		LES NORT	THEAST OF		NEW SUMMERFIELD	LD							
	r. 25,	1964								11		13							22	13			116	6.4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											AT	I.S. HIGH			SUMMER	FIELD								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1949	390	12	0.5	20	10	17	0	4	49	315		0.2		a640	0.87		16	88	74	7.8	1,140	5.6
									41		CER CREEK	RESERVOI	R NEAR	NEW SALE	EM									
41. BUFORD BRANCH NEAR NEW SAL 41. BUFORD BRANCH NEAR NEW SAL 42. AGELINA RIVER NEAR NEW SAC 43. AGELINA RIVER NEAR NEAR SAC 44. AGELINA RIVER NEAR SAC 45. AGELINA RIVER NEAR SAC 45. AGELINA RIVER NEAR SAC 46. 13 10 6.8 20 17 43 26 0.0 46. 13 10 6.8 20 3.1 7.4 23 0.3 47. 13 7.4 2.7 28 8.2 10 0.3 48. 15 7.0 3.1 7.4 2.5 0.1 0.3 49. 26. 3.1 7.4 2.7 28 0.1 0.3 49. 26. 3.3 2.6 12.2 0.1 0.3 0.3 0.3 0.3 40. 19.3 19.3 19.3 19.3 10.4 11 0.3 0.1 0.3 0.1 41. 19.3 19.3 2.6 10.3 10.1 12 11	. 25,	1962		8.6 12	00.00	14 22	7.1 9.5	15	0.8	28 4	15 48	171 272	0.3	0.0		342 525	0.47		64 94	41 90	77 79	5.4 7.1	644 1,010	6.3 6.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											BUFORD BR	VANCH NEAL	R NEW SI	ALEM										
42. ANGLIAM RIVER NEAR SAU 42. ANGLIAM RIVER NEAR SAU 5200 13 10 6.8 20 17 43 26 0.0 5 9.9 6.8 20 17 43 26 0.0 5 9.9 6.2 3.1 7.6 3.1 7.8 1.4 1.2 0.0 5 9.9 6.2 3.1 7.4 2.5 28 10.1 0.3 5 5 2 2 2 4 XICKAPOO CREEK NEAR MATTEHOUS 6 99 62 3.1 7.4 2 4 10.3 2 6 10.05 28 2 0.2 4 XICKAPOO CREEK NEAR MATTEHOUS 6 10.1 2 2 2 2 4 XICKAPOO CREEK NEAR MATTEHOUS 6 10.1 2 2 4 XICKAPOO CREEK NEAR ALAR 11.0 10.1 2		1 964								23		7.4							20	-			11	7.0
b200 13 10 6.8 20 17 43 26 0.0 9.9 5.3 3.1 7.4 2.5 2.8 8.2 11 0.3 9.9 5.0 3.1 7.4 2.6 10 1 .2 9.0 3.1 7.4 2.6 1.1 0.3 b0.05 2.8 2.0 0.2 4.2 1.2 9 2.4 4.3 0.1 b0.05 2.8 2.0 0.2 4.2 1.2 9 2.4 4.3 0.1 1.0 0.2 4.2 1.2 9 2.4 4.3 0.1 1.2 0.2 4.2 1.2 9 2.4 4.3 0.1 638 12 1.2 1.2 9 2.4 4.3 0.1 1.82 1.9 1.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>42.</td> <td>ANGELIN</td> <td>IA RIVER</td> <td>NEAR SAG</td> <td>CUL</td> <td></td>										42.	ANGELIN	IA RIVER	NEAR SAG	CUL										
43. LAKE TYLER NEAR WHITEHOUS 43. LAKE TYLER NEAR WHITEHOUS 5 9.9 6.2 3.1 7.4 2.7 2.8 11 0.3 2.3 b0.05 28 5.9 6.9 2.7 28 10 11 0.2 b0.05 28 2.0 0.2 4.2 1.2 9 2.4 KICKAPOD CREEK NEAR ARE b0.05 28 2.0 0.2 4.2 1.2 9 2.4 4.3 0.1 64.8 21 2.0 0.2 4.2 1.2 9 2.4 4.3 0.1 653 19 2.6 1.2 9 2.4 4.3 0.1 182 19 21 2.5 23 20 22 23 23 23 23 24 23 25 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 </td <td></td> <td></td> <td></td> <td>13</td> <td></td> <td>10</td> <td>6.8</td> <td>2</td> <td>0</td> <td>17</td> <td>43</td> <td>26</td> <td>0.0</td> <td>0,2</td> <td></td> <td>127</td> <td>0.17</td> <td></td> <td>53</td> <td>39</td> <td>45</td> <td>1.2</td> <td>224</td> <td>6.3</td>				13		10	6.8	2	0	17	43	26	0.0	0,2		127	0.17		53	39	45	1.2	224	6.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										43.	LAKE TYL	ER NEAR	NHITEHO	JSE										
44. KICKAPOO CREEK NEAR NEAR 44. KICKAPOO CREEK NEAR ARE 54. KICKAPOO CREEK NEAR ARE 55. KICKAPOO CREEK NEAR ARE 56. Solution 5. Solution <t< td=""><td>. 25, г. 5,</td><td>1962</td><td></td><td>9.9 .3</td><td></td><td>6.2 7.0</td><td>3.9 3.1</td><td></td><td>2.6 2.7</td><td>28 28</td><td></td><td>12 11</td><td>0.3</td><td>0.2</td><td></td><td>64 56</td><td>0.09</td><td></td><td>32 30</td><td>6 2</td><td>30 32</td><td>0.5</td><td>102 110</td><td>6.1 6.4</td></t<>	. 25, г. 5,	1962		9.9 .3		6.2 7.0	3.9 3.1		2.6 2.7	28 28		12 11	0.3	0.2		64 56	0.09		32 30	6 2	30 32	0.5	102 110	6.1 6.4
b0.05 28 2.0 0.2 4.2 1.2 9 2.4 4.3 0.1 64.8 21 4.5 3.9 15 4.5 0.1 32 0.1 638 15 7.2 4.0 15 9 30 20 22 14 32 0.2 638 15 7.2 4.0 15 9 30 20 22 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>44</td><td></td><td></td><td>NEAR</td><td>ЯР</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										44			NEAR	ЯР										
45. MUD CREEK NEAR JACKSOWTI 638 15 7.2 4.0 21 32 0.2 100 182 19 11 6.9 15 3.0 22 145 32 0.2 11 182 19 11 6.9 12 14 45 32 0.2 11 16.5 3.3 7.9 12 19 22 25 .2 11.1 6.6 7.9 19 19 26 49 25 .2 231.3 26 4.1 34 266 49 25 .2 215 22 23 19 34 26 49 27 .2 215 22 4.1 34 26 27 .2 .2 215 21 2.6 23 26 27 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>2.0</td><td>0.2</td><td>4.2</td><td>1.2</td><td>6</td><td>2.4</td><td>4.3</td><td>0.1</td><td>0.2</td><td></td><td>47</td><td>0.06</td><td></td><td>9</td><td>0</td><td>52</td><td>0.7</td><td>1.12</td><td>5.7</td></t<>						2.0	0.2	4.2	1.2	6	2.4	4.3	0.1	0.2		47	0.06		9	0	52	0.7	1.12	5.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										45.	MUD CREE	JK NEAR J	ACKSONV	ILLE										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, 14, , 3, 1 , 3, 1	962	64.8 638 182 1,660 31.8			4.5 7.2 11 6.5 12	3.9 6.6 9.3 6.6	6		22 9 17 16 26	14 30 45 49	32 20 25 12 25	0.2 2.2 2.2 2.5	0.2 0.8 5 0		111 95 a144 68 a165	0.15 .13 .20 .09		27 34 56 30 57	9 27 42 17 36	65 49 43 34 47	2.0 1.1 1.1 1.1 1.3	172 155 218 110 232	6.0 6.1 6.3 6.3
207 18 12 6.7 24 14 48 34 .2 49.8 21 12 6.9 35 24 44 49 .2	t. 18 25	663	27.3 36.2 215 128 108			14 8.5 9.5 12 13			୶ୢୢୢ୷ୄୢ୰ଢ଼ଡ଼	38 26 11 13 14	23 22 43 52 52	27 47 33 42 42	19919	80070		130 a156 143 169 a180	.18 .21 .19 .23		53 38 59 59	22 17 36 48 49	44 66 51 52	1.1 2.4 1.6 1.6 1.7	201 243 226 282 282	6.6 6.1 5.5 5.7
33.9 21 10 4.9 34 18 33 49 .2	. 14- . 19 . 22		207 49.8 33.9	18 21 21 16		12 12 10 7.0	6.7 6.9 4.9	N E E E	24 34 21	14 24 18	48 44 33	34 49 23 34 23	4449	ဝံကံထံဝ		a155 a184 162	.21 .25 .22		58 58 9 9 9	46 39 30	48 57 62	1.4 2.6 2.2	244 285 264 176	ی. د و. د ۲. م

