

TEXAS WATER DEVELOPMENT BOARD

REPORT 302

WATER QUALITY OF CANYON LAKE

CENTRAL TEXAS

By

W. R. Roddy and Kidd M. Waddell U.S. Geological Survey

This report was prepared by the U.S. Geological Survey under cooperative agreement with the Texas Water Development Board

October 1987

TEXAS WATER DEVELOPMENT BOARD

M. Reginald Arnold II, Executive Administrator

Louie Welch, Chairman Glen E. Roney Charles W. Jenness Stuart S. Coleman, Vice Chairman George W. McCleskey Thomas M. Dunning

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Board would appreciate acknowledgement.

Published and distributed by the Texas Water Development Board Post Office Box 13231 Austin, Texas 78711

FOREWORD

Effective September 1, 1985, the Texas Department of Water Resources was divided to form the Texas Water Commission and the Texas Water Development Board. A number of publications prepared under the auspices of the Department are being published by the Texas Water Development Board. To minimize delays in producing these publications, references to the Department will not be altered except on their covers and title pages.

ABSTRACT

The volume-weighted average concentrations of the principal dissolved constituents in Canyon Lake on the Guadalupe River in central Texas are usually less than 240 milligrams per liter of dissolved solids, 20 milligrams per liter of chloride, and 30 milligrams per liter of sulfate. The water, which is very hard, has a volume-weighted average concentration of hardness of about 200 milligrams per liter. There is little seasonal variation in the volume-weighted average concentrations of the principal dissolved constituents.

Thermal stratification of the lake usually begins during March and persists until September or October. Stratification results in significant seasonal and areal variations in dissolved oxygen, which in turn result in higher concentrations of dissolved iron, dissolved manganese, and total ammonia during the summer. Oxygen used in the stabilization of unoxidized material in the lake is not replaced during summer stagnation. The depth-integrated concentration of dissolved oxygen averaged less than 4.0 milligrams per liter during summer stagnation and about 9.0 milligrams per liter during winter circulation.

The concentrations of dissolved iron and dissolved manganese, which varied seasonally, were closely related to the concentrations of dissolved oxygen. Reducing conditions in the hypolimnion often result in the dissolution of iron and manganese from bottom sediments in the deep parts of the lake. At site D_C , a deep site on an arm of Canyon Lake, the summer concentrations of dissolved iron averaged 860 micrograms per liter and the concentration of dissolved manganese averaged 390 micrograms per liter. The concentrations of total ammonia in the lake usually were less than 0.2 milligram per liter except in the hypolimnion (bottom stratum) during summer stagnation when nitrate and nitrite are reduced to ammonia.

The closure of Canyon Dam resulted in a change in the monthly average water temperature of the Guadalupe River downstream from the dam. Prior to closure, the maximum monthly average water temperature for the Guadalupe River near Sattler, which was 29.0 degrees Celsius, occurred during June or July. Since closure of the dam, the maximum monthly average water temperature, which is 19.0 degrees Celsius, occurs during September or November.

TABLE OF CONTENTS—Continued

Page

2.	July 8, 1971	21
3.	February 14, 1974	24
4. °	May 3, 1974	28
5.	September 25, 1974	32
6.	February 20, 1975	36
7.	May 22, 1975	40
8.	August 20, 1975	44
9.	January 9, 1976	48
10.	May 19, 1976	52
11.	September 9, 1976	56

ILLUSTRATIONS

1.	Map Showing Location of Water-Quality Data-Collection Sites on Canyon Lake	2
2-14.	Graphs Showing:	
2.	Variations in Air and Water Temperatures at Selected Sites, 1971-76	5
3.	Variations in the Concentrations of Dissolved Oxygen During Summer and Winter Surveys, 1974-76	7
4.	Distribution of Water Temperature, Specific Conductance, and Dissolved Oxygen, January 1976	8
5.	Distribution of Water Temperature, Specific Conductance, and Dissolved Oxygen, May 1976	8
6.	Distribution of Water Temperature, Specific Conductance, and Dissolved Oxygen, September 1976	9
7.	Relation of Rainfall to the Inflow and Outflow of Canyon Lake During 30 Days Preceding Date of Survey	10

TABLE OF CONTENTS

	Page
ABSTRACT	v
INTRODUCTION	1
Purpose of This Report	1
Description of Canyon Lake and Its Environment	1
Metric Conversions	3
WATER QUALITY OF CANYON LAKE	3
Thermal Stratification	3
Specific Conductance	5
Dissolved Oxygen	6
Circulation Patterns During the 1976 Water Year	7
Dissolved Iron and Dissolved Manganese	9
Total Inorganic Nitrogen and Total Phosphorus	10
Dissolved Solids, Dissolved Chloride, Dissolved Sulfate, and Hardness	12
TEMPERATURE OF THE GUADALUPE RIVER	15
SUMMARY OF CONCLUSIONS	15
SELECTED REFERENCES	17

TABLES

1-11.	Chemical-Quality Surveys of Canyon Lake:	
1.	April 2, 1971	18

TABLE OF CONTENTS—Continued

Page

8.	Seasonal Profiles of Dissolved Iron, Dissolved Manganese, and Dissolved Oxygen at Sites $A_{\mbox{C}}$ and $F_{\mbox{C}}$	11
9.	Variations in the Concentrations of Dissolved Iron During Summer Surveys	11
10.	Variations in the Concentrations of Dissolved Manganese During Summer Surveys	11
11.	Variations in the Concentrations of Total Inorganic Nitrogen and Total Phosphorus at Site A _C	12
12.	Summer and Winter Profiles of Total Ammonia, Total Nitrite Plus Nitrate, and Dissolved Oxygen at Sites A_{C} and D_{C}	13
13.	Variations in the Range and Volume-Weighted Average Concentrations of Dissolved Solids, Dissolved Chloride, Dissolved Sulfate, and Hardness	14
14.	Monthly Average Water Temperature of the Guadalupe River Downstream From Canyon Lake Before and After Closure of the Dam	15

WATER QUALITY OF CANYON LAKE

CENTRAL TEXAS

By

W. R. Roddy and Kidd M. Waddell U.S. Geological Survey

INTRODUCTION

Purpose of This Report

The U.S. Geological Survey has conducted periodic comprehensive water-quality surveys of selected reservoirs in Texas since 1961 as part of a continuing cooperative program with State, Federal, and local agencies to inventory the surface-water resources of Texas. Water samples for chemical analyses were collected from Canyon Lake (Figure 1) soon after its impoundment on June 16, 1964. During 1971-76, 11 comprehensive water-quality surveys were conducted in cooperation with the Texas Department of Water Resources. The first two water-quality surveys were conducted during April and July 1971. The other surveys were conducted during the 1974-76 water years. Sampling sites were located within five traverses, A through F. Sites at the deepest point within the traverse were subscripted "C" for channels. Sites to the left and right of the channel were subscripted "L" and "R", respectively.

The purpose of this report is to summarize the water-quality records collected during the 11 surveys and to explain the seasonal and areal variations in the concentrations of selected chemical constituents. Other reports containing hydrologic data for Canyon Lake and surround-ing areas are listed in the section "Selected References."

Description of Canyon Lake and Its Environment

Canyon Lake, in Comal County, Texas, is owned and operated by the U.S. Army Corps of Engineers for conservation and flood control. Construction of the dam began during June 1958 and was completed during August 1964. Impoundment began on June 16, 1964, and normal conservation capacity was first achieved on April 13, 1968.

The top of the conservation pool of Canyon Lake is 909.0 feet above sea level. At this elevation, the capacity of the lake is 386,200 acre-feet, and the shoreline length is about 80 miles.

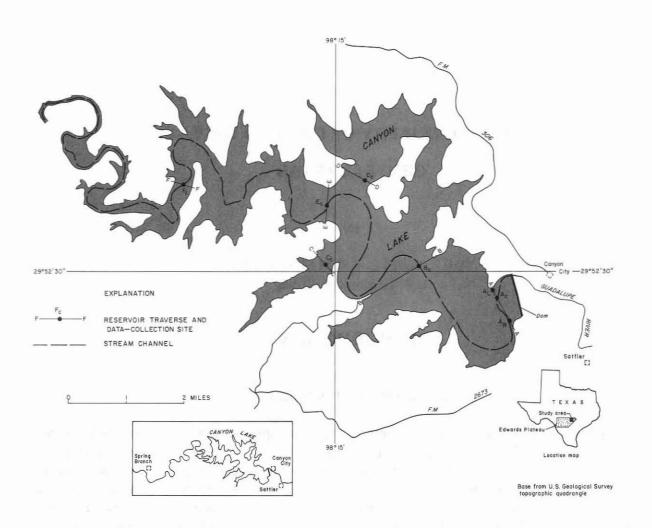


Figure 1.—Location of Water-Quality Data-Collection Sites on Canyon Lake

The length of the drowned river channel is approximately 19.5 miles. The width of the lake varies from approximately 20 feet in its upper reaches to a maximum of about 1.5 miles near the dam. Other features of the lake and dam, as compiled by Dowell and Petty (1971), are given in the following table:

Feature	Elevation (feet above sea level)	Capacity (acre-feet)	Surface area (acres)
Top of dam	974.0	· · · - · · · · · ·	-
Maximum design water surface	969.1	1,129,300	17,120
Top flood-control storage space	943.0	740,900	12,890
Top conservation storage space	909.0	386,200	8,240
Intake of lowest invert	775.0	240	54
Streambed	750.0	_	-

- 2 -

The drainage area of Canyon Lake is about 1,430 square miles in the rugged hills and narrow valleys of the southeastern part of the Edwards Plateau. Massive limestones, which underlie most of the region, are exposed in many areas where the thin soils have been eroded. The limestones are faulted and very porous to cavernous, and many seeps and springs occur in the drainage basin. Grasses, western red juniper, and live oak are the predominant flora in the hills; black walnut and bald cypress commonly occur in the valleys.

Metric Conversions

Factors for converting inch-pound units to metric equivalents are given in the following table:

From	Multiply by	To obtain
acre	4,047	square meter (m ²)
acre-foot (acre-ft)	0.001233	cubic hectometer (hm³)
foot	0.3048	meter (m)
inch	25.4	millimeter (mm)
micromho per centimeter (µmho/cm)	1.00	microsiemen per centimeter (µS/cm)
mile	1.609	kilometer (km)
square mile	2.590	square kilometer (km²)

Temperature data in this report are in degrees Celsius (°C) and may be converted to degrees Fahrenheit (°F) by the following formula:

°F = 1.8(°C) + 32.

National Geodetic Vertical Datum of 1929 (NGVD of 1929): A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "mean sea level." NGVD of 1929 is referred to as "sea level" in this report.

WATER QUALITY OF CANYON LAKE

Thermal Stratification

Impoundment of water in a lake or reservoir may result in beneficial as well as detrimental changes in the quality of the water. Some of the factors controlling the quality of water in a lake or

reservoir include the quality of inflow, the circulation pattern of the lake, the chemical reactions of the water with the bed material, the annual rainfall, and the evaporation rate. Many of the detrimental effects of impoundment can be attributed to thermal stratification due to temperature-induced density differences. The density of pure water is greatest at a temperature of about 4°C, and the difference in density per 1°C is much greater at high temperatures than at low temperatures as shown in the following table (Weast, 1975, p. F-5):

Temperature (degrees Celsius)	Density (grams per milliliter)
0.0	0.999868
4.0	1.000000
5.0	.999992
10.0	.999728
15.0	.999129
20.0	.998234
25.0	.997075
30.0	.995678
35.0	.994063

For example, a change in temperature from 29° to 30°C results in a change in density of about 0.0003 g/mL (gram per milliliter); a change in temperature from 10° to 11°C results in a density change of about 0.0001 g/mL. Stable stratification is common in lakes and reservoirs where the density of the upper and lower strata of water differs by as little as 0.001 to 0.002 g/mL. Therefore, temperature differences of 3° to 4°C during the summer may result in stable stratification.

Thermal stratification may occur in many patterns, depending upon the geographical location, climatological conditions, depth, surface area, and configuration of the lake or reservoir. During the winter, lakes and reservoirs in Texas are well mixed by strong north winds, and the water is uniform in temperature (isothermal) and density. With the onset of spring, solar heating warms the water at the lake or reservoir surface, causing a decrease in density. This warm surface water tends to float on the colder and denser water, and the mixing actions of spring winds, usually the strongest of the year, are diminished. As the surface water becomes progressively warmer, the density gradient increases and the depth to which wind can mix the water decreases. Typically, by late summer the winds are weakest, density differences are greatest, and the reservoir is separated into three fairly distinct strata:

- (1) The epilimnion—a warm, freely circulating surface stratum,
- (2) the metalimnion—a middle stratum characterized by a rapid decrease in temperature with increases in depth, and
- (3) the hypolimnion—a cold, stagnant lower stratum.

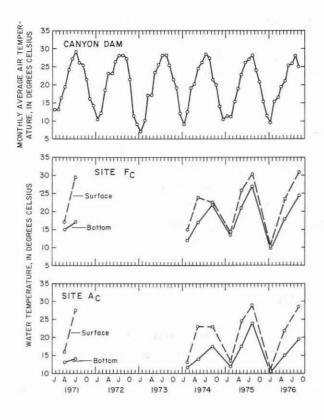


Figure 2.—Variations in Air and Water Temperatures at Selected Sites, 1971-76

Thermal stratification in deep lakes or reservoirs usually persists until fall, when a decrease in atmospheric temperature cools both the surface water in the reservoir and inflow from streams. When the temperatures and densities of the epilimnion and metalimnion approach those of the hypolimnion, the resistance to mixing is reduced, and complete mixing or overturn of the water occurs.

As shown in Figure 2, water temperatures of Canyon Lake varied with air temperatures, and surface-water temperatures were nearly always warmer than bottom-water temperatures. Summer temperature gradients at site A_C near the dam ranged from 5° to 13.5°C.

Water-temperature data for Canyon Lake are given in Tables 1-11. Water temperatures were most variable at site F_C , where the maximum water temperature recorded during the surveys was 31.0°C, and the minimum water temperature recorded was 10.0°C. Water temperatures also were variable at site

 C_C , ranging from 10.5° to 31.0°C. The lake was virtually isothermal during the winter surveys, when the water temperatures ranged from 10.0° to 15.0°C. During the spring surveys, water temperatures ranged from 14.0° to 26.0°C, and significant differences were noted between the surface and bottom temperatures, indicating the onset of thermally induced stratification. Summer temperatures ranged from 17.5° to 31.0°C, and a definite three-layer stratification pattern was evident during the summer surveys.

Specific Conductance

Specific conductance, which is a measure of the capacity of water to conduct an electrical current, is related to the concentrations and types of ionized substances in the water. Because of the simplicity of determination, specific conductance commonly is often used to estimate the concentration of dissolved solids and the concentrations of individual chemical constituents. For example, the dissolved-solids concentration (in milligrams per liter) in water in Canyon Lake is approximately 60 percent of the specific conductance (in micromhos per centimeter at 25°C).

Specific-conductance data for Canyon Lake are given in Tables 1-11. Differences in specificconductance values were greatest between surface and bottom samples during summer stratification. During the summer, water entering the lake generally is cooler and more mineralized than the water in the lake, and this denser water settles towards the bottom. Some inorganic constituents, which also cause the specific conductance to increase, are released from the bed material during periods of summer stagnation. For example, at site A_C during the summer, the specific conductance averaged about 450 micromhos near the bottom and about 360 micromhos near the surface. During the winter at this site, the specific conductance averaged about 460 micromhos near the bottom and about 460 micromhos near the surface.

Specific-conductance values were most variable at site F_C , where the maximum measured value was 565 micromhos on February 20, 1975, and the minimum was 245 micromhos on May 22, 1975. Specific conductance tended to be higher at site F_C than at site A_C near the dam during periods of low inflow. For example, on February 14, 1974, the depth-integrated average at site A_C was 422 micromhos and the average at site F_C was 465 micromhos. During periods of high inflow, site F_C had lower specific-conductance values than site A_C because the runoff was less mineralized than the lake water.

Dissolved Oxygen

Dissolved oxygen is required by fish and other aquatic organisms to maintain the metabolic processes that produce energy for growth and reproduction. Moreover, the concentrations of some of the chemical constituents dissolved in water are related to the concentrations of dissolved oxygen; therefore, dissolved oxygen is one of the most important factors that affect the quality of water in a lake or reservoir.

Water entering a lake or reservoir contains organic material derived from natural sources and from man's waste. Bacterial stabilization of this organic material requires oxygen. Decaying trees, brush, and other oxidizable material within the inundated area, as well as decaying algae and other organic material produced within the lake or reservoir, exert an oxygen demand.