- 57 -

A Residue at 180°C.
 b Field estimate.

	Hd the C		H			-	00 5.9	-				0.2 0.2	-				155 7.6		-	0 6.7		2 6.3			1				1 5.6	-	7 6.5	-
Specific conduct-	ance (micro- mhos at 25° C)			14	000	14	190	26	5.6	96	22	351	31	23	26	212	123	24		1,340		242	1,17		7	2	21	17	101		267	68
So-	adsorp- tion ratio			1.6	5-1	0.1		2.5	1.6	3.4	2.3	3.2	2.6	1.7	2.1	1.6	9.1	1.8		9.2			9.5		0.6	.6	9.8	6.	.7	:	2.5	6.7
Per-	cent 40- dium			61	20	1 00	615	67	19	71	65	21	65	56	60	50	19	57		79			82		42	38	38 41	38	35		67	81
CO,	Non- carbon- ate			15	28	34	20	19	91	23	16	34	38	30	31	43 43	5	36		0		12	0		2	e	16	33	19		13	0
as CaCO,	Cal- cium, magne- sium			26	41 O	15	40	40	44	50	39	45	48	45	49	41	26	45		130		33	96		20	19	33	48	27 28		38	74
(p.	Tons per day																															
(calculated)	Tons per acre- foot			0.12	16	.22	.14	.23	.20	.28	,20	.29	.25	.18	.22	36	.13	.20		1.05			16.0		0.08	.07	.10	.14	60.		0.20	.68
) (c	Parts per mil- lion			147	4120	a162	105	a166	146	207	1 70	a211	а186	130	a160	268	94	145		772			669		57	54	28	106	31		149	onc
Bo-	ron (B)																															
-in	trate (NO ₁)	CT0		0.2	20		0.	0.	5.	0.	ν, c	.0.	0.	0.	2.2		0.0	1 89.	HERTY	0.5	ETOILE		4.8	IRENO	0.0	0.	0.0	.2.	2.2	ALLA	0.2	1.5
Fluo-	ride (F)	NEAR AI		0.2	. 27	1 7	2	Τ.	.2	~	2.0		1.	-:	<i>i</i> , <i>c</i>	; ?	2°	.2	NEAR	1.4	NEAR ETC		1.2	NEAR CHIRENO					5.5		0.3	1.
Chlo-	ride (CI)	ANGELINA RIVER NEAR ALTO		24	; ;;	t 84	2.9	55	46	89	49	51	63	36	48	114	195	32	MILL CREEK	272	RIVER	34	216	BAYOU	7.5	7.0	9.0 12	16	10 8.3	RIVER	41	C+1
Sul.	fate (SO,)	- ANGELI	-	20	31	34	20	21	20	16	18	30	36	36	36	31	18	48	PAPER N	89	ANGELINA		15	ATTOYAC	6.0	7.6	21	38	22 26	ANGELTNA	29	٥/
Bicar-	bonate (HCO,)	47		10	17	20	24	26	34	33	28	14	13	18	22	30	26	11	49.	204	50.	25	205	52	24	19	20	18	10	53.	31	101
Po-	taa- sium (K)			30	23	32	19	37	32	55	33	05	41	27	34	20	103	28		4.8			4.4		1.7	1.9	10.10	14	13.1	1	35	3.8
So-	dium (Na)																			241			213		7.4	0.9	0.0		7.7 8.2		1	101
Mag-	ne- sium (Mg)			0.5 0.5	1.5	6.3	4.6	4.5	5.2	5.5	4.4	5.2	6.0	5.5	6.5	4.2	2.7	4.9		4.9			5.1		2.4	2.4	6.3	6.1	3.5		3.8	2.0
Cal.	cium (Ca)			10.4	8.2	10	8.5	8.8	9.2	11	2 2 2	2.6	9.5	0.6	10 s	20	6.0	10		44			30		4.0	3.5	6.0 6	0.6	5.0		0.6	n7
Inom	(Fe)										14									0.58			1.2								00 0	0.98
Silice	(SiO ₁)			11	: 1	11	12	16			_	16		7.3	10	13	10 10	16		13			16		17	16	14	14	7.7		16	10
Dia	charge (cfa)			610	895	745	2,280	487	106	92.3	136	585	714				61.2			b20					45.5	80.0	13.4	369	1,070			
	Date of collection			Tan. 25, 1962	16	Apr. 5	May 10	June 12	17	Aug. 21	Sept. 23	Dec. 4	Jan. 8, 1963	Feb. 12	Mar, 19	May 27	July 2	Mar. 10, 1964		July 28, 1964		June 9, 1964			Oct. 15, 1962	1	Jan. 28, 1963		Apr. 9		June 9, 1964	

Table 8.--Chemical analyses of streams and reservoirs in the Neches River Basin for locations other than daily stations--Continued

- 58 -

\$7

ei.

Table 8,--Chemical analyses of streams and reservoirs in the Neches River Basin for locations other than daily stations--Continued

ö	- Silica				-		Bicar-	Sul.	Chlo-	Fluo-	Ni-	Bo-	0	Dissolved solids (calculated)	ed)	Har	Hardness as CaCO ₁	Per-	So- dium	Specific conduct-	
charge (5 (cfs)	0is	(Fe)	(Ca)	a) aium (Mg)	n dium (Na)	(K)	bonate (HCO _a)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	Hd
		-					56. AN	GELINA R.	ANGELINA RIVER BELOW		SAM RAYBURN DAM	AM.			ļ						
k80 2,620 k830 k78	12 13 14 16	0.24 .42 .29	11 11 2 9. 3 8. 9 12	1.2 3.5 9.2 3.9 3.5 3.6 2 4.6	5 67 9 19 6 23 6 58	3.5 2.7 3.3 3.3	52 28 29 72	24 25 27 25	87 24 25 64	0 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.2 1.5 .8		236 113 119 220	0.32 .15 .16		42 39 36 49	0 16 12 0	76 70 70	4.5 1.3 1.7 3.6	433 181 204 393	6.6 6.9 6.8
							57	ANGELINA		RIVER NEAR HORGER	JRGER										
	L	-	F	L		- A Charles															
562 2,110	15			7.0 3.6 8.0 4.5	- 0 -	40 34 28	51 13 13	36 36 36	52 45 36	0.3	0.2 .0 .2		al94 140 133	0.26 .19 .18		42 32 38	0 71 84	19 12	3.2 2.6	263 234 215	1 6.3
g c	==		5 6		2	26	24	34	29	ei :	8.		126			40	20	65	1.8	209	6.2
22	17		12	_	tr	95 95	35	33 40	54	i ci	ç. 5		176 a184			56	30	60 60	2.3	305 297	6.5
							58,	WOLF CR	CREEK NEAR	NMOT	BLUFF										
19.7	7 19		4	4.1 0.9	6	5.9	20	1.2	6,2		0.5		a53	0.07		14	0	48	0.7	56	6.7
							59.	RUSH CF	RUSH CREEK NEAR TOWN	IS NMOL	BLUFF										
	1.24 32					95	225	2.9	103		0.8		a397	0.54		126	0	62	3.7	675	1.7
							9	60. SANDY	CREEK NEAR JASPER	TAR JASE)ER						-				
20.	.4 20		2	.2 0.6	6	5.0	10	2.0	5.0		1.8		97P	0.06		80	0	5.7	0.8	67	6.4
						64	·· VILLAGE	CREEK	AT U.S. HI	нісниму є	69 NEAR 1	KOUNTZE	6-1								
00 1	-						19)	8.0		1		1			2	0	1	;	58	6.9
ήœ	_	6	r				18	; •	7.5		0.2		1 0			15	e.		ł	64	6, 6
0.2	_		141	.0 1.4			12	5.00	10		.2		57	_		11	e 1	39	0.7	48 60	5.7
3.9	_		Ω. 80	_			14 26	4.4	12		æ. c		50			19	00 r	0.5	9.	74	5.9
300 997	9.5 5.4	5	ΜN	3.2 1.0 2.8 1.0	0 4.5 7 3.6	1.2 ,8	1.00	1.0	8.0		140		31 31 22	.04		23 12 10	N 60 IN	53 42 42	úφų	75 54 41	6.4 6.1 6.1
							65. HICH	HICKORY CREEK		TSAW SA	3.5 MILES WEST OF WARREN	REN									
10	5.71 11					4.8	16	1.2	7.0		0.2		49	0.07		14		43	0.6	53	6.6
F.																			- 0150 - C		

a Residue at 180°C. k Estimated from records at Angelina River near Zavalla and Ayish Bayou near San Augustine.