The distribution of dissolved oxygen in a lake or reservoir is related to thermal stratification. Oxygen enters the surface stratum by plant photosynthesis and by absorption from the atmosphere. During winter circulation, the water is exposed to the atmosphere repeatedly, and dissolved oxygen used in the decomposition of organic matter is replenished. However, during spring and summer, thermal stratification results in a decrease of vertical circulation of the water. Oxygen used in the decomposition of organic material is not replaced in the hypolimnion, and a vertical dissolved-oxygen gradient develops.

Dissolved-oxygen concentrations in Canyon Lake (Tables 1-11) ranged from 0.2 mg/L (milligram per liter) during the summer of 1976 to 9.9 mg/L during the winters of 1975 and 1976. Dissolved-oxygen concentrations were least during the summer, averaging about 4 mg/L, and greatest during the winter, averaging about 9 mg/L (Figure 3). Significant differences in the average concentrations of dissolved oxygen between the surface and the bottom during periods of summer stagnation also are shown in Figure 3. Slight differences are noted at deep-water sites A_C and B_C during the winter. Depths at these sites commonly exceed 120 feet and circulation or mixing is not as rapid or pronounced during the winter as it is in the shallower areas (sites E_C and F_C).

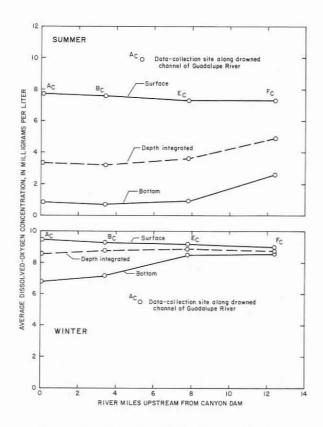


Figure 3.—Variations in the Concentrations of Dissolved Oxygen During Summer and Winter Surveys, 1974-76

Circulation Patterns During the 1976 Water Year

The seasonal variations in water temperature, specific conductance, and the concentration of dissolved oxygen for Canyon Lake are the result of thermal stratification, wind action, and the magnitude and quality of inflow and outflow. The data from the surveys during the 1976 water year illustrate these variations at times when no major inflow or outflow preceded the surveys.

During the January 1976 survey (Figure 4), the lake was well mixed throughout. Water temperatures ranged from about 10°C at site F_C to about 12°C at site A_C . Specific conductance ranged from 416 micromhos at site A_C to 431 micromhos at site F_C . The dissolved-oxygen concentrations were near saturation, ranging from 9.2 mg/L at site A_C to 9.9 mg/L at site C_C (Table 9).

During the May 19, 1976, survey (Figure 5), the lake had warmed considerably and

stratification had begun to occur. The water temperature at site A_C gradually increased from 15°C near the bottom to 22°C near the surface. Similarly, the dissolved-oxygen concentration increased from 3.6 mg/L near the bottom to 8.5 mg/L near the surface. The specific conductance at site A_C gradually decreased from 407 micromhos near the bottom to 387 micromhos near the surface.

By September 1976 (Figure 6), a definite three-layer stratification had developed. The epilimnion at site A_C was a freely circulating 30-foot layer in contact with the atmosphere. The water temperature and dissolved-oxygen concentration were greatest in this layer. The water temperature in the epilimnion decreased slightly with depth from 28.5° to 27.5°C, and the dissolved-oxygen concentration decreased from 8.2 to 6.6 mg/L. The specific conductance was lowest in the epilimnion, increasing slightly with depth from 351 micromhos near the surface to 360 micromhos 30 feet below the surface. The metalimnion at site A_C was an approximately 20-foot layer in which the water temperature decreased from 27.5° to 25.5°C and the dissolved-oxygen concentrations decreased to less than 1.0 mg/L. The specific conductance in the metalimnion increased with depth from 360 to 418 micromhos. These rapid changes indicate that little or no mixing occurred between the epilimnion and the hypolimnion. The hypolimnion was about 95 feet thick at site A_C and was characterized by a dissolved-oxygen concentration of 0.2 mg/L and a specific conductance of 418 micromhos. Temperatures in the hypolimnion decreased from 25.5° to 19.5°C.

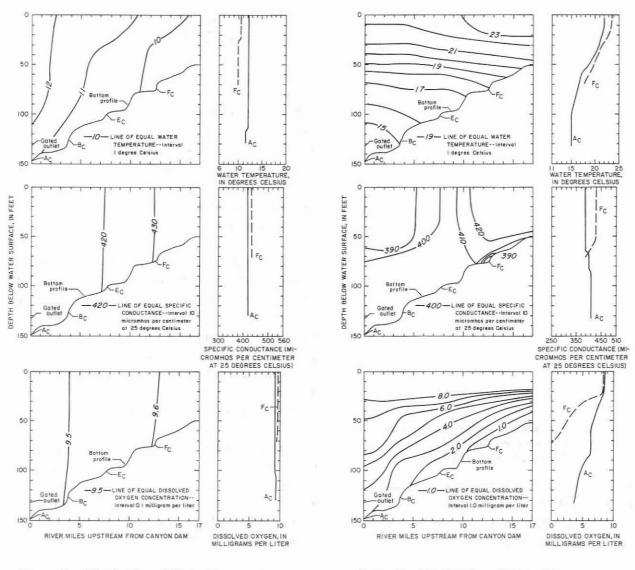


Figure 4.—Distribution of Water Temperature, Specific Conductance, and Dissolved Oxygen, January 1976

Figure 5.—Distribution of Water Temperature, Specific Conductance, and Dissolved Oxygen, May 1976

The data for the 1976 water year, a period of low inflow and outflow, illustrate the annual limnologic cycle of Canyon Lake. A different pattern is most evident at site F_C after periods of high flow through the lake. Lake water at this site reflects the quality of the inflow water. The concentrations of dissolved solids may be much less than the rest of the lake as for May 1974 and May 1975 or much higher as for February 1975.

The ranges in inflow and outflow and the amounts of rainfall during the 30 days preceding each survey are shown in Figure 7. The greatest flow-through occurred before the survey of February 20, 1975. During this time, there was an inflow of 99,300 acre-feet and an outflow of 103,800 acre-feet, and more than one-quarter of the lake water was replaced.

Large amounts of inflow were correlated with rainfall amounts, and 5 of the 11 surveys were preceded by significant 30-day rainfall totals of 4 inches or more. This frequency of large amounts of rainfall and substantial flow-through indicates these factors significantly affect mixing patterns of Canyon Lake.

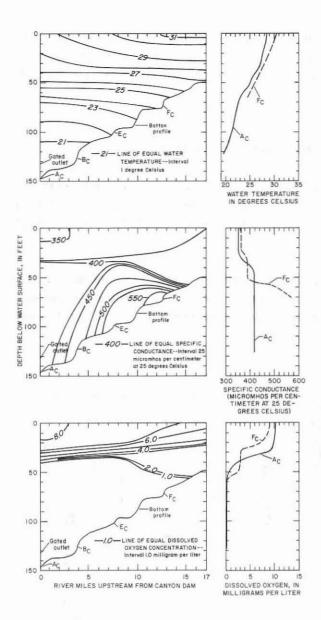


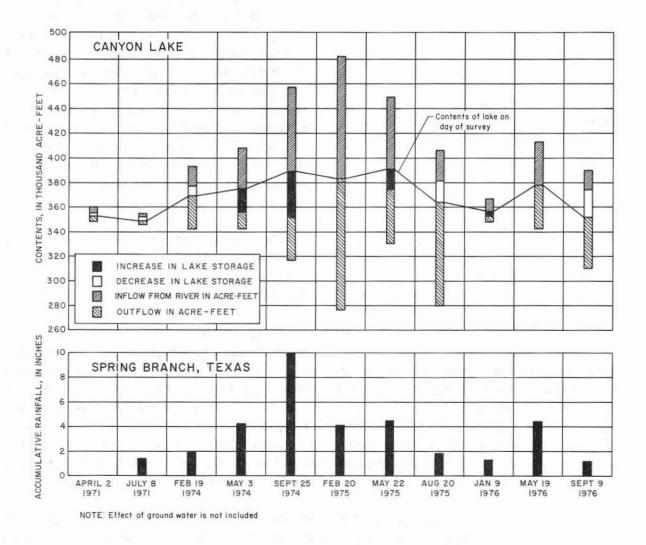
Figure 6.—Distribution of Water Temperature, Specific Conductance, and Dissolved Oxygen, September 1976

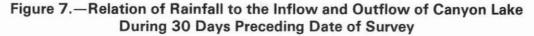
Dissolved Iron and Dissolved Manganese

Iron and manganese are essential trace elements for both plants and animals. Large amounts of either element, however, are objectionable in municipal water supplies and may be toxic to aquatic life. The occurrence and distribution of dissolved iron and dissolved manganese in Canyon Lake can be related to the annual circulation pattern. Typically, during summer stratification, the hypolimnion is unable to replenish dissolved oxygen used in the decomposition of organic matter and reducing conditions develop, resulting in the dissolution of iron and manganese from the bottom sediments. The concentrations of dissolved iron and dissolved manganese in the hypolimnion generally increase throughout the duration of summer stagnation and may have significantly large concentrations before the fall overturn. During late fall or early winter, after circulation begins, oxygen is replenished throughout the lake and most of the dissolved iron and dissolved manganese in the hypolimnion is oxidized to less soluble forms that precipitate to the bottom.

The concentrations of dissolved iron and dissolved manganese in Canyon Lake (Tables 1-11), which were determined at sites A_C , C_C , D_C , and F_C , varied seasonally. During the 1976 winter survey, water near the surface and bottom at sites A_C and F_C contained less than 30 μ g/L (micrograms per liter) of both

dissolved iron and dissolved manganese (Figure 8). Dissolved-oxygen concentrations were relatively uniform from top to bottom at both locations. During the spring survey, the lake had begun to stratify and increases in the concentration of both dissolved iron and dissolved manganese were noted near the bottom. Dissolved-oxygen concentrations decreased from top to bottom at both locations and were less than 1 mg/L near the bottom at site F_C. By late summer, dissolved-oxygen concentrations at both sites had decreased to 0.2 mg/L, and the concentrations of both iron and manganese near the bottom equaled or exceeded 300 μ g/L.

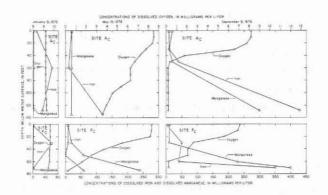

The average summer concentrations of dissolved iron (Figure 9) near the surface ranged from 10 μ g/L at site A_C to 50 μ g/L at site F_C. The average summer concentrations of dissolved manganese near the surface (Figure 10) did not exceed 20 μ g/L. The average summer

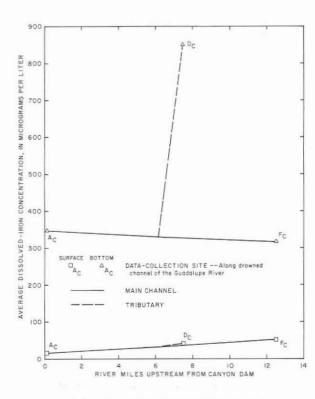

concentrations of dissolved iron in water near the bottom exceeded $300 \mu g/L$ at all locations and averaged 850 $\mu g/L$ at site D_C (Figure 9). The average summer concentrations of dissolved manganese near the bottom ranged from approximately $340 \mu g/L$ at site A_C to $390 \mu g/L$ at site D_C (Figure 10).

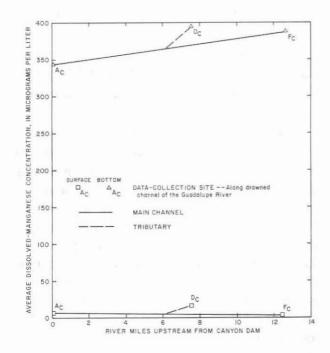
Total Inorganic Nitrogen and Total Phosphorus

Nitrogen and phosphorus are nutrients necessary for plant growth, and one or the other is usually a limiting factor, inhibiting an overgrowth of algae and consequent "algal bloom." Both nutrients, therefore, should be present in a range that supports an adequate but not overabundant plant growth.

Sources that may contribute nitrogen, phosphorus, or both to a lake or reservoir include overland wastes, precipitation, decomposing plant and animal debris, and bottom sediments. Both total nitrogen and total phosphorus in the inflow may consist of dissolved and particulate




Figure 8.—Seasonal Profiles of Dissolved Iron, Dissolved Manganese, and Dissolved Oxygen at Sites A_C and F_C


inorganic forms and dissolved and particulate organic forms. As the water enters the lake or reservoir, most of the particulate nutrients settle to the bottom, while the dissolved nutrients are used by algae and other aquatic organisms as primary sources of energy. As these aquatic organisms die, they settle to the bottom and carry their cellular nitrogen and phosphorus with them.

Typically, during summer stagnation, the decay of aquatic organisms and the chemical oxidation of bottom sediments decrease the concentration of dissolved oxygen in the

hypolimnion and release nitrogen and phosphorus to the water, where they remain until the fall overturn. As nutrients in the inflowing water are incorporated into this seasonal cycle, the concentrations available for release from bottom sediments during summer stagnation may increase through the years.

The concentrations of total inorganic nitrogen (ammonia, nitrite, and nitrate nitrogen), as determined at sites A_C , C_C , D_C , and F_C (Tables 1-11), are relatively low in Canyon Lake. The concentrations of total nitrite plus nitrate ranged from 0.00 mg/L at several locations to 1.1 mg/L at site F_C on February 20, 1975. Although these two nitrogen species were not analyzed separately, nitrate should be predominant because under aerobic conditions, nitrite is rapidly

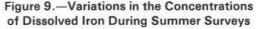
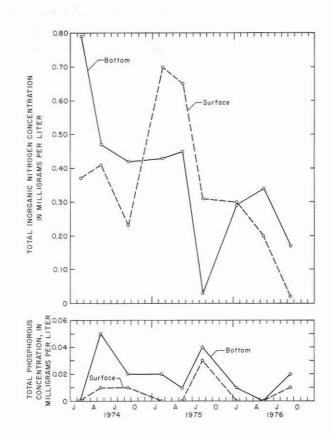
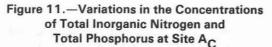


Figure 10.—Variations in the Concentrations of Dissolved Manganese During Summer Surveys

oxidized to nitrate in most natural waters. Ammonia concentrations ranged from 0.0 mg/L at many locations to 1.1 mg/L at the bottom at site D_C on September 25, 1974. Total inorganic nitrogen concentrations ranged from 0.0 mg/L at several locations to 1.23 mg/L at site F_C on February 20, 1975. Data collected during the 1974-76 water years show that the highest total inorganic nitrogen concentrations occur during the winter and spring because of greater inflow to the lake, and that the lowest concentrations occur during the summer months at site A_C near the dam.

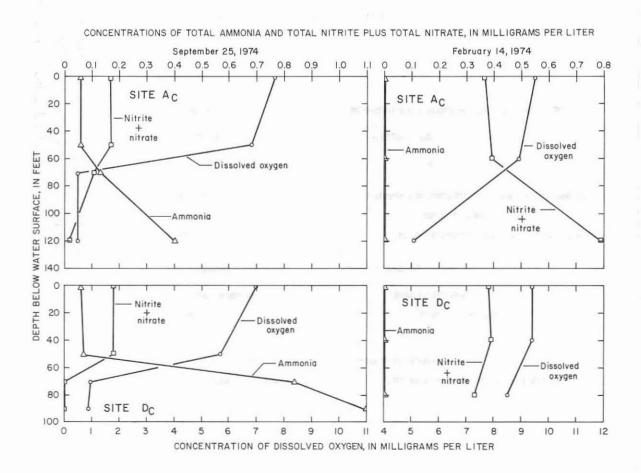

Concentrations of total inorganic nitrogen at site A_C (Figure 11) did not vary as expected. Concentrations decreased from 1974 to 1976 and concentrations in bottom samples were sometimes less than those in samples collected near the surface. These anomalies indicate that little inorganic nitrogen is released from the bottom sediments. Nitrogen-contributing sources such as inflowing particulate matter and decaying biota may not be significant; or other factors such as pH, Eh (redox potential), and biological activity may be limiting the release of inorganic nitrogen.