- 59 -

è

80

Table 8 .-- Chemical analyses of streams and reservoirs in the Neches River Basin for locations other than duily stations - Continued

		ż		ļ	Cal-	Mag-	Ś	Po-	Bicar-	Sul-	Chle.	Fluo-	Ni-	Bo-	ă U	Dissolved solids (calculated)	d)	Har as O	Hardness as CaCO,	Per-	So-	Specific conduct-		
11/1 1/2 2/3 1/1 4/2 1/1 0/3	Date of collection	Dis- charge (cfa)	(SiO ₁)	(Fe)	cium (Ca)	sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO.)	ride (Cl)	(F)	trate (NO _a)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon-	1	adsorp- tíon ratio	ance (micro- mhos at 25° C)	Hq	
$ \begin{bmatrix} 52^{2} & 12 \\ 501 & 12 \\ 501 & 12 \\ 501 & 12 \\ 101$								66.	HICKORY	CREEK	U.S.	34WAY 65	NEAR	ARREN	lê p									
	r 7 105/	5 61	61						71	•	0 7	L			1	0.00							1	
	. 17, 1962	46.6	11		2.5	1.1		0.1	10	. 4.	8.2				3. M	0.05		11		41	0.0	50	6.6	
	. 19	30.1	14		2.5	1.3		L.*	6	1.6	0.6	_	0.		38	.05		12	4	43	·.5	50	5,9	
	e 19	13.6	12		4.5	1.4		8	14	3.2	10		υŅ		15	-10		13	υ -	42	9. 9	62	0.9	
3. ALC THREFY CRERY AT MOONTLLS 3.1. ALC THREFY CRERY AT MOONTLLS 66. BIG CTTRERY AT U.S. HIGHWA 190 REAR WOONTLLS 66. BIG CTTRERS CRERK AT U.S. HIGHWA 190 REAR WOONTLLS 66. BIG CTTRERS CRERK AT U.S. HIGHWA 190 REAR WOONTLLS 1.15 5.3 0.6 29 0.6 <th cols<="" td=""><td>t. 19</td><td>329 304</td><td>8.1</td><td></td><td>2.8</td><td>5.6</td><td></td><td>1</td><td>4 7</td><td>.4</td><td>5.5</td><td>_</td><td>10.</td><td></td><td>22 28</td><td>.03</td><td></td><td>8 1</td><td>4 10</td><td>43 43</td><td>4. 9.</td><td>39</td><td>5.4</td></th>	<td>t. 19</td> <td>329 304</td> <td>8.1</td> <td></td> <td>2.8</td> <td>5.6</td> <td></td> <td>1</td> <td>4 7</td> <td>.4</td> <td>5.5</td> <td>_</td> <td>10.</td> <td></td> <td>22 28</td> <td>.03</td> <td></td> <td>8 1</td> <td>4 10</td> <td>43 43</td> <td>4. 9.</td> <td>39</td> <td>5.4</td>	t. 19	329 304	8.1		2.8	5.6		1	4 7	.4	5.5	_	10.		22 28	.03		8 1	4 10	43 43	4. 9.	39	5.4
$ \begin{bmatrix} 13 & 52 & 1.0 & 52 & 1.6 & 13 & 5.4 & 9.0 & 0.1 & 0.0 & 48 & 0.07 & 17 & 5 & 37 & 0.5 & 0.6 \\ \hline 68. \ nt c creates carea: xu .s., utcleaver 19 weak woont.t.a. 68. \ nt c creates carea: xu .s., utcleaver 19 weak woont.t.a. 69. \ 127 & 15 & 53 & 0.6 & 29 & 3.0 & 9.5 & 0.0 & 0.0 & 56 & 0.08 & 29 & 5 & 28 & 0.4 & 88 \\ \hline 1.27 & 1 & 12 & 1 & 13 & 12 & 3.2 & 3.0 & 9.5 & 0.0 & 10 & 56 & 0.08 & 29 & 5 & 28 & 0.4 & 88 \\ \hline 1.28 & 1 & 127 & 1 & 13 & 12 & 3.2 & 3.2 & 0.2 & 0.2 & 13 & 13 & 13 & 13 & 3.5 & 0.2 & 13 & 13 & 0.2 & 13 & 0.2 & 0.$									67.	BIG TURK	EY CREEK	AT WOOL	WILLE											
66. BIG CYPRESS CRERK AT U.S. INCHANY 190 NEAR MOODFILIK b15 13 9.2 1.5 5.3 0.6 9.2 0.0	t. 15, 1961		13		5.2	1.0		1.8	15	5.4	9.0	_	0.0		48	0.07		17	5	37	0.5	99	5,9	
b15 13 9.2 1.5 5.3 0.6 5.0 0.0 0.0 0.6										CREEK	U.S.	GHWAY 1	90 NEAR	MOODV II	LE .									
69. BORSEPEN CREIX 9.5 NLLS WEST OF WOONTLLE 1.1.5 ¹ 14 1 1 1 1 9 0 9	. 19, 1959	b15	13		9.2	1.5		0.6	29	3.0	9.5	0.0	0.0		56	0.08		29	5	28		88	6.8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. 69 .	HORSEPE	CREEK		WEST		ILLE										
7.57 . It is interfaction of the sourthear of woonthing in the sourthear of woonthing in the sourthear of woonthing in the sourthear of the	. 15, 1953 t. 1, 1954	1.64							18		8.5		0.2					9 13	0			56 54	7.4	
$ \begin{bmatrix} 7.57\\ 6.30\\ 12 \end{bmatrix} \begin{bmatrix} 7.5\\ 6.30\\ 12 \end{bmatrix} \begin{bmatrix} 7.5\\ 12 \end{bmatrix} \begin{bmatrix} 7.5\\ 12 \end{bmatrix} \begin{bmatrix} 7.5\\ 7.0 \end{bmatrix} \begin{bmatrix} 0.2\\ 7.0 \end{bmatrix} \begin{bmatrix} 0.2\\ 0.2 \end{bmatrix} \begin{bmatrix} 10\\ 10 \end{bmatrix} \begin{bmatrix} 5\\ 0.0 \end{bmatrix} \begin{bmatrix} 6.5\\ 5.5 \end{bmatrix} \\ 1.1 \end{bmatrix} \begin{bmatrix} 1.3\\ 4.5 \end{bmatrix} \begin{bmatrix} 1.7\\ 1.1 \end{bmatrix} \begin{bmatrix} 4.4\\ 8.2 \end{bmatrix} \begin{bmatrix} 8.2\\ 0.1 \end{bmatrix} \begin{bmatrix} 0.0 \end{bmatrix} \begin{bmatrix} 4.4\\ 4.4 \end{bmatrix} \begin{bmatrix} 8.2\\ 0.0 \end{bmatrix} \begin{bmatrix} 4.4\\ 0.06 \end{bmatrix} \begin{bmatrix} 8.8\\ 7.5 \end{bmatrix} \\ 1.2 \end{bmatrix} \begin{bmatrix} 1.3\\ 4.5 \end{bmatrix} \begin{bmatrix} 1.4\\ 1.1 \end{bmatrix} \begin{bmatrix} 1.2\\ 1.2 \end{bmatrix} \begin{bmatrix} 4.4\\ 8.2 \end{bmatrix} \begin{bmatrix} 8.8\\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2\\ 0.2 \end{bmatrix} \begin{bmatrix} 0.6\\ 1.2 \end{bmatrix} \\ 1.2 \end{bmatrix} \begin{bmatrix} 1.2\\ 1.2 \end{bmatrix} \begin{bmatrix} 1.2\\ 1.2 \end{bmatrix} \\ 1.2 \end{bmatrix} \begin{bmatrix} 1.2\\ 1.2 \end{bmatrix} \begin{bmatrix} 1.2\\ 1.2 \end{bmatrix} \\ 1.2 \end{bmatrix} \begin{bmatrix} 1.2\\ 1.2 \end{bmatrix} \\ 1.2 \end{bmatrix} \begin{bmatrix} 1.2\\ 1.2 \end{bmatrix} \\ 1.2 \end{bmatrix} \\ 1.2 \end{bmatrix} \begin{bmatrix} 1.2\\ 1.2 \end{bmatrix} \\ 1.2$								70.	HORSEPI		MILES	SOUTHWEE	ST OF WO	ODV TLLE						-				
T1. LITTLE CYPRESS CREEK NEAR WOODVILLE 71. LITTLE CYPRESS CREEK NEAR WOODVILLE 11 5.1 1.3 4.5 1.7 16 4.4 0.0 18 5 33 0.5 65 67.5 8.7 5.1 1.3 4.5 1.7 16 4.4 0.0 18 5 33 0.5 65 72. BLG CYPRESS CREEK NEAR HILLISTER 72. BLG CYPRESS CREEK NEAR HILLISTER 25.0 1.2 4.3 1.0 10 1.1 5 33 4.2 5.4 5.4 5.4 5.4 1.2 6.0 1 2 6.0 18 5 33 0.5 6.0 5 6.0 5 6.0 5	. 15, 1953	7.57							12 12		7.5		0.2					10	00			45 45	7.3	
$ \begin{bmatrix} 11 & 5.1 & 1.3 & 4.5 & 1.7 & 16 & 4.4 & 8.2 & 0.1 & 0.0 & 44 & 0.06 & 18 & 5 & 33 & 0.5 & 65 \\ \hline 72 & 81 & 7 & 5.8 & 1.4 & 4.0 & 1.2 & 15 & 4.4 & 8.8 & 0.2 & 0.5 & 39 & 0.7 & 12 & 3 & 42 & 0.6 \\ \hline 87.5 & 88 & 14.7 & 5.8 & 1.4 & 4.0 & 1.2 & 15 & 4.4 & 8.8 & 0.2 & 0.5 & 39 & 0.7 & 12 & 3 & 42 & 0.6 \\ \hline 87.6 & 13 & 5.4 & 1.2 & 12 & 12 & 12 & 12 & 12 & 12 & 1$										TLE CYPR	ESS CREEK	C NEAR W	100DV 1LL	ы										
72. BLC CYPRESS CREEK NEAR HILLISTER 67.5 8.7 5.8 1.4 4.0 1.2 15 4.4 8.8 0.2 0.5 42 0.06 20 8 29 0.4 61 28.0 1.3 5.0 1.2 1.5 4.4 9.0 1.1 5 34 2.5 54 1.1 10 11 5 42 0.5 54 90 05 11 5 34 55 601 13 42 0.5 12 14 5 61 32 61 32 61 32 61 32 61 32 61 32 34 35 55 68 55 54 39 05 12 12 14 55 68 56 56 56 51 1 20 36 55 56 57 5	t. 15, 1961		11		5.1	1.3		1.7	91	4.4	8.2	<u> </u>	0.0		44	0.06		18	5	33	0.5	65	5,9	
67.5 8.7 5.8 1.4 4.0 1.2 15 4.4 8.8 0.2 0.5 42 0.06 20 8 29 0.4 61 28.0 14 5.5 1.3 4.3 1.0 10 1.2 1.2 9.0 1.2 9.0 1.2 9.0 1.2 9.0 5 52 53 52 53 52 53 52 53 52 53 52 53									0		S CREEK N	TEAR HIL	LISTER											
60.1 13 5.0 1.7 5.4 1.1 16 3.2 11 .5 .4 .07 20 6 36 .5 64 .5 64 .5 64 .5 .6 36 .5 .6 36 .5 .6 37 .1 12 14 .2 7.5 .4 .2 38 .05 13 2 37 .5 49 .5 .6 37 .5 .4 .5 .5 .6 37 .5 .4 .5 .5 .6 37 .5 .4 .5 .5 .4 .5 .5 .4 .5 .5 .4 .5 .5 .4 .5 .5 .4 .5 .5 .4 .5 .5 .4 .5 .5 .5 .4 .5 .5 .4 .5 .5 .4 .5 .5 .4 .5 .5 .4 .5 .5 .4	. 17, 1962	67.5 28.0	8.7 14		5.8 2.5	1.4	4.0	1.2	15	4.4	8.8		0.5		42 39	0.06		20	8 "	29 42	0.4	61 52	6.2	
73.0 10 3.8 1.5 8 4.0 7.2 1 25 35 05 12 2 31 .5 53 270 7.5 3.5 .5 3.6 7.2 1 .2 35 .05 11 3 39 .5 53 270 7.5 3.5 .1 .2 3.6 7.2 1 .2 35 .05 11 3 39 .5 53 270 7.5 3.6 .1 .0 1 .0 30 .05 11 3 39 .5 63 73. BIG TURKEY CREEK 6 MILES SOUTHEAST OF WARREN 25.6 .1 .0 30 .05 11 3 39 .5 64 73. BIG TURKEY CREEK 6 MILES SOUTHEAST OF WARREN 7.8 0.2 14 0 14 0 56	, 7, 1963	1.0.1	F3		5.0	1.7	4.2	1.	16	3.2	11		r, c		49	-07		20	900	36	, v; ı	89	0.9	
25.7 14 73. BIG TURKEY CREEK 6 MILES SOUTHEAST OF WARREN 25.7 14 16 7.5 0.2 14 0 55	2, 1964	73.0	7.5		3.5		3.8	1.5	500	4.0	5.6		12.0		9 9 9 9 9 9 9 9	02 20		221	N 10 M	37	ن ښ ښ	46 23 46	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
25.7 16 7.5 7.5 55 17.9 14 14 0 58								73.	BIG TURK		6 MILES	SOUTHEA	0F	ARREN										
	. 14, 1953	25.7 17.9	14						16 18		7.5 7.8		0.2					8 14	00			55 58	7.4	