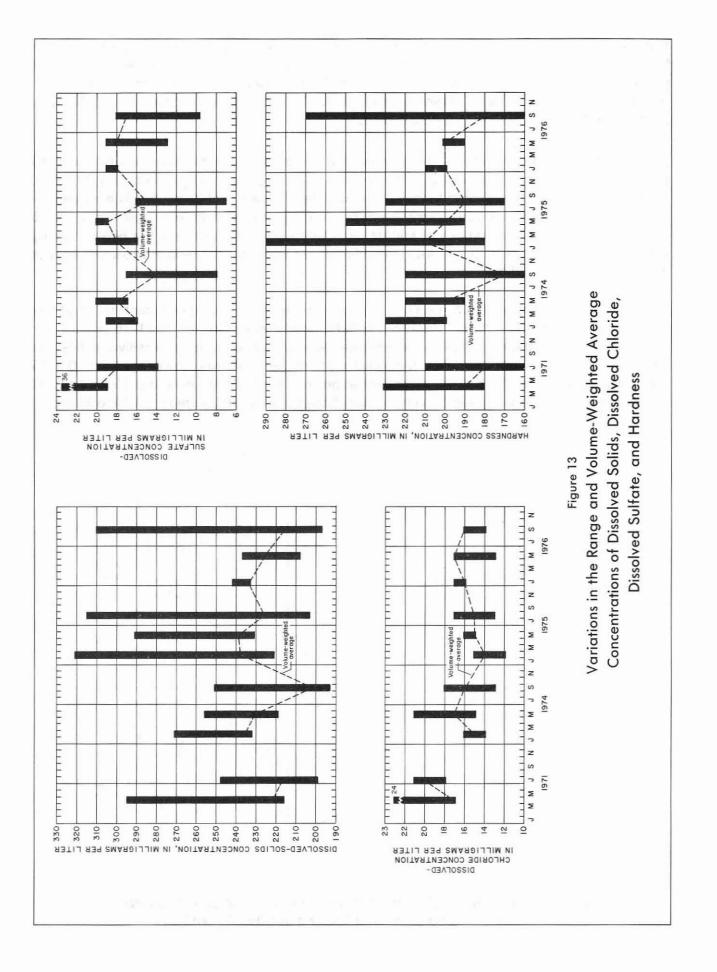

Although the concentration of total inorganic nitrogen does not increase significantly near the bottom during summer stagnation, the concentration of total ammonia does increase (Figure 12). In the near anaerobic conditions in the hypolimnion, most of the nitrite and nitrate are reduced to ammonia; and although the concentration of total inorganic nitrogen does not change significantly, the relative concentrations of nitrite, nitrate, and ammonia change considerably.

Total phosphorus concentrations in Canyon Lake were extremely low, exceeding 0.08 mg/L in only one sample. Although the concentrations are slightly higher in the bottom samples (Figure 11), little phosphorus is released from the bottom sediments.

Dissolved Solids, Dissolved Chloride, Dissolved Sulfate, and Hardness

The dissolved-solids concentrations (Tables 1-11) usually are higher in the headwaters at site F_C than near the dam at site A_C during periods of normal inflow. The dissolved-solids concentration at site F_C ranged from 199 to 321 mg/L and averaged 255 mg/L. The dissolved-solids concentrations at site A_C ranged from 193 to 275 mg/L and averaged 229 mg/L. The slightly higher dissolved-solids concentrations at site F_C probably result from the higher concentrations were lower at site F_C after periods of intense rainfall and higher inflow.




The dissolved-solids concentrations at both sites generally were higher in samples from near the bottom than in samples from near the surface. At site A_C , the average dissolved-solids concentration near the surface was 216 mg/L, and the average dissolved-solids concentration near the bottom was 239 mg/L. At site F_C , the dissolved-solids concentration averaged 236 mg/L near the surface and 273 mg/L near the bottom.

The water in Canyon Lake is hard to very hard. Hardness concentrations ranged from 160 mg/L at the surface during several summer surveys to 290 mg/L at site F_C on February 20, 1975. The concentrations of dissolved chloride and dissolved sulfate were relatively low. The concentration of chloride ranged from 12 to 22 mg/L and the concentration of sulfate ranged from 7.1 to 36 mg/L. The lowest concentrations of sulfate generally were observed near the bottom during summer stagnation, where the reducing conditions result in the conversion of sulfate ions to sulfide or hydrogen sulfide.

Little seasonal variation was noted in the volume-weighted average concentrations of dissolved solids, dissolved chloride, dissolved sulfate, and hardness during 1971-76 (Figure 13). During the winter and spring, the volume-weighted average concentration of dissolved solids was about 230 mg/L; during the summer, the concentrations generally were lower by about 10 to 25 mg/L. The volume-weighted average concentrations of dissolved chloride ranged from 14 to 20 mg/L, and the volume-weighted concentrations of dissolved sulfate ranged from 14 to 30 mg/L.

The volume-weighted average concentrations of hardness ranged from 170 to 210 mg/L and were about 180 mg/L during the summer and about 200 mg/L during the winter.

TEMPERATURE OF THE GUADALUPE RIVER

Although several water-quality samples have been collected downstream from Canyon Dam, data to determine the downstream effects of Canyon Dam are limited to temperature measurements at the station Guadalupe River at Sattler (Figure 14). The monthly average temperature of the Guadalupe River downstream from Canyon Lake has been decreased from a

range of 11.5° to 29.0°C before closure of the dam to a range of 11.5° to 19.0°C after closure of the dam. The time period of the annual extreme temperature has also changed. Prior to closure, the lowest temperatures were recorded during December and January and the highest were recorded during June-August. Since closure, the lowest temperatures occur during February and the highest temperatures occur during September-November.

SUMMARY OF CONCLUSIONS

The concentrations of chemical constituents in Canyon Lake vary seasonally as a result of thermal stratification. During the winter, the lake is well mixed with respect to dissolved solids, dissolved oxygen, and water temperature. During the spring, the thermally-induced stratification pattern develops and continues through the summer. By late summer, three distinct layers occur in the deep areas of the lake. The hypolimnion is a cold, anaerobic lower stratum with a comparatively high concentration of dissolved solids. The epilimnion is a warm, freely circulating, aerobic surface stratum that has the lowest concentration of dissolved solids. The metalimnion is a middle stratum characterized by a rapid decrease in temperature and dissolved oxygen and an increase in the dissolved-solids concentration with an increase in depth. The concentrations of chemical constituents in the headwaters of the lake vary seasonally and with the quality and quantity of inflow.

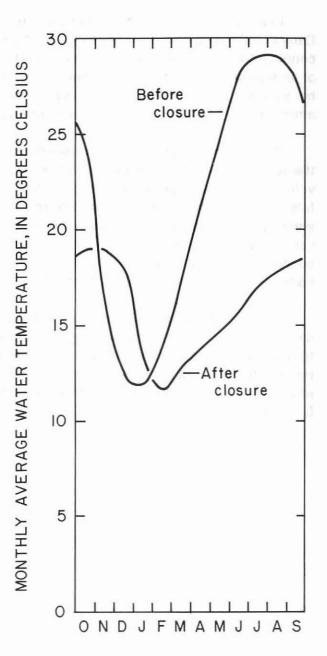


Figure 14.—Monthly Average Water Temperature of the Guadalupe River Downstream From Canyon Lake Before and After Closure of the Dam

The concentrations of dissolved oxygen are related to the pattern of thermal stratification. The depth-integrated concentration of dissolved oxygen averaged less than 4.0 mg/L during summer stagnation and about 9.0 mg/L during winter circulation.

The occurrence and distribution of dissolved iron and dissolved manganese in Canyon Lake are closely related to the concentration of dissolved oxygen. The concentrations of both constituents in water near the bottom at deep sites increase greatly during summer stagnation. The average summer concentrations of dissolved iron in water near the bottom exceeded $300 \mu g/L$ at all locations and averaged 850 $\mu g/L$ at site D_C during the summer, and the concentrations of dissolved manganese near the bottom averaged from $340 \mu g/L$ at site A_C to $390 \mu g/L$ at site D_C.

The concentrations of total inorganic nitrogen and total phosphorus are relatively low in Canyon Lake. The concentrations of total inorganic nitrogen did not exceed 1.23 mg/L and the concentrations of total phosphorus exceeded 0.08 mg/L in only one sample. The concentrations of total inorganic nitrogen were greater during the winter and spring than during the summer because of greater inflow to the lake during winter and spring. The concentrations of total ammonia increased in the hypolimnion during the summer as nitrates and nitrites were reduced.

The concentrations of dissolved solids generally were slightly higher in deeper water and in the headwaters of the lake during periods of normal inflow. Little seasonal variation was noted in volume-weighted average concentrations of dissolved solids, dissolved chloride, dissolved sulfate, and hardness, but summer concentrations generally were slightly lower. The volume-weighted concentrations of dissolved solids were about 230 mg/L. The volume-weighted concentrations of dissolved from 14 to 20 mg/L, and the volume-weighted average concentrations of dissolved sulfate ranged from 14 to 30 mg/L. The volume-weighted concentrations of dissolved sulfate ranged from 14 to 30 mg/L. The volume-weighted concentrations of dissolved sulfate ranged from 14 to 30 mg/L.

The closure of Canyon Dam resulted in a change in water temperature downstream from the dam. The maximum monthly average water temperature in the Guadalupe River downstream from the dam is now about 19.0°C rather than 29.0°C. The maximum average monthly water temperature now occurs during September-November rather than during June-July, and the minimum average monthly water temperature now occurs during February rather than during December-January.

SELECTED REFERENCES

- Dowell, C. L., and Petty, R. G., 1971, Dams and Reservoirs in Texas, Part 3: Texas Water Devel. Board Rept. 126, 157 p.
- Maclay, R. W., and Rappmund, R. A., 1979, Records of ground-water recharge and discharge for the Edwards aquifer in the San Antonio area, Texas, 1934-77: Edwards Underground Water Dist. Bull. 37, 21 p.
- National Academy of Sciences, National Academy of Engineering, 1973 [1974], Water quality criteria, 1972: U.S. Govt. Printing Office, 594 p.
- Rawson, Jack, 1968, Reconnaissance of the chemical quality of surface waters of the Guadalupe River basin, Texas: Texas Water Devel. Board Rept. 88, 36 p.
- U.S. Army Corps of Engineers, 1949, Canyon Reservoir project—Guadalupe River, Texas, summary of water pressure tests at the Canyon site and the Sattler A, B, C, and F sites: U.S. Army Corps of Engineers.
 - _____ 1974, Report on sedimentation in Canyon Lake, Guadalupe River, Guadalupe River basin, Texas (resurvey of August 1972): Fort Worth, Texas, 13 p.
- U.S. Environmental Protection Agency, 1976 [1977], Quality criteria for water: U.S. Govt. Printing Office, 256 p.

Weast, R. C., 1975, Handbook of chemistry and physics: Cleveland, Ohio, CRC Press, 2350 p.

TABLE 1.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE APRIL 2, 1971

					295206	098115501	SITE AC						
DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHGS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	
APR 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02	0930 0932 0934 0936 0940 0942 0944 0946 0948 0950 0952 0954 0956	1.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100 110 129	380 380 380 380 390 390 390 400 400 400 400 400 400	8.2 8.2 8.2 8.1 8.1 8.1 8.0 8.0 8.0 8.0 8.0	16.0 16.0 15.5 15.5 14.5 13.5 13.0 13.0 13.0 13.0 13.0 13.0 13.0	8.8 8.8 8.8 8.7 7.8 7.8 7.5 7.0 7.0 7.0 7.2	88 88 87 86 81 76 74 74 71 66 66 66	180 190	22	46 49	17 	10 9.2	
DATE	SODIUM AD- SORP- TION RATIO	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, N02+N03 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
APR 02	.3 .3	198 204	19 	17	.2 -	9.1 9.7	216	-10 	.000	.000 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	

295241098132101 -SITE BC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
APR							
02	1015	1.0	380	8.3	16.5	8.5	87
02	1017	5.0	380	8.3	16.5	8.5	87
02	1019	15.0	380	8.3	16.0	8.5	85
02	1021	25.0	380	8.3	16.0	8.5	85
02	1023	35.0	380	8.3	16.0	8.5	85
02	1025	45.0	380	8.2	15.0	7.8	76
02	1027	55.0	390	8.0	14.0	7.4	71
02	1029	65.0	390	8.0	14.0	7.3	70
02	1031	75.0	400	8.0	14.0	7.4	71
02	1033	85.0	400	8.0	14.0	7.4	71
02	1035	95.0	400	8.0	14.0	7.2	69
02	1037	105	400	8.0	14.0	7.2	69
02	1039	115	400	8.0	14.0	7.3	70
02	1041	124	400	8.0	13.5	7.8	74

295240098152001 SITE CC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 02 02 02 02 02 02 02 02 02 02	1100 1102 1104 1106 1108 1110 1112 1114 1116	1.0 5.0 25.0 35.0 45.0 55.0 65.0 75.0	380 380 380 380 380 380 380 390 400 400	8.3 8.4 8.4 8.3 8.3 8.2 8.1 8.1	17.0 16.5 16.5 16.0 16.0 15.5 14.0 12.5	8.7 8.6 8.6 8.5 8.5 8.4 7.4 6.0 6.0	90 89 88 85 85 84 73 58 57	180 200	19 22	 50		11
DATE	SODIUM AD- SORP- TION RATIO	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SI02)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
APR 02 02 02 02 02 02 02 02 02		201	 20	17 		 9.9	230	.10 .10	.000	.030 		

295349098143101 SITE DC

	DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	A T WA	PER- URE, TER G C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	
A	PR										
	02	1135	1.0	380	8.4		16.5	8.6	88		
	02	1137	10.0	380	8.4		16.0	8.6	86	1 <u>2</u> 2	
	02	1139	20.0	380	8.3		16.0	8.6	86		
	02	1141	30.0	380	8.3		16.0	8.5	85		
	02	1143	40.0	390	8.2		14.5	7.6	74		,
	02	1145	50.0	400	8.2		14.0	7.0	67		(
	02	1147	60.0	400	8.1		14.0	6.6	63	1.000	,
		1149	70.0	400	8.1		13.5	6.2	59		
	02	1151	82.0	400	8.1		13.5	6.1	58	200	1
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	SOLVE (MG/L	DI SOL (MG	UM, SODI S- DIS VED SOLV /L (MG	UM, / - SOF ED TI	ON	BICAR BONAT (MG/ AS HCO3	E DIS- L SOLV (MG/	DIS- ED SOLU	E, RI D /ED SC /L (M	UO- DE, DIS- DLVED IG/L S F)
APR											
02		< r .	-				_	05	1	7	
02		e 1 4	-								
02			-	3 							
02			-								
02											
02			-								
02											
02											
02	25	51	1	/	9.7	.3	2	10 20) 1		.2

TABLE 1. -- CHEMICAL-QUALITY SURVEY OF CANYON LAKE APRIL 2, 1971-- Continued

295349098143101 SITE DC--Continued

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
APR								
02			.000	.10	.000		0	0
02								
02							0	0
02							0	0
02							0	0
02							0	0
02							0	0
02							0	0
02	10	228	.000	.20	.000	.020	0	0

295329098151001 SITE EC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
APR							
02	1205	1.0	380	8.4	17.0	8.7	90
02	1207	5.0	380	8.4	17.0	8.6	89
02	1209	15.0	380	8.4	16.5	8.5	87
02	1211	25.0	380	8.4	16.5	8.5	87
02	1213	35.0	380	8.4	16.0	8.3	83
02	1215	45.0	390	8.2	15.0	6.8	67
02	1217	55.0	400	8.1	14.0	6.1	59
02	1219	65.0	400	8.1	13.5	5.7	54
02	1221	75.0	400	8.1	13.5	5.6	53
02	1223	85.0	400	8.1	13.5	5.6	53
02	1225	94.0	390	8.0	13.5	5.4	51

295349098173701 SITE FC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR												
02	1250	1.0	380	8.4	17.0	8.4	87	200	20	50	17	12
02	1252	5.0	380	8.4	17.0	8.4	87					
02	1254	15.0	380	8.4	16.0	8.3	83					
02	1256	25.0	380	8.3	16.0	8.1	81					
02	1258	35.0	400	8.1	15.5	6.5	64					
02	1300	45.0	420	7.8	15.0	4.9	48					
02	1302	65.0	440	7.7	15.0	3.4	33 29	230	35	64	18	16
02	1905	00.0	440		15.0	5.0	23	250	55	04	10	10
DATE	SODIUM AD- SORP- TION RATIO	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (HG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
APR												
02	. 4	213	20	17	.2	7.8	229	.10	.000	.010	0	0
02											0	0
02											0	0
02											0	000000000000000000000000000000000000000
02											0	0
02											0	0
02											0	20
02	.5	242	36	24	.2	18	295	.30	.270	1.800	D	40