b Field estimate.

- 60 -

Table 8 .--Chemical analyses of streams and reservoirs in the Neches River Busin for locations other than daily stations--Continued

0

ē.

6

	H		7.2		7.0		6.6 6.4		5.4	5.4	6.1 4.3	ი. ი ა. გ.		6.5 5.9 5.7 5.8	5.7 5.7 6.0 5.5 5.5		
Specific conduct-	ance (micro- mhos at 25° C)		43 41		40 38		1,700 353		496	275	171	177		214 83 81 127 127	136 148 168 168 99 44		
So- dium	adsorp- tion ratio						17 4.5		7.2	6.6	2.1 2.1	1.6 2.6		2.7 1.0 2.1 2.1 1.8	1.9 1.8 1.0 1.0 1.2		
Per-	cent so- dium						18 18		87 84	80	8.5 72	77		73 53 62 68	68 67 54 60 69		
100°	Non- carbon- ate		0 -		00		58 22		22	20	31	8 12		13 2 8 8 8	10 13 18 4 2 3		
Hardness as CaCO,	Cal- cium, magne- sium		10		27		65 29		26 29	23	17	9 16		24 15 11 17	19 20 24 6 5		
ds	Tons per day																
Dissolved solids (calculated)	Tons per acre- foot						1.28		0.38	.20	.10	.12		0.16 .07 .06 .11	11 11 13 08 03 03		
Dia	Parts per mil- lion						a939 a204		a278 a253	147	222	41 88		118 49 43 81 81	82 84 93 22 22 22		
Bo-	ron (B)	IRGER		FRED		ARREN											
Ni-	trate (NO ₃)	EAR SPI	0.5	NORTHWEST OF FRED	0.5	ST OF V	1.5	MILLS	0.2	œ, d	22	o. «	NTZE	0.0 .5 .2 .2	0000000	NTZE	
Fluo-	ride (F)	1013 N		NORTHW		SOUTHEA		VILLAGE	0.2	4.	: ?:		EAR KOU	0.1.2.1		EAR KOU	
Chlo-	ride (CI)	e Fm road	6.2 6.0	2.5 MILES	7.2	7 MILES	522 100	CREEK NEAR	142	78	147 42	20 45	VILLAGE CREEK NEAR KOUNTZE	54 16 32 31	34 34 43 43 43 43 18 10	CYPRESS CREEK NEAR KOUNTZE	
Sul-	fate (SO ₁)	BEECH CREEK AT FM ROAD 1013 NEAR SPURGER		BEECH CREEK 2		THEUVENINS CREEK 7 MILES SOUTHEAST OF WARREN	1.2 1.6	BEECH CRI	2.8 3.0	3.4	1.0	-4	VILLAGI	2.8 3.6 2.8 2.4	2.0 2.0 0.0 0.0 0.0 0.0	CYPRESS	
Bicar-	bonate (HCO ₃)		11 11	75. BEEC	68	THEUVENI	68	77.	5 -	41	~ 0		78.	14 10 14 10	11 8 18 4 4 2	. 67	
Po-	(K)	74				76.	313 55		84 73	5		24 0.9		31 1.2 1.2 17	19 19 22 10 -9 -9		
Ś	dium (Na)						E.					H I		9.4	4.8 6.2		
Mag-	sium (Mg)						6.1		2.4 3.4	2-6	1.6	1.9		2.1 1.7 1.0 1.4	1.9 1.7 2.1 1.3 .2		
Cal-	cium (Ca)						16		6.5 6.2	5.0	4.2	3.2		6.2 2.8 4.0 4.0	4.0 0.0 1.0 0.0 1.0		
	(Fe)															-	
cilia-	(SiO ₂)		9.6		9.8		19 13		14	12	5.5	4.4 11		15 9.0 6.2 13 13	L5 L5 L2 L2 L.5 L.5		
ź	charge (cfs)		0.89 06.		0.37		5.94 1.41		10.1 25.2	97.0	574	1,1/0 b175		277 1,890 2,920 75.8 91.0	160 387 585 52.8 3,960 3,460		
	Date of collection		Oct. 14, 1953		0ct. 14, 1953		Oct. 14, 1953		Oct. 17, 1962	Mar. 7, 1963		Mar. J. 19641 Mar. 241		Mar. 19, 1959 1 Apr. 17 1 Sept. 14, 1961 2 Oct. 17, 1962	Dec. 20	-	