TABLE 2.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE JULY 8, 1971

$\label{eq:FT} FT = feet; MICROMHOS = micromhos per centimeter at 25° Celsius; DEG C = degrees Celsius; \\ M = meters; MG/L = milligrams per liter; UG/L = micrograms per liter$

295206098115501 SITE AC

					LJJLUU	050115501	JITE NO					
DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)-	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUL						× 1						
08	1047 1050	1.0	349 354	8.3 8.3	27.5	7.6	95	160	21	37	17	13
08	1050	20.0	354	8.2	27.0	8.0	96					
08	1054	30.0	368	7.8	25.0	5.1	61					
08	1056	35.0	397	7.6	24.0	3.5	41					
08	1058	40.0	397	7.6	20.0	2.7	29					
08	1100	50.0	400	7.7	18.0	3.5	37					
08	1102	55.0	400	7.7	17.0	3.8	39					
08	1104 1106	60.0 70.0	399 400	7.8 7.8	16.5	4.2	43 39					
08	1108	80.0	406	7.8	15.5	3.4	34					
08	1110	90.0	405	7.6	15.0	2.9	28	1. 227				
08	1112	100	407	7.7	15.0	2.9	28					
08	1114	110	410	7.6	15.0	2.3	23					
08	1116	120	406	7.5	15.0	1.6	16					
08	1118	130	413	7.4	14.5	1.0	10					9.5
08	1120	143	411	7.4	14.0	.4	4	200	28	51	18	9.5
DATE	SODIUM AD- SORP- TION RATIO	BICAR BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JUL												
08	. 4	172	18	21	.2	9.6	201	.00	.000	.010	0	0
08											0	0
08					- 22						0	0
08					12			.10	.000	.000		
08			1				N <u>A</u> 12				0	0
08						v (22)					0	Ö
08								.20	.000	.000		
08						S					0	0
08											0	0
08		ಂಗ					277.00				0	0
08		***	1. T			20 70					0	0
08											0	0
08											0	10
08				1212							0	40
08	.3	212	18	20	.2	12	234	.20	.000	.010	0	110
		-16		10			234					

295241098132101	SITE	BC
-----------------	------	----

JUL 08 1146 1.0 355 8.2 28.0 8.2 08 1148 10.0 370 8.2 28.0 8.2 08 1150 20.0 370 8.2 27.5 8.0	LVED ER- ENT TUR- ION)
08 1146 1.0 355 8.2 28.0 8.2 08 1148 10.0 370 8.2 28.0 8.2 08 1150 20.0 370 8.2 27.5 8.0	
08 1148 10.0 370 8.2 28.0 8.2 08 1150 20.0 370 8.2 27.5 8.0	104
	104
	100
08 1152 30.0 370 8.0 25.5 7.0	84
08 1154 35.0 390 7.4 23.0 1.6	18
08 1156 40.0 410 7.4 20.0 1.2	13
08 1158 50.0 410 7.5 18.0 1.4	15
08 1200 60.0 410 7.5 17.0 .8	8
08 1202 70.0 410 7.5 16.0 .2	2
08 1204 80.0 410 7.5 15.0 .2	2
08 1206 90.0 410 7.5 15.0 .2	2
08 1208 100 410 7.5 15.0 .2	2
08 1210 110 410 7.5 15.0 .2	2
08 1213 120 410 7.5 15.0 .2	82222225
08 1215 128 412 7.5 15.0 .5	-

TABLE 2 .-- CHEMICAL-QUALITY SURVEY OF CANYON LAKE JULY 8, 1971--Continued

		110		Entent-de	ALITI JUN		ATON LAKE	0021 0,	1771000	e insea		
					295240	098152001	SITE CC					
DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUL 08 08 08 08 08 08 08 08	1234 1236 1238 1240 1242 1244 1246 1248 1250	1.0 20.0 30.0 35.0 40.0 50.0 60.0 70.0	354 355 356 359 380 399 407 407	8.4 8.3 8.1 7.8 7.4 7.4 7.4 7.4	29.0 28.0 27.0 24.0 21.0 18.0 17.0 16.5	7.5 7.4 6.8 4.9 .4 .2 .2 .3	96 94 84 60 11 4 2 2 3	 200		51	18	9.1
DATE	SODIUM AD- SORP- TION RATIO	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JUL 08 08 08 08 08 08 08 08		 216					233	.10 .20 .00	.000	.000	0 0 0 0 0 0 0 0 0 0	0 10 30 170 330 360 500
					205340	098143101	SITE DC					
DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUL 08 08 08 08 08 08 08 08 08 08 08	1310 1312 1314 1316 1313 1320 1322 1324 1326 1328 1330	$\begin{array}{c} 1.0\\ 10.0\\ 20.0\\ 30.0\\ 35.0\\ 40.0\\ 50.0\\ 60.0\\ 70.0\\ 80.0\\ 87.0\\ \end{array}$	353 351 365 380 393 407 408 410 414 412	8.2 8.3 7.5 7.5 7.5 7.5 7.6 7.6	29.0 28.5 28.0 25.5 23.0 19.5 17.5 17.0 16.0 15.5	8.0 8.0 7.4 4.6 2.0 .2 .2 .2 .2 .3 .5	103 103 94 55 23 2 2 2 2 2 3 5	 200				 9.8
DATE	SODIUM AD- SORP- TION RATIO	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JUL 08 08 08 08 08 08 08 08 08 08 08 08		 218		18		12		.30	.000	.000	0 0 0 0 0 0 10 180 0	0 10 30 270 440 500 460 360

TABLE 2 .-- CHEMICAL-QUALITY SURVEY OF CANYON LAKE JULY 8, 1971--Continued

295329098151001 SITE EC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CEMT SATUR- ATION)
JUL							
08	1345	1.0	349	-8.2	29.5	8.3	108
08	1347	10.0	349	8.2	29.0	8.0	103
08	1349	20.0	370	8.2	28.0	7.3	92
08	1351	30.0	390	7.7	25.5	4.2	51
08	1353	35.0	400	7.4	23.5	1.4	16
08	1355	40.0	415	7.4	20.0	.4	4
08	1357	50.0	415	7.4	17.5	.2	2
08	1359	60.0	415	7.4	17.0	.3	3
08	1401	70.0	415	7.4	16.0	.3	3
08	1403	80.0	415	7.4	15.5	.3	4 2 3 3 3 3 3
08	1405	92.0	416	7.4	15.5	3	3

295349098173701 SITE FC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUL												
08	1430	1.0	348	8.3	29.5	8.4	109	160	20	34	18	14
08	1432	10.0	350	8.3	29.0	8.0	103					
08	1434	20.0	361	8.0	27.5	6.0	75					
08	1436	25.0	360	7.5	27.0	1.7	21					
08	1438	30.0	393	7.4	25.5	.3	3					
08	1440	35.0	410	7.3	23.0	.4	4					
08	1442	40.0	444	7.3	20.5	.2	2					
08	1444	50.0	448	7.2	18.0	.4 .2 .2	2					
08	1446	60.0	440	7.2	17.0	.2	2					
08	1448	65.0	435	7.2	17.0	.2	2	210	18	54	19	11

DATE	SODIUM AD- SORP- TION RATIO	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JUL												
08	.5	170	20	30	.2	8.7	199	.00	.000	.010	0	0
08												10
08											0	70
08								.00	.000	.010		
08											20	210
08								.00	.000	.020		
08											300	380
08											320	430
08											290	400
08	.3	238	14	19	.2	13	248	.10	.000	.010	70	410

TABLE 3.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE FEBRUARY 14, 1974

FT = feet; MICROMHOS = micromhos per centimeter at 25° Celsius; DEG C = degrees Celsius; M = meters; MG/L = milligrams per liter; UG/L = micrograms per liter

295206098115501 SITE AC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
FEB								
14	1030	1.0	418	8.1	13.0	5.5	9.5	90
14	1032	10.0	418	8.1	12.5		9.4	88
14	1034	20.0	418	8.1	12.0		9.2	85
14	1036	30.0	418	8.1	11.5		9.1	83
14	1038	40.0	418	8.1	11.5		9.0	82
14	1040	50.0	418	8.0	11.5		9.0	82
14	1042	60.0	418	8.0	11.5		8.9	81
14	1044	70.0	418	8.0	11.5		8.9	81
14	1046	80.0	418	8.0	11.5		3.8	80
14	1048	90.0	418	7.9	11.5		8.5	77
14	1050	100	418	7.9	11.5		8.0	73
14	1052	110	430	7.8	11.5		7.0	64
14	1054	120	480	7.5	11.5		5.1	46

DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
FEB									
14	200	14	52	16	12	.4	222	16	15
14									
14									
14									
14									
14									
14									
14									
14									
14									
14									
14									
14	230	16	62	18	14	. 4	260	19	16

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
FEB								
14	- 2	10	232	.37	.000	.000	0	0
14								
14								
14					2123			
14								
14								
14				.39	.000	.000	0	0
14								
14								
14								
14								
14								
14	.2	10	271	.79	.000	.000	10	0

295241098132101 SITE BC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
FEB							
14	1120	1.0	418	.8.1	13.0	9.5	90
14	1122	10.0	418	8.1	13.0	9.5	90
14	1124	20.0	418	8.1	12.5	9.5	89
14	1126	30.0	418	8.1	12.0	9.4	87
14	1128	40.0	418	8.1	12.0	9.4	87
14	1130	50.0	418	8.1	11.5	9.3	85
14	1132	60.0	418	8.1	11.5	9.2	84
14	1134	70.0	418	8.1	11.5	9.2	84
14	1136	80.0	418	8.1	11.5	9.0	82
14	1138	90.0	418	8.1	11.5	8.8	80
14	1140	100	418	8.0	11.5	8.6	78
14	1142	110	445	7.8	11.5	6.6	60
14	1144	120	455	7.7	11.5	6.6	60
14	1146	128	471	7.6	11.5	5.2	47

295240098152001 SITE CC

			SPE-					OXYGEN,
			CIFIC			TRANS-		DIS-
			CON-			PAR-		SOLVED
		SAMP-	DUCT-		TEMPER-	ENCY	OXYGEN,	(PER-
		LING	ANCE	PH	ATURE,	(SECCHI	DIS-	CENT
	TIME	DEPTH	(MICRO-	FIELD	WATER	DISK)	SOLVED	SATUR-
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(M)	(MG/L)	ATION)
FEB								
14	1205	1.0	424	8.1	13.5	2.65	9.4	90
14	1207	10.0	424	8.1	12.5		9.4	88
14	1209	20.0	424	8.1	12.5		9.4	88
14	1211	30.0	424	8.1	12.0		9.2	85
14	1213	40.0	424	8.1	12.0		8.9	82
14	1215	55.0	424	8.1	12.0		8.8	81

DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
FEB									
14	200	12	54	16	13	.4	230	17	14
14									
14		222							
14									
14									
14	200	11	53	16	12	.4	228	16	14

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
FEB		10	0.20	25	000	010		
14	.2	10	239	.35	.000	.010	0	0
14								0
14				.38	.000	.000	0	0
14								
14								
14	. 2	10	235	.34	.000	.040	10	0

295349098143101 SITE DC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
FEB								
14	1230	1.0	424	8.1	14.5	5.8	9.4	91
14	1232	10.0	424	8.1	13.5		9.4	90
14	1234	20.0	424	8.1	13.5		9.4	90
14	1236	30.0	424	8.1	13.0		9.4	89
14	1238	40.0	424	8.1	12.5		9.4	88
14	1240	50.0	424	8.1	12.0		9.3	86
14	1242	60.0	424	8.1	12.0		9.1	84
14	1244	70.0	424	8.1	12.0		9.0	83
14	1246	80.0	424	8.1	12.0		8.5	79

TABLE 3.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE FEBRUARY 14, 1974--Continued

295349098143101 SITE DC--Continued

I

DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
FEB									
14	200	13	53	16	12	.4	226	16	15
14									
14									
14									
14									
14			ಾಗ ಸ	55			1000		
14									
14									
14	200	11	53	16	14	. 4	228	17	15

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
FEB								
14	.2	10	235	.38	.000	.010	0	0
14			-					
14		100.0						
14								
14				.40	.000		0	0
14								
14								0
14								
.14	.2	10	239	.33	.000	.020	0	0

295329098151001 SITE EC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
FEB							
14	1310	1.0	425	8.1	13.5	9.5	90
14	1312	10.0	425	8.1	13.0	9.5	90
14	1314	20.0	425	8.1	12.5	9.5	89
14	1316	30.0	425	8.1	12.5	9.4	88
14	1318	40.0	425	8.1	12.0	9.3	86
14	1320	50.0	425	8.1	12.0	9.2	85
14	1322	60.0	425	8.1	12.0	9.1	84
14	1324	70.0	425	8.1	12.0	8.9	82
14	1326	80.0	425	8.1	12.0	8.8	81
14	1328	90.0	425	8.0	12.0	0.9	74
14	1330	101	425	8.0	12.0	8.0	74

295349098173701 SITE FC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	CXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
FEB								
14	1400	1.0	455	8.0	15.0	4.6	9.2	90
14	1402	10.0	455	8.0	14.0		9.2	88
14	1404	20.0	455	8.0	13.5		9.2	88
14	1406	30.0	455	8.0	12.0		8.8	81
14	1408	40.0	470	8.0	12.0		8.8	81
14	1410	50.0	470	7.9	12.0		8.7	81
14	1412	60.0	480	7.9	12.0		8.5	79
14	1415	70.0	480	7.9	12.0		8.4	78

TABLE 3.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE FEBRUARY 14, 1974--Continued

295349098173701 SITE FC--Continued

DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
FEB									
14	220	21	59	18	9.9	.3	244	18	15
14									
14									
14									
14									
14									
14									
14	230	16	62	18	14	.4	260	19	16
			SOL	IDS,			- CC		

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
FEB								
14	- 2	9.6	253	.67	.000	.010	0	0
14								
14								
14				.73	.000	.000	0	0
14								
14								
14								
14	.2	9.7	271	.91	.000	.010	40	0

TABLE 4.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE MAY 3, 1974

FT = feet; MICROMHOS = micromhos per centimeter at 25° Celsius; DEG C = degrees Celsius; M = meters; MG/L = milligrams per liter; UG/L = micrograms per liter

295206098115501 SITE AC

DAT	E ,	TIME		(MICRO-	PH	WATER		OXYGEN, DIS- SOLVED (MG/L)	SATUR-
MAY									
03.		1030	1.0	397	8.2	23.0	2.93	8.4	97
03.		1032	10.0	397	8.2	22.5		8.4	95
03.		1034		397		21.0		8.4	
03.		1036	30.0	405		20.0		8.1	88
03.		1038	40.0	405	8.0	19.0		7.8	
03.		1040	50.0	420	8.0	18.5		7.4	79
03.		1042	60.0	431	8.0	17.0		6.8	
03.		1044	70.0	431	7.9	15.5		6.8	67
03.		1046	80.0	431	7.9	15.0		6.6	65
03.		1048	90.0	431	7.9	14.5		6.4	62
03.		1050	100	431	7.9	14.5		6.3	61
03.		1052	110	431	7.8	14.5		5.9	57
03.		1054	120	431	7.7	14.5		4.4	43
03.		1056	130	431		14.0		3.6	35
03.		1058	140	431	7.6	14.0		3.6	35
03.	••	1100	150	431	7.6	14.0		3.6	35
		HARD-		MAGNE		SOD		AS-	
1	HARD-	NESS,	, CALCI	UM SIUM	, SODIUM			UM, BICA	R- SULFATE

DATE	NESS (MG/L AS CACO3)	NONCAR- BONATE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SORP- TION RATIO	DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS HC03)	DIS- SOLVED (MG/L AS SO4)
MAY									
03	190	18	48	16	9.3	.3	2.1	204	17
03									
03									
03									
03									
03									
03									
03									
03									
03									
03									
03									
03									
03									
03									
03	210	26	57	16	9.0	.3	2.0	222	20

CHLO- SILICA, SUM OF NITRO- NITRO- RIDE, DIS- CONSTI- GEN, GEN, PHOS- IRON DIS- SOLVED TUENTS, NO2+NO3 AMMONIA PHORUS, DIS SOLVED (MG/L DIS- TOTAL TOTAL TOTAL SOLV (MG/L AS SOLVED (MG/L (MG/L (MG/L DATE AS CL) SIO2) (MG/L) AS N) AS N) AS P) AS F	ED SOLVED L (UG/L
MAY	
03 15 11 219 .24 .170 .010	10 0
03	
03	
03	
0322010	
	10 10
03	
03	
03	
03	
0318 .150 .020	10 10
00111	
03	
0.5111	
03	
03 21 11 245 .35 .120 .050	10 30