a Residue at 180°C. b Field estimate. Table 8.--Chemical analyses of streams and reservoirs in the Neches River Basin for locations other than daily stations--Continued

		::		1	Cal-	Mag-	So- Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Die Die	Dissolved solids (calculated)		Hardness as CoCO,	co,	Per-	-s -	Specific conduct-	
	Date of collection	charge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	sium (Mg)			fate (SO.)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion		rons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	Hd
2 1966 0.0.5 1.6 1.6 2.9 0.4 0.3 0.3 0.5 1.6 0.5 0.4 0.3 0.3 0.5 0.5 0.6 0.1 0.3 0.3 0.6 0.1 0.3 0.3 0.6 0.1 0.3							80.		CREEK 2.	5 MILES N	ORTHWES	T OF SOUI	I LAKE									
B1. JACCSON CHERK AT STATE HTGBMAT TO FARM ROOM LARGE D1. 1066 b 0.5 1.5 1.1 1.0 2.3 1.0 2.9 0.0 2.9 0.0 2.9 0.0 2.0 1.0 2.0 1.0 2.1 0.0 1.0 1.00 <th< td=""><td></td><td>b0.5</td><td>1.6</td><td></td><td>16</td><td>2.9</td><td>38</td><td>- 64</td><td>0.4</td><td>39</td><td>0.3</td><td>0.8</td><td></td><td>145</td><td>0.20</td><td></td><td>52</td><td>0</td><td>61</td><td>2.3</td><td>297</td><td>6.7</td></th<>		b0.5	1.6		16	2.9	38	- 64	0.4	39	0.3	0.8		145	0.20		52	0	61	2.3	297	6.7
							. 18	JACKSON	CREEK AT	STATE HIG	HWAY 10		SOUR LAK	Е								
8. INTER BRIAGE STATE HIGHAY 105, 0.5 RULE BREAGE GEOR LARE 22, 1964 13.1 24.0 18.0 15, 100 87.1 5, 900 87.7 5, 900 57.70 19. 75, 600 22, 1964 3.0 13.0 11.0 15.1 11.0 15, 700 87.1 10.0 15.8 17, 60 19.0 17, 600 22, 1964 3.0 13.0 10.0 11.0 15, 700 15.7 10.0 15.9 17, 60 10.0 17, 60 17, 60 17, 60 17, 60 10.0 17, 60 10.0 17, 60 10.0 17, 60 10.0 17, 60 10.0 17, 60 10.0 17, 60 10.0 17, 60 10.0 17, 60 10.0 17, 60 10.0 17, 60 10.0 17, 60 10.0 17, 60 10.0 17, 60 10.0 17, 60 10.0 17, 60 17, 60 17, 60 17, 60 17, 60 17, 60 17, 60 17, 60 17, 60 17, 60 17, 60 17, 60 17, 60 17, 60 17, 60 17, 60 17, 60 17, 60 17, 6	lar. 23, 1964	b50 b .5	4.5 1.2		8.5	2.1	10 38	38 85	0.0	14 59	0.2	1.0 .8		59	0.08		30 73	0 m	43 53	0.8 1.9	117 353	6.6 6.7
22, 1964 10.3 23 1,700 133 .2481, 1 NHE SOTTMEST OF SOUR LAFE 62,590 88.7 5,940 5,740 89 75,600 22, 1964 3.0 10.4 9,290 116 87 15,700 35. 22,100 35.740 89 75,600 22, 1964 3.0 10.4 9,290 116 87 15,700 35.9 35.9 37.100 37.100 25, 1964 3.0 10 10 10 10 10 2.00 35.8 2.130 37.100 39 37.100 25, 1964 2.0 10 2.3 2.5 88 0.3 12 12 39 12 12 12 139 2.2 16 12 23 10 2.2 28 23 26 88 0.19 139 0.19 27 29 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>8 mm</td><td>BELOW</td><td>STATE HIG</td><td>HWAY 105,</td><td>0.5</td><td></td><td></td><td>LAKE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							8 mm	BELOW	STATE HIG	HWAY 105,	0.5			LAKE								
23. LARE, 1 MLE COUTINGET OF SOUR LARE 23. 1966 3.0 600 154 9.290 116 87 15,700 15 2,130 2,000 90 97 97 90 37.100	22, 1964	b0.3	23		1,700	413	22,100	248	188	38,000				62,500	88.7		5,940	5,740	89		75,600	6.7
22, 1964 3.0 60 154 9, 290 116 87 15, 700 23, 900 35.8 2, 130 2, 040 90 37, 100 36<								83.					AKE									
84. FINE ISLAND BAYOU AT STATE HIGHAY 26 NEAR SOUR LARF 25. 1964 2.0 2.0 8.0 0.1 1.0 2.0 2.0 2.0 2.0 1.2 1.3 1.0 2.0 2.0 2.0 2.0 2.0 2.0 1.2 1.2 1.0 2			3.0		600	154	9,290	116	87	15,700				25,900	35.8		2,130	2,040	06		37,100	6.3