TABLE 4.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE MAY 3, 1974--Continued

295241098132101 SITE BC

DATE	₹ TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY							
03	1130	1.0	396	8.2	23.0	8.2	94
03	1132	10.0	396	8.2	22.5	8.2	93
03	1134	20.0	396	8.2	21.0	8.2	91
03	1136	30.0	405	8.2	20.5	8.1	89
03	1138	40.0	405	8.2	19.5	8.0	86
03	1140	50.0	431	8.1	18.0	6.9	73
03	1142	60.0	431	7.9	16.5	5.8	59
03	1144	70.0	431	7.9	16.5	4.8	49
03	1146	80.0	431	7.9	16.5	4.1	42
03	1148	90.0	431	7.8	16.0	4.1	41
03	1150	100	431	7.8	15.5	3.6	36
03	1152	110	431	7.8	15.0	3.6	35
03	1154	120	431	7.7	15.0	3.0	29
03	1156	130	431	7.7	15.0	2.5	25

295240098152001 SITE CC

	TIME	SAMP- LING DEPTH	SPE- CIFIC CON- DUCT- ANCE (MICRO-	PH FIELD	TEMPER- ATURE, WATER	TRANS- PAR- ENCY (SECCHI DISK)	OXYGEN, DIS- SOLVED	OXYGEN, DIS- SOLVED (PER- CENT SATUR-
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(M)	(MG/L)	ATION)
MAY								
03	1200	1.0	396	8.3	23.0	2.01	8.3	95
03	1202	10.0	396	8.2	22.0	(8.3	94
03	1204	20.0	396	8.2	21.5		8.0	90
03	1206	30.0	405	8.1	20.5		6.9	76
03	1208	40.0	410	7.9	20.0	- 14 A	4.4	48
03	1210	50.0	431	7.7	18.0		2.8	29
03	1212	60.0	431	7.7	17.5		2.4	25

DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
MAY									
03	190	21	48	17	9.3	.3	2.0	206	17
03									22
03									
03			5.5 0						
03	2 713								
03		25.5							
03	210	24	56	17	9.4	.3	2.2	227	18

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAY 03	16	11	222	.28	.120	.010	0	0
03								
03			-	.19	.160	.020	0	0
03		9.20						
03				.28	.180	.020	0	10
03								
03	16	12	243	.28	.210	.020	20	40

TABLE 4.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE MAY 3, 1974--Continued

DATE	TIME	SAMP- LING DEPTH (M (FT) N	PE- IFIC ON- UCT- NCE IICRO- FHOS) (U	PH IELD 1 NITS) (1	EMPER- ATURE, (WATER DEG C)	TRANS- PAR- ENCY SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY 03 03 03 03 03 03 03 03 03	1230 1232 1234 1236 1238 1240 1242 1244 1246	1.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 84.0	401 401 401 410 429 429 429 429	8.2 8.2 8.2 8.1 7.9 7.8 7.7 7.7	23.5 23.0 22.0 20.5 19.5 18.0 16.5 16.0 16.0	2.01	8.0 8.0 8.0 7.2 5.7 3.6 2.6 2.3	93 91 88 77 60 37 26 23
HARD NESS (MG/ AS DATE CACO	HARD- NESS NONCAI BONATI (MG/I 3) CACO	, CALCIUM R- DIS- E SOLVED L (MG/L 3) AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	SODIU AD- SORP- TION RATIO	M POT SI DI SOL (MG) AS	AS- UM, BICA S- BONA VED (MG /L A K) HCC	AR- SULFATE DIS- G/L SOLVED S (MG/L D3) AS SO4)
MAY 03 03 03 03 03 03 03 03 03 03 03 03 2	90 3	14 48	17	9.0		3 3	2.1	214 18
03		26 57				:		
03				-	: :	2	22 in 1	
03						-		
03 2	10		17	9.0	-	-	2.0	227 17
		SILICA, SU DIS- CO SOLVED TU (MG/L AS S SIO2) (
MAY 03	16	10 	226	.25	.140	.030	0	0
03								
03				.19	.180	.020		0
03				.17	.150	.030		0
03	16	12	242	35	050	030	10	40
03***	10		2953290981			.030	10	40
			SPE-				OXYG	EN.
DATI	TIME	SAMP- LING DEPTH (FT)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER ATURE WATER (DEG C	- OXYGE , DIS , SOLV) (MG/	DI	S-
MAY 03. 03. 03. 03. 03. 03. 03. 03. 03. 03.	1315 1317 1327 1327 1327 1327 1327 1329 1329 1330 1330 1330	1.0 10.0 20.0 30.0 40.0 50.0 50.0 70.0 80.0 90.0 100	430 430 430 430 430 430 430 430 430 430	8.2 8.2 8.1 8.1 7.7 7.7 7.7 7.7 7.7	23. 22. 21. 20. 19. 18. 16. 15. 15. 15.	555500555555	3.0 3.0 7.7 .4 5.9 3.7 3.4 5.9 5.7 3.4 5.9 5.7 8.4 5.9 5.7 8.0 5.0 5.0	93 91 95 79 62 38 34 31 30 30

TABLE 4.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE MAY 3, 1974--Continued

295349098173701 SITE FC

	DATE	1	TIME	DE	MP- ING PTH FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	FIE (UNI		TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN,	D SO (P C SA	GEN, IS- LVED ER- ENT TUR- ION)
	AY 03 03 03 03 03 03		1400 1402 1404 1406 1408 1410 1412 1414		1.0 20.0 30.0 40.0 50.0 60.0 74.0	443 443 400 280 250 270 462 462		8.1 8.1 7.8 7.8 7.8 7.8 7.6 7.6	24.0 22.5 21.0 20.0 20.0 19.5 17.5 17.0	1.40	7.0 4.9 5.4 5.6 4.4 1.0		85 80 54 59 61 47 10 8
DATE	NE (M	RD- ISS IG/L IS ICO3)	HAF NES NONO BONA (MG CAC	AR-	CALC DIS SOL (MG	IUM S - D VED SO /L (M	GNE- IUM, IS- LVED G/L MG)	SODIU DIS- SOLVE (MG/ AS N	IM, SO D T L RA	AD- S RP- D ION SO TIO (M	IS- BON LVED (M G/L	AR- IATE IG/L AS (03)	SULFATE DIS- SOLVED (MG/L AS SO4)
MAY 03		220		26	5	6	19	.,		.3	1.9	234	19
03		220		20	5		19				1.9	234	19
03													
03													
03													
03													
03													
03		220		17	6	1	17	9	. 4	.3	1.8	250	17
	DATE	RI DI SC (M	HLO- IDE, IS- DLVED MG/L	DI SOI (MI	LVED G/L S	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	GE NO2+ TOT (MG	AL /L	NITRO- GEN, AMMONIA TOTAL (MG/L	PHOS- PHORUS, TOTAL (MG/L	SOLVED (UG/L	NE D SO (U	NGA- SE, IS- LVED G/L
	DATE	AS	S CL)	511	02)	(MG/L)	AS	N)	AS N)	AS P)	AS FE)	AS	MN)
М	AY												
	03		18	1	10	250		.28	.190	.020	20)	0
	03												
	03												
	03							.49	.160	.080	50		0
	03												
	03							.38	.060	.080			
	03		16			256		.33	.090	.070	170		0

.

- 31 -

TABLE 5.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE SEPTEMBER 25, 1974

295206098115501 SITE AC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEPPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
SEP								
25	1045	1.0	350	7.8	23.0	4.7	7.7	89
25	1047	10.0	350	7.8	23.0		7.4	85
25	1049	20.0	350	7.8	23.0		7.2	83
25	1051	30.0	350	7.8	23.0		7.1	82
25	1053	40.0	350	7.7	23.0		7.0	80
25	1055	50.0	350	7.7	23.0		6.8	78
25	1057	60.0	350	7.0	22.5		5.8	66
25	1059	70.0	400	7.0	21.0		.55.55	6
25	1101	80.0	410	7.0	19.5		.5	5
25	1103	90.0	415	6.9	19.0		.5	5
25	1105	100	420	6.9	18.5		.5	5
25	1107	110	420	6.9	18.0		.5	66 6 5 5 5 5 5 5 5
25	1109	120	433	6.9	17.5		.5	5

	HARD-	HARD- NESS.	CALCIUM	MAGNE- SIUM.	SODIUM,	SODIUM AD-	POTAS- SIUM.	BICAR-	SULFATE
	NESS	NONCAR-	DIS-	DIS-	DIS-	SORP-	DIS-	BONATE	DIS-
	(MG/L	BONATE	SOLVED	SOLVED	SOLVED	TION	SOLVED	(MG/L	SOLVED
	AS	(MG/L	(MG/L	(MG/L	(MG/L	RATIO	(MG/L	AS	(MG/L
DATE	CAC03)	CAC03)	AS CA)	AS MG)	AS NA)	101110	AS K)	HCO3)	AS \$04)
							1		
SEP									
25	160	19	38	17	8.5	.3	2.2	178	16
25									
25									
25	(
25									
25									
25									
25									
25									
25									
25									
25									
25	220	23	57	18	12	. 4	2.4	236	13

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
SEP								
25	13	11	193	.17	.060	.010	20	0
25					(*.*			
25								
25								
25								
25				.17	.060	.010	30	0
25								
25				.11	.130	.010	20	90
25								
25								
25								
25								
25	18	13	251	.02	.400	.020	360	450

295224098115901 SITE AL

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
SEP							
25	1300	1.0	350	7.9	23.0	7.0	80
25	1302	10.0	350	7.9	23.0	7.0	80
25	1304	20.0	350	7.9	23.0	6.9	79
25	1306	30.0	350	7.9	23.0	6.8	78
25	1308	40.0	350	7.9	23.0	7.0	80
25	1310	50.0	350	7.9	23.0	6.9	79
25	1312	60.0	350	7.9	22.5	6.8	77
25	1314	70.0	370	7.2	22.0	.6	7

TABLE 5.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE SEPTEMBER 25, 1974--Continued

295241098132101 SITE BC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
SEP							
25	1345	1.0	350	7.9	23.0	8.4	97
25	1347	10.0	350	7.9	23.0	8.3	95
25	1349	20.0	350	7.9	23.0	8.2	94
25	1351	30.0	350	7.9	23.0	8.0	92
25	1353	40.0	350	7.9	23.0	7.8	90
25	1355	50.0	350	7.9	23.0	7.4	85
25	1357	60.0	360	7.3	22.0	2.0	23
25	1359	70.0	400	7.2	21.0	.5	6
25	1401	80.0	410	7.1	20.0	.4	6 4 4
25	1403	90.0	415	7.1	19.0	.4	4
25	1405	100	425	7.1	18.5	.4	4
25	1407	110	425	7.1	18.0	.4	4
25	1409	123	425	7.0	18.0	.4	4

295240098152001 SITE CC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
SEP								
25	1425	1.0	355	8.0	23.0	2.19	8.5	98
25	1427	10.0	355	7.9	23.0		8.5	98
25	1429	20.0	355	7.9	23.0		8.5	98
25	1431	30.0	355	7.9	22.5		8.5	97
25	1433	40.0	355	7.9	22.5		8.0	98 97 91
25	1435	55.0	355	7.9	22.5		8.0	91

DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
SEP									
25	160	17	38	17	8.7	.3	2.1	180	17
25									
25									
25									
25									
25	170	18	42	16	8.3	.3	2.1	186	17

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
SEP								
25	14	11	197	.13	.080	.030	40	0
25								
25								
25				.12	.080	.010	40	0
25								
25	14	11	202	.11	.100	.010	20	30

TABLE 5.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE SEPTEMBER 25, 1974--Continued

295349098143101 SITE DC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
SEP												
25	1615	1.0	- 343	7.9	22.5	7.0	08	160	17	39	16	8.4
25	1617	10.0	343	7.9	22.5	6.8	77					
25	1619	20.0	343	7.9	22.5	6.4	73					
25	1621	30.0	343	7.9	22.5	6.4	73					
25	1623	40.0	343	7.8	22.5	6.3	72					
25	1625	50.0	343	7.8	22.5	5.7	65					
25	1627	60.0	343	7.3	22.0	5.7	65					
25	1629	70.0	410	7.6	21.0	1.0	11					
25	1631	80.0	430	7.1	20.0	.9	10					
25	1633	90.0	432	7.0	19.5	.9	10	200	.0	52	17	9.2
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
SEP												
25	.3	2.0	178	17	15	11	196	.18	.060	.010	20	40
25												
25												
25												
25									070	010	50	0
25								.18	.070	.010		-
25											300	F 70
25								.00	.840	.020		570
25									1 100		610	560
25	.3	2.0	250	8.0	15	15	243	.00	1.100	.060	610	550

295329098151001 SITE EC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
SEP							
25	1700	1.0	358	7.9	22.5	7.7	88
25	1702	10.0	358	7.9	22.5	7.7	88
25	1704	20.0	358	7.9	22.5	7.6	86
25	1706	30.0	358	7.9	22.5	7.6	86
25	1708	40.0	358	7.9	22.5	7.5	85
25	1710	50.0	358	7.7	22.5	6.8	77
25	1712	60.0	379	7.5	21.5	5.7	64
25	1714	70.0	420	7.1	20.5	.5	5
25	1716	80.0	440	7.1	19.5	.4	4
25	1718	90.0	459	7.1	19.5	.4	64 5 4 4
25	1720	98.0	459	7.1	19.0	.4	4

295349098173701 SITE FC

......

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
SEP								
25	1800	1.0	381	7.9	22.5	1.40	8.0	91
25	1802	10.0	381	7.9	22.5		7.9	90
25	1304	20.0	381	7.9	22.5		7.8	89
25	1806	30.0	381	7.9	22.5		7.7	88
25	1808	40.0	400	7.8	22.0		7.6	86
25	1810	50.0	437	7.7	22.9		7.6	88 86 86
25	1812	60.0	437	7.7	22.0		5.5	62
25	1814	72.0	437	7.7	22.0		5.5	62

295349098173701 SITE FC--Continued

DATE	HARD- NESS (MG/L AS CACO3	HARD- NESS, NONCAP BONATE (MG/L) CACO3	CALCI - DIS- SOLV (MG/	UM SI DI ED SOL L (MG		UM, A S- SOR VED TI	ND- SI RP- DI ION SOL	IS- BOI VED (M G/L	ATE 1G/L AS	SULFATE DIS- SOLVED (MG/L AS SO4)
SEP 25	17	0 1	2 39	1	8	8.9	.3	2.1	195	17
25	- 11 I		-							
25	-									
25	-		-							
25	-	-	-							
25	-	-0	-						•••	
25	-									
25	21	0 1	7 55	1	7	8.1	.2	2.2	232	17
DA	1		DIS-	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	SOL (UG	E, S- VED /L
SEF		1923	100	0.00	100					
	i	15	12	208	.29	.090	.030	20		0
					1			-		
25	 							0.00		
	5									
	5				.52	.110	.020	80		0
						.110	.020			
	····	14	13	241	.55	.120	.050	20		20

TABLE 6.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE FEBRUARY 20, 1975

$\label{eq:FT} FT = feet; MICROMHOS = micromhos per centimeter at 25° Celsius; DEG C = degrees Celsius; \\ M = meters; MG/L = milligrams per liter; UG/L = micrograms per liter$

295206098115501 SITE AC

DATE	TIME	SAMP LIN DEPT (FT	C0 - DU IG AN H (MI	FIC N- CT- CE CRO- F	PH IELD NITS)	TEMPER- ATURE, WATER (DEG C)	TRAI PA EN (SEC DIS (M	R- CY OXY CHI D K) SO	GEN, IS- LVED IG/L)	OXYGEI DIS- SOLVI (PER- CEN SATUI ATIO	ED H	HARD- IESS MG/L AS (AC03)
FEB 20	1522 1524 1528 1530 1532 1534 1536 1538 1540 1542 1544 1546	10 20 30 40 50 60 70 80		401 401 400 400 400 400 400 400 400 400	8.4 8.3 8.3 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	13.5 13.5 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0		.9 	99999999986666 99999999866666 99999999866666 9999999866666 9999999866666 99999998666666 99999998666666 99999999		93 94 93 94 91 91 91 91 91 91 91 91 91 91 91 91 91	190 180
DATE	HARD- NESS, NONCAR BONATE (MG/L CACO3	CALCI DIS- SOLV (MG/	UM S D1 ED S01 L (MC	VED SO	IS-	SODIUM AD- SORP- TION RATIO	POTA SIL DIS SOLV (MG) AS	JM, BIC S- BON VED (M	ATE G/L AS	SULFAT DIS- SOLVE (MG/L AS SO4	TE R D ED S	HLO- IDE, IS- OLVED MG/L (S CL)
FEB		6 49		6	8.5	.3	<u> </u>	2.4	210	19		15
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	1		L. 1		8.5 					19		15
20	•	-									-	
20		-										
20	-	-									-	
20	-										-	
20	-	e 18									-	
20	-	-									-	
20	-										-	
20	-	-									-	
20	-	-									-	
20	1	0 49		5	8.7	.3	2	2.5	212			14
				SOLIDS		0.7.						
ſ		FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SI02)	SUM OF CONSTI- TUENTS DIS- SOLVEI	- GE , NO2- , TO1 D (MO	FNO3 AMM TAL TO G/L (M	EN, IONIA	PHOS- PHORUS, TOTAL (MG/L AS P)	D S 01 (U	ON, IS- LVED G/L	MANGA NESE, DIS- SOLVE (UG/L AS MN	D
	EB 20	.2	9.6	223	3	.34	.360	.000		20		0
	20		9.6		-		.360				-	-
-	20											
	20		::		-						-	
2	20			-	-						-	
2	20			-	÷3.						-	
4	20				1		.110	.000		10		
	20										-	
	20			-								
4	20				-						-	-
2	20				-						-	
2	20	.2	 9.4	22	1	.35	.080	.020		10		
4		• 4	9.4	22.		.35	.000	.020		10		0

TABLE 6.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE FEBRUARY 20, 1975--Continued

295241098132101 SITE BC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
FEB							
20	1620	1.0	405	8.0	13.5	9.0	86
20	1622	10.0	405	8.1	13.5	9.0	86
20	1624	20.0	405	8.0	13.5	9.0	86
20	1626	30.0	403	8.1	13.5	9.2	88
20	1628	40.0	400	8.1	13.5	9.2	88
20	1630	50.0	400	8.0	13.0	9.2	87
20	1632	60.0	400	8.0	13.0	9.0	85
20	1634	70.0	400	8.0	13.0	8.8	83
20	1636	80.0	400	8.0	13.0	8.4	79
20	1638	90.0	405	7.8	13.0	8.2	77
20	1640	100	408	7.0	13.0	7.9	75
20	1642	110	420	7.0	12.5	7.0	65
20	1644	120	450	7.0	12.5	7.0	65
20	1646	130	450	7.0	12.5	7.0	65

295240098152001 SITE CC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
FEB 20 20 20 20 20 20 20 20	1705 1707 1709 1711 1713 1715 1717 1719	$ \begin{array}{c} 1.0\\ 10.0\\ 20.0\\ 30.0\\ 40.0\\ 50.0\\ 60.0\\ 66.0\\ \end{array} $	413 413 411 409 409 407 407	8.0 8.0 8.0 8.0 7.9 7.8 7.8	13.5 13.5 13.0 13.0 13.0 13.0 13.0 13.0	3.1	8.3 8.2 8.0 7.9 7.8 7.8 7.8 7.8	79 78 77 75 75 74 74 74	200
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
FEB 20 20 20 20 20	14 	54	16	8.0	.2	2.6	228	17	14
20 20 20	18	52	 16	 8.8		2.5	217	18	

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
FEB								
20	.2	9.3	234	.36	.180	.000	10	0
20								
20		-+						
20	22			.38	.220	.000	10	0
20								
20	22	220		1.200	1212	5 <u>2</u> 222	22	<u>0.0</u> 23
20	.2							
20	- 2	9.4	228	.36	.110	.000	10	0

TABLE 6.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE FERRUARY 20, 1975--Continued

DATE	TIME	SAMP- C LING / DEPTH (M		PH FIELD	TEMPER- ATURE, WATER (DEG C)	OVVCEN	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
FEB 20 20 20 20 20 20 20 20 20 20 20	1730 1732 1734 1736 1738 1740 1742 1744 1746 1748	1.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 92.0	440 440 430 420 414 414 422 480 547	8.0	13.5 13.5 13.5	8.8 8.6 8.6 8.4 8.0 8.0 7.8 8.0	84 82	220 270
HARD- NESS NONCAF BONATE (MG/L DATE CACO3	CALCIU - DIS- SOLVE (MG/L	MAGNE- M SIUM, DIS- D SOLVED (MG/L	SODIUM DIS- SOLVED (MG/L	SODI , AD SORF TIC RATI)- SIL D- DIS IN SOLV	IM, BICAR 5- BONAT 1ED (MG/ 1L AS	E DIS- L SOLV (MG/	DIS- ED SOLVED L (MG/L
20 20 20 20 20 20 20 20				-				
DATE	RIDE, DIS- SOLVED (MG/L	DIS- CO SOLVED TU (MG/L	DNSTI- JENTS, N DIS- GOLVED	NITRO- GEN, 02+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
FEB 20 20 20 20 20 20 20 20 20 20	.2 	9.4	247	.49 .41 .80	.280	.010	20 10 10	0
			29532909	8151001	SITE EC			
DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO MHOS)	PH - FIEL		E, DIS R SOLV	- CEN ED SATU	ED T R-

DATE	TIME	SAMP- LING DEPTH (FT)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)
FEB							
20	1800	1.0	450	8.0	13.5	8.8	84
20	1802	10.0	450	8.0	13.5	8.8	84
20	1804	20.0	450	8.0	13.5	8.8	84
20	1806	30.0	448	8.0	13.5	8.6	82
20	1808	40.0	442	8.0	13.5	8.4	80
20	1810	50.0	440	7.8	13.0	8.0	75
20	1812	60.0	440	7.8	13.0	8.0	75
20	1814	70.0	456	7.8	13.0	7.8	74
20	1816	80.0	495	7.8	13.0	7.8	74
20	1818	94.0	540	7.7	13.0	8.0	75

TABLE 6. -- CHEMICAL-QUALITY SURVEY OF CANYON LAKE FEBRUARY 20, 1975-- Continued

295349098173701 SITE FC

DATE	ТІМЕ	SAM LI DEP (F	NG ANC TH (MIC	IC T- E RO- FI	PH ELD	EMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
FEB 20 20 20 20 20 20 20 20	1827 1829 1831 1833 1835	1 2 3 4 5 6	0.0 0.0 0.0 0.0 0.0 0.0	565 565 540 532 532 550 562	7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	14.5 14.5 14.0 14.0 13.5 13.5 13.5 13.5	1.37	8.0 8.0 8.0 7.8 7.2 7.0 8.0	78 78 77 77 74 69 67 76	290
DATE	HARD- NESS, NONCAR BONATE (MG/L CACO3	- DIS SOL	- DI VED SOL /L (MG	UM, SOD S- DI VED SOL /L (M		SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
FEB										
20	-	6 8	-	-	9.0	.2	1.9	322	20	15
20		-							12	
20										
20		-								
20		-								
20		-								
20	2	2 8	5 1	9	8.5	.2	2.0	327	20	14
	-			SOLIDS.						
		FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITR GEN NO2+N TOTA (MG/ AS N	GI 103 AMM L TO L (MI	DNÍA PHO TAL TO G/L (M	DRUS, DTAL SI MG/L (1	RON, NE DIS- D DLVED SO UG/L (U	NGA- SE, IS- LVED IG/L MN)
F	EB									
	20	.2	10	318	1.	1	.130	.000	80	0
	20								77	
	20						.200	.010	10	0
	20									
	20									
	20									
	20	.2	11	321			.040	.010	10	0

TABLE 7. -- CHEMICAL-QUALITY SURVEY OF CAMYON LAKE MAY 22, 1975

FT = feet; MICROMHOS = micromhos per centimeter at 25° Celsius; DEG C = degrees Celsius; M = meters; MG/L = milligrams per liter; UG/L = micrograms per liter

295206098115501 SITE AC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	PA EN (SEC DIS	CHI D K) SO	GEN,	VYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
MAY 22		1.0 20.0 30.0 40.0 50.0 70.0 80.0 90.0 100 110 120 135	397 400 415 415 415 415 415 415 415 420 425 428	7.8 7.8 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	24.5 24.0 23.5 22.0 19.5 18.5 17.5 17.5 17.5 18.5 18.5 17.5 18.5 17.5 18.5 17.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18			7.54 7.43 6.88 6.7 6.7 6.5 5.1 8 4.8 3.8	89 87 85 77 76 74 72 71 62 57 53 51 42 40	190 210
DATE	HARD-	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	SI DI SOL	UM, BIC S- BON VED (M	ATE D G/L S AS (ULFATE DIS- SOLVED (MG/L S SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22		50 56	16 16	9.2 9.1			2.0	224	19 19	15 16
D	R I D S 0 (M	IS- SOL LVED (MO G/L AS	ICA, SUM S- CON LVED TUE G/L D S SO	STI- G NTS, NO2 IS- TO LVED (M	EN, PHO3 AM TAL T IG/L (NUNIA	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVE (UG/L AS FE	NES D1 D SOL (UC	VED
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y 2	.2 	9.6	231	.57	.080	.000			0

295224098115901 SITE AL

SAMP- DUCT- TEMPER- OXYGEN, LING ANCE PH ATURE, DIS- TIME DEPTH (MICRO- FIELD WATER SOLVED DATE (FT) MHOS) (UNITS) (DEG C) (MG/L)	CENT SATUR- ATION)
MAY	
22 1030 1.0 400 7.8 24.5 7.7	92
22 1032 10.0 400 7.8 24.5 7.7	92
22 1034 20.0 400 7.8 23.0 7.4	85
22 1036 30.0 405 7.7 22.5 7.2	82
22 1038 40.0 410 7.7 21.5 7.0	79
22 1040 50.0 415 7.7 20.5 7.0	77
22 1042 60.0 415 7.7 19.5 6.9	74
22 1044 70.0 415 7.8 18.5 6.6	70
22 1046 80.0 415 7.8 18.0 6.5	68
22 1048 90.0 415 7.8 17.5 6.3	66
22 1050 100 415 7.8 17.5 5.8	60
22 1052 115 420 7.7 17.5 4.8	50

295241098132101 SITE BC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
MAY								
22	1115	1.0	400	7.9	24.5	7.6	90	
22	1117	10.0	400	7.9	24.0	7.6	89	
22	1119	20.0	400	7.9	24.0	7.5	88	
22	1121	30.0	405	7.8	23.5	7.5	87	
22	1123	40.0	415	7.7	21.0	6.7	74	
22	1125	50.0	420	7.7	20.5	6.2	68	
22	1127	60.0	420	7.7	19.5	6.2	67	
22	1129	70.0	420	7.6	18.5	4.9	52	
22	1131	80.0	420	7.7	18.5	4.4	47	
22	1133	90.0	420	7.7	18.5	4.4	47	
22	1135	100	420	7.6	17.5	3.6	38	
22	1137	110	420	7.6	17.5	3.6	38	
22	1139	120	420	7.6	17.0	3.2	33	
22	1141	132	420	7.6	16.5	2.3	23	

295240098152001 SITE CC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
MAY									
22	1200	1.0	406	8.0	25.5	2.44	7.7	93	190
22	1202	10.0	410	7.9	25.0		7.7	92	
22	1204	20.0	410	7.9	24.0		7.5	88	
22	1206	30.0	410	7.8	24.0		6.0	71	
22	1208	40.0	420	7.5	21.5		2.7	30	
22	1210	54.0	422	7.6	21.0		2.4	27	210

DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY 22	13	50	17	9.7	.3	2.1	222	20	16
22	13	50	17						
22									
	550								
22			1000						
22									
22	10	56	17	9.3	.3	2.0	244	19	15

TABLE 7 .-- CHEMICAL-QUALITY SURVEY OF CANYON LAKE MAY 22, 1975-- Continued

295240098152001 SITE CC--Continued

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UC/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAY								
22	2	9.4	234	.55	.010	.000	20	10
22								
22								
22				.53	.040	.000	20	10
22				.50	.020	.000	10	20
22	• 2	11	250	.48	.110	.040	40	40

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
MAY 22 22 22 22 22 22 22 22 22 22	1230 1232 1234 1236 1238 1240 1242 1244 1246	1.0 10.0 20.0 40.0 50.0 60.0 70.0 86.0	410 410 410 420 430 435 435 435 436	7.9 7.9 7.6 7.6 7.7 7.7 7.7	25.5 25.0 24.0 21.5 20.5 19.5 19.0 18.0	2.68	7.8 7.7 7.5 5.3 4.8 3.8 2.7 2.0	94 93 92 88 60 53 41 29 21	190 220
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY 22 22 22 22 22 22 22 22 22 22	12 		17 	9.8 9.7	.3 .3	2.1	220 245	20	15
D/	R S	IDE, DI DIS- SO OLVED (M MG/L A	LVED TUER G/L DI S SOI	OF NI STI- G NTS, NO2 IS- TO LVED (M	EN, G +NO3 AMM TAL TO G/L (M	ONÍA PHO TAL TO G/L (M	IRUS, D TAL SO IG/L (U	ON, NE IS- D LVED SOI G/L (U	NGA- SE, IS- LVED S/L MN)
222222222222222222222222222222222222222	Y 2 2 2 2 2 2 2	.2	9.6 11	231	.58	.010	-000 -000 	20	0 10 30

TABLE 7.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE MAY 22, 1975--Continued

295329098151001 SITE EC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY							
22	1300	1.0	410	7.9	25.5	7.5	90
22	1302	10.0	410	7.9	25.0	7.4	88
22	1304	20.0	420	7.8	25.0	7.2	86
22	1306	30.0	450	7.7	24.5	6.8	81
22	1308	40.0	450	7.4	23.0	4.1	47
22	1310	50.0	450	7.4	20.5	3.8	42
22	1312	60.0	450	7.5	19.5	3.8	41
22	1314	70.0	435	7.6	18.5	3.8	40
22	1316	80.0	440	7.6	18.0	3.4	36
22	1318	90.0	430	7.6	18.0	3.0	32
22	1320	101	430	7.6	19.0	2.8	30