$24, 196, \dots$ $4, 2$ 10 $2, 3$ 30 27 $0, 6$ 68 $0, 3$ $1, 6$ 14 70 28 $2, 3$ 390 $22, \dots$ $2, 0$							Q	INE ISLAN	BAYOU A			326 NEAR		KE								
85. FINE ISIAND BAYOU AT STATE HIGHMAY 105 NEAR SOUR LARE 23. 1964 b500 3.9 1.7 2.8 0.6 61 0.2 1.5 1.0 105 0.14 30 11 67 2.2 238 22 b500 3.9 1.7 2.8 1.7 28 0.6 61 0.2 1.5 1.5 1.7 61 2.2 238 32 b50 3.7 1.5 1.7 1.8 1.11 0.2 1.5 1.5 1.7 61 2.2 238 33.1 1964 b53 9.5 1.5 0.2 1.5 1.5 1.5 3.9 4.7 5.8 1.3 4.4 28 5.6 1.3 4.4 28 5.6 1.3 4.4 5.6 5.6 5.6 5.6 5.6 5.6 5.6 1.5 1.5 1.5 1.3 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	lar. 24, 1964		4.2 2.0		10 21	2.7 4.3	39 44	27 52	0.6 5.6	68 82	0.3	1.2		139 186	0.19		36 70	14 28	70 58	2.8 2.3	290 380	6.5 6.4
23, 1964 b500 7.8 16 2.2 1.7 28 23 0.6 49 0.2 1.5 10 159 0.14 32 21 67 2.2 238 23 22 10 5200 7.8 1500 7.8 1500 7.8 1500 7.8 150 75 21 52 298 75 200 750 75 20 208 22 20 20 75 20 208 200 750 75 20 208 200 750 75 20 208 200 750 75 20 208 200 750 75 20 208 200 750 75 20 208 20 20 20 20 20 20 20 20 20 20 20 20 20								INE ISLAN	BAYOU A		IGHWAY	105 NEAR		KE								
36. LITTLE PINE ISIAND BAYOU AT STATE HIGHWAY 326 NEAR SOUR LAKE 23. 1964 b 5 3.7 15.2 1.5 17 18 0.2 12 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 3.4 66 1.7 1.3 1.3 22 b 5 3.5 1.2 1.8 0.2 28 0.2 1.5 1.11 0.2 1.5 1.5 1.5 1.3 1.3 1.2 22 b 5 0.16 1.7 3.3 96 1.3 27 5.6 1.5<	lar. 23, 1964	b500 b200	3.9 7.8		9.2 16	1.7 2.9	28 37	23 38	0.6 14	49 61	0.2	1.5		105	0.14		30 52	11 21	67 61	2.2	223 298	7.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								P INE	LAND BAY	AT		326	VEAR SOU	R LAKE								
24, 1964 6.8 0.16 17 3.3 96 1.3 27 5.6 1.5 310 0.42 56 34 78 5.6 602 24, 1964 6.8 0.16 17 3.3 96 1.3 27 5.6 1.5 310 0.42 56 34 78 5.6 602 20, 1964 6.0 15 3.1 64 2.5 1.6 1.5 0.3 0.0 1.2 310 0.42 56 34 78 5.6 602 30.1964 5.0 1.5 3.1 6.0 1.5 31 0.3 0.0 1.5 1.5 31 445 30.1964 2.9 7.5 1.8 5.5 1.14 0.3 0.0 1.2 1.3 26 18 27 34 356 30.1964 2.9 7.5 1.8 5.5 1.4 0.3 0.0 1.4 360 34 356 34 356 34 356 34 356 36 <		b 50 b 5	3.7 9.5		5.2 12		17 60	18 20	0.2	28 111	0.2	$1.2 \\ 1.5$		66 208	0.09		19 44	4 28	66 75	1.7 3.9	137 426	6.1 6.0
24, 1964 [6.8 0.16 17 3.3 96 1.3 27 5.6 165 0.5 1.5 310 0.42 56 34 78 5.6 602 88. PINE ISLAND BAYOU AT VOTH 89. PINE ISLAND BAYOU AT VOTH 20, 1964 6.0 15 3.1 64 [2.5 32 5.6 114 0.3 0.0 1227 0.31 26 18 80 4.5 3.9 445 1.6 165 1.5 1.2 1.2 1.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1							8		: FINE IS	LAND BAYO	U 1.5 M	ILES FRO	HTUOM N						1			
88. FINE ISLAND BAYOU AT VOTH 20. 1964 6.0 15 3.1 6.4 2.5 3.1 6.4 0.3 0.0 227 0.31 50 24 72 3.9 445 20. 1964 2.9 1.5 3.1 6.4 2.5 5.6 114 0.3 0.0 227 0.31 50 24 72 3.9 445 24 2.9 7.5 1.8 51 2.6 1.9 2.6 1.9 2.6 1.9 445 24 2.9 7.2 1.8 2.1 2.2 3.1 1.5 3.1 3.60 3.6	eb. 24, 1964		6.8	0.16	1.7	3.3	1		5.6	165	0.5	1.5		310	0.42		56	34	78	5.6	602	6.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								œ		ISLAND BA	YOU AT V	HTO										
	eb. 20, 1964 ar. 3ar. ar. 24		6.0 2.9 3.7		15 7.5 7.2		21		5.6 .2	114 97 35	0.3 1.0	0.0 .2 1.5		227 169 82	0.31 .23 .11		50 26 24	24 18 6	72 80 65	3.9 4.5	445 360 166	6,9 5,9

b Field estimate.