295349098173701 SITE FC

MAY 22 1400 1.0 437 7.9 26.0 1.83 7.4 90 220 22 1402 10.0 438 7.9 26.0 7.3 89 22 1404 20.0 440 7.9 25.0 7.3 89 22 1404 20.0 440 7.9 25.0 7.2 86 22 1408 40.0 285 7.4 22.0 5.0 57 22 1410 50.0 260 7.4 22.0 5.0 56 22 1412 60.0 245 7.5 21.5 5.0 56 22 1414 75.0 505 7.4 21.0 - BOMATE DIS- DIS- DIS- BOMATE DIS- DIS- DIS- DIS- DIS-	DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
22 1400 1.0 437 7.9 26.0 1.83 7.4 90 220 22 1402 10.0 438 7.9 26.0 7.3 89 22 1404 20.0 440 7.9 25.0 7.3 89 22 1406 30.0 460 7.6 24.0 5.2 61 22 1406 30.0 260 7.4 22.0 5.0 57 22 1410 50.0 260 7.4 22.0 5.0 56 22 1414 75.0 505 7.4 21.0 -8 9 250 HARD- MAGNE- SOUWED SOUWED SUUP, AD- BUARE SULFATE RIDE, DIS- DIS	MAY									
22 1404 20.0 440 7.9 25.0 7.2 86 22 1406 30.0 460 7.6 24.0 5.2 61 22 1406 30.0 460 7.6 24.0 5.0 57 22 1410 50.0 285 7.4 22.0 5.0 57 22 1410 50.0 245 7.5 21.5 5.0 56 22 1414 75.0 505 7.4 21.0 .8 9 250 HARD- MAGNE- SODIUM POTAS- SULFATE RIDE, DIS- D		1400	1.0	437	7.9	26.0	1.83	7.4	90	220
22 1406 30.0 460 7.6 24.0 5.2 61 22 1408 40.0 285 7.4 22.0 5.0 57 22 1410 50.0 260 7.4 22.0 5.0 57 22 1412 60.0 245 7.5 21.5 5.0 56 22 1414 75.0 505 7.4 21.0 .8 9 250 HARD- MAGNE- SODIUM, AD- SIUM, BICAR- SULFATE CHLO- NESS, CALCIUM SIUM, SODIUM, AD- SULFATE DIS- MG/L AS (MG/L MG/L (MG/L MG/L	22	1402	10.0	438	7.9	26.0		7.3	89	
22 1408 40.0 285 7.4 22.0 5.0 57 22 1410 50.0 260 7.4 22.0 5.0 57 22 1410 50.0 245 7.5 21.5 5.0 56 22 1414 75.0 505 7.4 21.0 .8 9 250 HARD- MAGNE- SODIUM, AD- SUM, BICAR- SULFATE RIDE, DIS- DIS- BONATE DIS- DIS- BONATE DIS- DIS- BONATE DIS- DIS- BONATE DIS- DIS- DIS- BONATE DIS- SOLVED (MG/L AS (MG/L AS (MG/L AS SOLVED (MG/L AS									86	
22 1410 50.0 260 7.4 22.0 5.0 57 22 1412 60.0 245 7.5 21.5 5.0 57 22 1412 60.0 245 7.5 21.5 5.0 56 22 1414 75.0 505 7.4 21.0 8 9 250 HARD- MAGNE- SODTUM, SODTUM, AD- STUM, BICAR- SULFATE RIDE, DIS- DIS- <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.2</td><td></td><td></td></td<>								5.2		
22 1412 60.0 245 7.5 21.5 5.0 56 22 1414 75.0 505 7.4 21.0 .8 9 250 HARD- MAGNE- SODIUM, SODIUM, AD- SIUM, BICAR- SULFATE RIDE- NONCAR- DIS- DIS- DIS- SORP- DIS- BONATE DIS- DIS- BONATE SOLVED SOLVED SOLVED TION SOLVED (MG/L SOLVED SOLVED DATE CACO3) AS CA) AS MG) AS NA) AS K) HCO3) AS SO4) AS CL) MAY 22 18 57 18 10 .3 1.9 242 20 16 22									57	
22 1414 75.0 505 7.4 21.0 .8 9 250 HARD- NESS, NONCAR- BONATE MAGNE- DIS- DIS- DIS- BONATE SODIUM SOLVED SODIUM SOLVED POTAS- SORP- SORP- DIS- BONATE CHLO- SULFATE CHLO- RIDE, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-										
HARD- NESS, NONCAR- BONATE MAGNE- SIUM, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-										
NESS, CALCIUM SIUM, SIUM, SODIUM, AD- NONCAR- BONATE SUDFATE RIDE, DIS- DIS- SOLVED DIS- DIS- TIS- TIS- BONATE DIS- DIS- DIS- DIS- SOLVED DIS- DIS- TIS- TIS- BONATE DIS- DIS- DIS- DIS- DIS- SOLVED DIS- DIS- TIS- DIS- TIS- SOLVED DIS- TIS- TIS- TIS- TIS- SOLVED DIS- TIS- TIS- TIS- TIS- SOLVED DIS- TIS- TIS- TIS- TIS- TIS- TIS- TIS- T	22	1414	75.0	505	7.4	21.0		.8	9	250
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DATE	NESS, NONCAR- BONATE (MG/L	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	AD- SORP- TION	SIUM, DIS- SOLVED (MG/L	BONATE (MG/L AS	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L
22 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
22		18	57	18	10	.3	1.9	242	20	16
22			1.000							
22 22										
22			244							
22										
22 8 66 20 11 .3 2.2 292 20 15	22	8	66	20	11	.3	2.2	292	20	15

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAY								
22	.2	11	253	.68	.020	.010	30	10
22								
22		0.77.7						
22				.58	.060	.000	40	0
22								ಂಗಾಗ
22								
22				.38	.110	.070	80	50
22	.2	12	291	.52	.140	.020	70	350

TABLE 8.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE AUGUST 20, 1975

FT = feet; MICROMHOS = micromhos per centimeter at 25° Celsius; DEG C = degrees Celsius; M = meters; MG/L = milligrams per liter; UG/L = micrograms per liter

295206098115501 SITE AC

DATE	TIME	DE	MP- ING PTH FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	P FIE (UNI		TEMPE ATUR WATE (DEG	E, R	TRA PA EN (SEC DIS (M	R- CY C CHI K)	DIS- SOLVED (MG/L)	OXYGE DIS SOLV (PER CEN SATU ATIO	ED T R-	HARD- NESS (MG/L AS CACO3)
AUG 20	1100 1102 1104 1106 1108 1110 1112 1114 1116 1118 1120 1122 1124	1	1.0 10.0 20.0 30.0 50.0 50.0 50.0 50.0 90.0 90.0 00 10 18	373 373 373 410 444 444 444 444 460 460 492		8.3 8.3 8.2 7.5 7.5 7.5 7.5 7.4 7.4 7.1		0005505000	3	.8	7.3 7.2 7.0 1.6 1.6 1.6 1.6 1.6 1.6		94 92 90 38 20 19 19 19 19	180
DATE	HARD- NESS, NONCAR BONATE (MG/L CACO3	- DI 50 (M	CIUM S- LVED G/L CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG AS	ED /L	SODI AC SORP TIC RATI	- N	POT SI DI SOL (MG AS	UM, B S- B VED /L	ICAR- ONATE (MG/L AS HCO3)	SULFA DIS- SOLV (MG/ AS SO	ED	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
AUG 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20			43	18		9.4		.3		1.8	194 288			15 13
D		FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILI DIS- SOL (MG) AS SIO	CA, SUM - CON VED TUE /L D SO	IDS, OF STI- NTS, IS- LVED G/L)		AL G/L	NIT GE AMMO TOT (MG AS	N, NIA AL /L	PHOS PHORU TOTA (MG/ AS P	S, D L SO L (U	ON, IS- LVED G/L FE)	MAN NES DI SOL (UG AS	E, S- VED /L
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IG 10 10 10	.2		0 	209		.31 .31 .52		000	.0	30 40 40	10 130 0		10

20	• 4	10	209		+000	.030	10	10
20								
20								
20				.31	.000	.040	130	0
20				.52	.000	.040	0	10
20								
20								
20								
20								
20								
20								
20								
20	.2	13	275	.00	.030	.040	250	280

295224098115901 SITE AL

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
AUG							
20	1220	1.0	373	8.2	30.5	7.1	93
20	1222	10.0	373	8.2	30.0	7.1	93
20	1224	20.0	373	8.3	29.5	7.1	92
20	1226	30.0	373	8.0	29.0	6.5	83
20	1228	40.0	410	7.5	28.5	3.5	45
20	1230	50.0	444	7.5	28.0	1.9	24
20	1232	60.0	444	7.4	27.5	1.8	22
20	1234	70.0	444	7.4	26.5	1.7	21
20	1236	80.0	444	7.4	26.0	1.7	21
20	1238	90.0	444	7.4	25.0	1.7	20
20	1240	100	460	7.4	24.5	1.7	20
20	1242	115	460	7.4	24.5	1.7	20

TABLE 8.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE AUGUST 20, 1975--Continued

295241098132101 SITE BC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
AUG							
20	1315	1.0	373	7.9	30.5	6.7	88
20	1317	10.0	373	7.9	30.5	6.7	88
20	1319	20.0	373	7.9	30.0	6.5	86
20	1321	30.0	380	7.6	29.5	6.0	78
20	1323	40.0	430	7.2	28.5	1.9	24
20	1325	50.0	458	7.1	28.0	1.6	20
20	1327	60.0	458	7.1	27.5	1.6	20
20	1329	70.0	458	7.1	26.5	1.6	20
20	1331	80.0	458	7.1	26.5	1.6	20
20	1333	90.0	458	7.1	26.0	1.6	20
20	1335	100	480	7.1	25.0	1.6	19
20	1337	110	490	7.0	25.0	1.6	19
20	1339	125	518	6.9	25.0	1.6	19

295240098152001 SITE CC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
AUG 20 20 20 20 20	1415 1417 1419 1421 1423 1425	1.0 10.0 20.0 30.0 40.0 50.0	373 373 373 380 410 432	8.2 8.2 7.9 7.4 7.4 7.4	31.0 30.0 29.0 29.0 30.5	2.16	6.4 6.0 4.0 2.0 1.8	85 84 79 51 26 24	190 200
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
AUG 20 20 20 20 20 20	19 8	41 51	18 18	9.2 9.1	.3	1.8	192 236	15 13	15 15
	RI	DE, DI IS- SO	ICA, SUM S- CON	STI- G NTS, NO2	EN, G +NO3 AMM	ONÍA PHO	IRUS, D	ON, NE IS- D	NGA- SE, IS-

DATE	SOLVED (MG/L AS F)	(MG/L AS SIO2)	DIS- SOLVED (MG/L)	TOTAL (MG/L AS N)	TOTAL (MG/L AS N)	TOTAL (MG/L AS P)	SOLVED (UG/L AS FE)	SOLVED (UG/L AS MN)
AUG								
20	.2	10	205	.25	.000	.030	30	0
20								
20				.25	.000	.040	20	0
20								
20				.01	.080	.030	110	160
20	.2	12	237	.00	.070	.030	110	170

- 45 -

TABLE 8.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE AUGUST 20, 1975--Continued

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
AUG 20 20 20 20 20 20 20 20 20 20 20	1440 1442 1444 1446 1448 1450 1452 1454 1455 1455	1.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 88.0	367 367 367 470 470 479 479	8.2 8.1 7.4 7.3 7.3 7.3 7.2 7.2	31.0 29.5 29.5 28.0 28.5 28.0 27.5 26.5 26.5	2.23	6.5 6.4 6.0 2.0 1.8 1.8 1.8 1.8	87 83 87 26 25 22 22 22 22 21	170
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
AUG 20 20 20 20 20 20 20 20 20 20 20	17 0	39 62		9.3 9.6		1.9 1.9			
D	R I D S O	IS- SI	ICA, SUM	NTS. ND2	+NU3 AMM	IONIA PHO	DRUS. D	ON, NE	NGA- SE, IS- LVED G/L MN)
	G 0 0 0 0 0 0 0 0.		10 15	203	.21 .25 .53 .00	.000	.040 .040 .040 .040 	10 40 80 1600	0 30 50 340
	DATE	TIME		953290981 SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	РН	TEMPER- ATURE, WATER	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	AUG 20 20 20 20 20 20 20 20 20 20 20 20	1530 1532 1534 1536 1538 1540 1542 1544 1546 1548 1550	1.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100	367 367 367 470 480 480 480 480 480 559 559	8.2 8.2 8.1 7.9 7.5 7.4 7.4 7.3 7.1 7.0 6.9	30.0 29.5 29.0 28.0 27.0 26.5 26.5 25.5 25.5	7.0 6.7 6.3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	92 87 82 81 25 25 25 24 24 24 24	

TABLE 8.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE AUGUST 20, 1975--Continued 295349098173701 SITE FC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRAI PA EN (SEC DIS (M	R- CY OXYI CHI D K) SOI	D SO GEN, (P IS- C LVED SA	GEN, IS- LVED HARD- ER- NESS ENT (MG/L TUR- AS ION) CACO3)
AUG 20 20 20 20 20 20 20 20	1600 1602 1604 1606 1608 1610 1612 1614	1.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0		8.3 8.2 8.1 7.7 7.4 7.2 7.2 7.1	30.5 30.0 30.0 29.5 28.5 27.5 27.0 27.0	1.	.71 	6.8 6.6 5.1 4.5 2.2 2.0 2.0 2.0	89 170 87 80 58 28 25 25 25 25 25 270
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POT SIU DI SOLV (MG) AS I	JM, BIC/ S- BON/ VED (MI /L	ATE DI G/L SOI AS (M	CHLO- FATE RIDE, S- DIS- LVED SOLVED G/L (MG/L SO4) AS CL)
AUG 20 20 20 20	14	39	18	9.8	.3	1		192	16 16
20 20 20			20	11	.3	1	2.1		12 17
D/	R S((1	IDE, D DIS- S DLVED (1 MG/L	LICA, SUM IS- CON DLVED TUE MG/L D AS SC	ISTI- NTS, NO IS- TO LVED (M	EN, (2+NO3 AM)TAL TO IG/L ()	ITRO- GEN, MONIA DTAL MG/L G N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
20 20 20 20 20 20	G D D D D D D D D.	.2 .2	11 15	207 315	.16 .21 .80 	.000	.020 .040 .040	130 40 60 580	0 10 60

- 47 -

TABLE 9.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE JANUARY 9, 1976

295206098115501 SITE AC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JAN 09 09 09 09 09 09 09 09 09 09 09 09 09	1115 1117 1119 1121 1123 1125 1127 1129 1131 1133 1135 1137 1139 1141	1.0 10.0 20.0 30.0 40.0 50.0 50.0 70.0 80.0 90.0 100 110 120 128	416 416 416 416 416 416 416 416 416 416	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	3.4	9 • 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	55555555555555555555555555555555555555	200
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JAN 09 09 09 09 09 09	23	49 	19	10	.3	2.0	216	18	16
09 09 09 09 09		50	 19	10		2.0	214	18	 16

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN								
09	.2	12	233	.29	.010	.000	10	0
09								
09								
09								
09								
09								
09				.29	.010	.000	60	0
09								
09								
09								
09								
09								
09								
09	.2	12	233	.29	.000	.010	30	0

295148098115201 SITE AR

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)
JAN							
09	1200	1.0	416	8.1	12.0	9.3	86
09	1202	10.0	416	8.1	12.0	9.3	86
09	1204	20.0	416	8.1	12.0	9.3	86
09	1206	30.0	416	8.1	12.0	9.3	86
09	1208	40.0	416	8.1	12.0	9.2	85
09	1210	50.0	416	8.1	12.0	9.2	85
09	1212	60.0	416	8.1	12.0	9.2	86
09	1214	70.0	416	8.1	12.0	9.4	87

TABLE 9.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE JANUARY 9, 1976--Continued

295241098132101 SITE BC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN							
09	1445	1.0	416	8.1	11.5	9.5	86
09	1447	10.0	416	8.1	11.5	9.5	86
09	1449	20.0	416	8.1	11.5	9.5	86
09	1451	30.0	416	8.1	11.5	9.5	86
09	1453	40.0	416	8.1	11.5	9.5	86
09	1455	50.0	416	8.1	11.5	9.5	86
09	1457	60.0	416	8.1	11.5	9.5	86
09	1459	70.0	416	8.1	11.5	9.5	86
09	1501	80.0	416	8.1	11.5	9.5	86
09	1503	90.0	416	8.1	11.5	9.5	86
09	1505	100	416	8.1	11.0	9.5	86
09	1507	110	416	8.1	11.0	9.5	86

295240098152001 SITE CC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JAN									
09 09 09 09 09 09	1245 1247 1249 1251 1253 1255	1.0 10.0 20.0 30.0 40.0 50.0	416 416 416 416 416 416	8.1 8.1 8.1 8.1 8.1 8.1	11.5 11.5 11.5 11.0 10.5 10.5	3.8	9.5 9.6 9.6 9.8 9.9	86 87 86 88 88	200
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JAN									
09	26	50	19	10	.3	2.2	216	19	16
09									
09									
09									
09				10	.3	2.0	216	19	16
09	31	52	19	10	- 3	2.0	210	19	10

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN						1000		-
09	.2	12	235	.29	.010	.000	50	0
09								
09				.17	.010	.000	10	
09								
09								
09	.2	12	237	.13	.010	.010	110	10

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	DXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JAN									
09	1315	1.0	416	8.1	11.5	4.1	9.5	86	200
09	1317	10.0	416	8.1	11.5		9.6	87	
09	1319	20.0	416	8.1	11.0		9.6	86	
09	1321	30.0	416	8.1	11.0		9.6	86	
09	1323	40.0	416	8.1	11.0		9.6	86	
09	1325	50.0	416	8.1	11.0		9.6	86	
09	1327	60.0	416	8.1	11.0		9.6	86	
09	1329	70.0	416	8.1	11.0		9.6	86	
09	1331	84.0	416	8.1	11.0		9.6	86	200

TABLE 9.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE JANUARY 9, 1976--Continued

295349098143101 SITE DC--Continued

DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JAN									
09	24	50	19	10	.3	1.9	218	18	16
09									
09									
09									
09									
09									
09									
09									
09	22	49	19	10	.3	1.9	218	18	16

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN								
09	.2	12	235	.11	.010	.000	0	0
09								
09								
09								
09				.14	.000	.000	150	10
09								
09								
09								
09	.2	12	234	.10	.010	.010	0	0

295329098151001	SITE	EC	
SPE-			

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN							
09	1345	1.0	420	8.1	11.5	9.4	85
09	1347	10.0	420	8.1	11.5	9.4	85
09	1349	20.0	420	8.1	11.5	9.4	85
09	1351	30.0	420	8.1	11.0	9.4	85
09	1353	40.0	420	8.1	11.0	9.4	85
09	1355	50.0	420	8.1	11.0	9.4	85
09	1357	60.0	420	8.1	11.0	9.4	85
09	1359	70.0	420	8.1	11.0	9.4	85
09	1401	80.0	420	8.1	11.0	9.4	85
09	1403	90.0	420	8.1	11.0	9.4	85
09	1405	100	420	8.1	11.9	9.5	86

295349098173701 SITE FC

			SPE-					OXYGEN,	
			CIFIC			TRANS-		DIS-	
			CON-			PAR-		SOLVED	HARD-
		SAMP-	DUCT-		TEMPER-	ENCY	OXYGEN.	(PER-	MESS
		LING	ANCE	PH	ATURE,	(SECCHI	DIS-	CENT	(MG/L
	TIME	DEPTH	(MICRO-	FIELD	WATER	DISK)	SOLVED	SATUR-	AS
DATE	1.116	(FT)	MHOS)	(UNITS)	(DEG C)	(M)	(MG/L)	ATION)	CACO3)
JAN									
09	1415	1.0	431	8.1	10.5	2.53	9.7	87	210
09	1417	10.0	431	8.1	10.5		9.7	87	
09	1419	20.0	431	8.1	10.5		9.7	87	
09	1421	30.0	431	8.1	10.0		9.7	85	
09	1423	40.0	431	8.1	10.0		9.6	85	
09	1425	50.0	431	8.1	10.0		9.6	85	
09	1427	60.0	431	8.1	10.0		9.6	85	
09	1429	70.0	431	8.1	10.0		9.5	84	210

			295349	098173701	SITE FC-	-Continu	ed		
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JAN									
09	23	51	19	10	3	1.9	222	18	16
09									
09									
09									
09									
09									
09									
09	20	51	19	11	.3	1.9	226	18	17
D	RI D SO (M	UO- SILI DE, DIS IS- SOL LVED (MG G/L AS F) SIO	CA, SUM - CON VED TUE /L D SO	IDS, OF NIT STI- GE NTS, NO2+ IS- TOT LVED (MG G/L) AS	N, GE NO3 AMMO AL TO1 /L (MG	NÍA PHO AL TO G/L (M	RUS, D TAL SO G/L (U	ON, NES IS- DI LVED SOL G/L (UG	IS- VED

.010

.18 .17 .17 .010 .010 .010

0

0

JAN 09... 09... 09... 09... 09... 09... 09...

12 ------12

.2 ----.3 233

TABLE 10.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE MAY 19, 1976

FT = feet; MICROMHOS = micromhos per centimeter at 25° Celsius; DEG C = degrees Celsius; M = meters; MG/L = milligrams per liter; UG/L = micrograms per liter

295206098115501 SITE AC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG [°] C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACC3)
MAY 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19	1030 1032 1034 1036 1038 1040 1042 1044 1046 1048 1050 1052 1054 1055	1.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100 110 120 134	387 387 387 387 387 387 387 400 400 400 407 407 407	8.3 8.3 8.2 8.1 8.0 8.0 8.0 7.7 7.7 7.7	22:0 21.5 21.0 19.0 17.5 17.0 16.5 15.5 15.0 15.0	5.2	8.5 8.4 7.8 6.3 6.3 6.3 6.3 4.6 4.3 3.6	97 97 94 87 87 71 665 64 54 65 46 35 35	190 200
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY									
19	22	46	18	10	.3	1.9	203	18	17
19									
19	•••								
19									
19									
19									
19									
19	122								
19									
19									
19									
19	23	48	19	10	.3	1.8	214	19	17
19	23	48	19	10	. 3	1.8	214	19	17

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAY								
19	.2	11	222	.20	.000	.000	20	20
19								
19								
19								
19								
19								
19				.15	.000	.000	10	20
19								
19								
19								
19								
19								
19								
19	.2	12	233	.32	.020	.000	120	20

295148098115201 - CANYON LAKE SITE AR

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVED (PER- CENT SATUR- ATION)
MAY							
19	1130	1.0	387	8.3	22.0	8.6	98
19	1131	10.0	387	8.3	21.5	8.6	97
19	1132	20.0	387	8.3	21.0	8.4	93
19	1133	30.0	387	8.2	20.0	7.6	83
19	1134	40.0	387	8.1	20.0	7.1	77
19	1135	50.0	387	8.0	19.5	6.7	72
19	1136	60.0	387	8.0	18.0	6.5	68
19	1137	70.0	400	8.0	17.5	6.5	68
19	1138	82.0	400	7.9	17.5	6.2	65

295241098132101 SITE BC

DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY							
19	1145	1.0	387	8.3	22.5	8.5	97
19	1147	10.0	387	8.3	22.0	8.5	97
19	1149	20.0	387	8.2	21.5	8.4	94
19	1151	30.0	387	8.2	21.0	7.9	88
19	1153	40.0	387	7.8	20.0	6.0	65
19	1155	50.0	387	7.8	19.0	6.0	64
19	1157	60.0	387	7.8	18.0	5.6	59
19	1159	70.0	407	7.7	17.5	5.0	52
19	1201	80.0	407	7.6	16.5	4.0	41
19	1203	90.0	407	7.6	16.0	3.0	30
19	1205	100	407	7.5	16.0	2.7	27
19	1207	110	407	7.5	16.0	2.6	26
19	1209	128	407	7.4	15.5	2.5	25

295240098152001 SITE CC

	TIME	SAMP- LING DEPTH	SPE- CIFIC CON- DUCT- ANCE (MICRO-	PH FIELD	TEMPER- ATURE, WATER	TRANS- PAR- ENCY (SECCHI DISK)	OXYGEN, DIS- SOLVED	OXYGEN, DIS- SOLVED (PER- CENT SATUR-	HARD- NESS (MG/L AS
DATE		(FT)	MHOS)	(UNITS)	(DEG C)	(M)	(MG/L)	ATION)	CAC03)
MAY 19 19 19 19 19	1245 1247 1249 1251 1253 1255	1.0 10.0 20.0 30.0 40.0 53.0	403 403 403 403 412 412	8.4 8.4 8.3 8.2 8.0 7.8	23.5 23.0 22.0 21.5 21.0 21.0	2.19	8.4 8.4 8.1 7.3 5.9 3.8	98 97 92 82 66 42	200
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY									
19	27	47	19	10	.3	1.8	206	18	17
19									
19									
19									
19	24	49	18	9.9	.3	1.8	210	18	17
D)	RI D SO (M	DE, DI IS- SO LVED (M G/L A	ICA, SUM S- CON LVED TUE G/L D S SO	STI- G NTS, NO2 IS- TO LVED (M	EN, G +NO3 AMM TAL TO G/L (M	ONIA PHO TAL TO G/L (M	DRUS, D DTAL SO 1G/L (U	ON, NE IS- D LVED SO G/L (U	NGA- SE, IS- LVED G/L MN)

	100 C 10		41	1.00	20120 000	0.2420 100-00	1885 N. 50	053-0407-025
MAY								
19	. 3	10	225	.21	.010	.000	20	10
19								
19								
19				.22	.010	.000	10	20
19								
19	.3	11	229	.24	.010	.020	10	20

			SPE- CIFIC CON-			TRANS- PAR-		DIS- SOLVED	HARD-
DATE	TIME	SAMP- LING DEPTH (FT)	DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	ENCY (SECCHI DISK) (M)	DXYGEN, DIS- SOLVED (MG/L)	(PER- CENT SATUR- ATION)	NESS (MG/L AS CACO3)
MAY									
19	1300	1.0	400	8.4	22.5	4.3	8.4	95	200
19	1302	10.0	400	8.4	22.5		8.4	95	
19	1304	20.0	400	8.3	22.0		8.2	93	
19	1306	30.0	400	8.3	21.5		7.7	87	
19	1308	40.0	400	8.2	21.0		7.0	78	
19	1310	50.0	400	7.9	19.0		4.7	50	
19	1312	60.0	400	7.8	18.0		3.7	39	
19	1314	70.0	400	7.7	17.5		2.5	26	
19	1316	85.0	410	7.7	17.5		1.2	12	200

TABLE 10.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE MAY 19, 1976--Continued

			295349	098143101	SITE DO	Contin	ued		
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIC	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L	SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY 19			19	10	.3	1.9		18	17
19 19									
19 19									
19 19									
19 19			19	10	.3	1.9			17
D	R I C SO (M	UO- SIL DE, DI IS- SOI LVED (MO IG/L A F) SIO	G/L D	IDS, OF NI STI-GI NTS, NO2- IS-TO LVED (M G/L) AS	+NU3 AMP	UNIA PH	URUS, U	ON, NE	LVED G/L
MA 1	Y 9	•2	11	225	.28	.000	.000	20	10
1	9			225					
1	9						.000	10	20
1	9				-28	.000	.000	20	50
1	9	 .3	12	235		.020		20	90
1. .									
			2	953290981	51001 SI	TE EC			
	DATE	TIME	SAMP- LING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	CENT SATUR-	
	MAY 19	1330	1.0	400	8.4	22.5	8.4	95	
	19	1332	10.0	400	8.4	22.5	8.3	94 94	
	19	1336	30.0	400	8.2	21.5	7.5	84 64	
	19	1340	50.0	410	7.8	19.5	4.4	47	
	19	1344	70.0	410	7.8	17.5	3.9	41	
	19 19	1330 1332 1334 1336 1338 1340 1342 1344 1346 1348 1350	90.0 102	410 410	7.6 7.6	16.5	8.4 8.3 7.5 5.8 4.4 4.0 3.9 2.8 1.9 1.3	19 18	
				953490981					
			SPE-					OXYGEN,	
DATE	TIME	SAMP- LING DEPTH (FT)	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
MAY 19	1400	1.0	427	8.3	23.5	2.44		97	200
19	1402 1404	10.0 20.0	427 427	8.3	23.5 23.0		8.3	97 94	
19	1406 1408	30.0 40.0	427 427	8.0	21.5 21.0		3.7	62 41	
19	1410 1412	50.0	427 410	7.5	20.0		1.6	27 17	
19	1414	74.0	388	7.4	18.0		.2	2	190

- 54 -

TABLE 10.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE MAY 19, 1976--Continued

295349098173701 SITE FC--Continued

			23	553450501	/3/01 31	12 1001	Jucinueu			
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	SOL (MG)	IUM S D VED SOI /L (M	IS- DI VED SOL G/L (M	IUM, S- SO VED T	AD- RP- ION SO TIO (1	DIS- BO DLVED (1 MG/L	NATE MG/L AS	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY										
19	18	5	1 1	18	10	3	1.9	224	18	16
19										
19		6								
19		N								
19		-								
19										
19										
19	15	5	1 1	15	8.3	.3	2.1	212	13	13
D	R S (LUO- IDE, DIS- OLVED MG/L S F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL	NITRO GEN, AMMONI/ TOTAL (MG/L AS N)	PHOS-	, DI SOL (UG	N, NES S- D VED SOL /L (UC	NGA- SE, IS- LVED G/L MN)
MA										
	9	.2	11	237	.27	.010	.00	0	10	10
	9							-		
	9									
	9				.37	.030			10	20
	9									17
	9				-28	.010			0	60
	9									
1	9	.2	11	218	.20	.170	.01	0	60	240

TABLE 11.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE SEPTEMBER 9, 1976

FT = feet; MICROMHOS = micromhos per centimeter at 25° Celsius; DEG C = degrees Celsius M = meters; MG/L = milligrams per liter; UG/L - micrograms per liter

295206098115501 SITE AC

DATE	TIME	SAM- PLING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
SEP 09 09 09 09 09 09 09 09 09 09 09 09 09 09	1015 1017 1019 1021 1023 1025 1027 1029 1031 1033 1035 1037 1039	1.0 10.0 20.0 30.0 40.0 60.0 70.0 80.0 90.0 100 110 127	351 351 360 400 418 418 418 418 418 418 418 418	8.4 8.3 8.3 7.65 7.5 7.5 7.5 7.5 7.4 7.4 7.3	28.5 28.0 27.5 27.0 25.5 24.5 22.0 22.5 22.0 21.5 21.0 19.5	4.5	8.2 8.8 7.6 6 1.8 4 .2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	106 106 100 85 23 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	170 200
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
SEP									
09	25	37	18	9.8	.3	1.9	170	18	16
09									
09									
09									
09									
09									
09									
09									
09									
09									
09									
09	20	52	18	9.8	.3	1.9	224	13	16

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
SEP								
09	.2	11	197	.02	.000	.010	20	10
09								
09								
09				.02	.000	.000	10	10
09								
09				.23	.000	.000	40	20
09								
09								
09								
09								
09								
09								
09	.2	13	235	.00	.170	.020	430	300

295148098115201 SITE AR

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
SEP							
09	1050	1.0	351	8.4	28.5	8.2	106
09	1052	10.0	351	8.4	28.5	8.2	106
09	1054	20.0	351	8.3	28.5	8.1	105
09	1056	30.0	360	8.2	28.0	6.8	87
09	1058	40.0	400	7.6	27.0	1.8	23
09	1100	50.0	418	7.6	26.0	1.1	14
09	1102	60.0	418	7.5	25.0	.2	14 2 2
09	1104	74.0	418	7.5	24.0	.2	2

295241098132101 SITE BC

DATE	TIME	SAM- PLING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
SEP							
09	1115	1.0	351	8.3	29.5	7.8	103
09	1117	10.0	351	8.3	29.0	7.8	103
09	1119	20.0	351	8.3	28.5	7.6	99
09	1121	30.0	360	8.1	28.5	5.3	69
09	1123	40.0	410	7.6	27.0	.6	8
09	1125	50.0	410	7.5	26.0	.2	2
09	1127	60.0	420	7.5	24.5	.2	2
09	1129	70.0	420	7.4	23.5	.2	2
09	1131	80.0	420	7.3	22.5	.2	2
09	1133	90.0	440	7.3	22.0	.2	2
09	1135	100	450	7.2	21.5	.2	2
09	1137	110	458	7.2	21.0	.2	822222222222222222222222222222222222222
09	1139	122	458	7.2	20.5	.2	2

				29524009	8152001	SITE CC			
	DATE	TIME	SAM- PLING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH FIELD (UNITS)	TEMPER- ATURE, WATER (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
5	EP			19. Jacob 1971 (04 FTF #1				
	09	1145	1.0	359	8.4	30.5	2.13	7.4	99
	09	1147	10.0	359	8.4	29.0		7.8	103
	09	1149	20.0	359	8.2	28.5		6.2	81 46
	09	1151	30.0	359	7.9	28.0		.2	40
	09	1153	40.0	390 420	7.5	27.5		.2	3 3
	09	1155 1157	50.0	420	7.4	26.5		.2	3
	09	1137	54.0	420		2010			
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE	
SEP		12		422	100				10
09	170	23	0.5	18	10	.3			
09	2.50								
09									
									141
09		15	50	18	9.6	.3	1.9	224	13

CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
16	11	201	.01	.000	.000	60	10
				(
	() _						
				.140	.010	70	130
15	14	232	.00	.260	.010	270	200
	RIDE, DIS- SOLVED (MG/L AS CL) 16	RIDE, DIS- DIS- SOLVED SOLVED (MG/L AS AS CL) SIO2) 16 11	RIDE, DIS- CONSTI- DIS- SOLVED TUENTS, SOLVED (MG/L) DIS- (MG/L) AS SOLVED AS CL) SIO2) (MG/L) 16 11 201	RIDE, DIS- CONSTI- GEN, DIS- SOLVED TUENTS, N02+N03 SOLVED (MG/L DIS- TOTAL (MG/L AS SOLVED TOTAL (MG/L AS SOLVED (MG/L AS CL) SIO2) (MG/L) AS N) 16 11 201 .01	RIDE, DIS- CONSTI- GEN, GEN, DIS- SOLVED TUNTS, NO2+NO3 AMMONIA SOLVED MG/L DIS- TOTAL TOTAL (MG/L AS SOLVED MG/L TOTAL (MG/L AS SOLVED (MG/L MG/L AS CL) SIO2) (MG/L) AS N) AS N) 16 11 201 .01 .000	RIDE, DIS- CONSTI- GEN, GEN, GEN, PHOS- DIS- SOLVED TUENTS, NO2+NO3 AMMONIA PHORUS, SOLVED (MG/L DIS- TOTAL TOTAL TOTAL (MG/L AS SOLVED (MG/L MG/L (MG/L MG/L AS CL) SIO2) (MG/L) AS N) AS N) AS P) 16 11 201 .01 .000 .000	RIDE, DIS- CONSTI- GEN, GEN, PHOS- IRON, DIS- SOLVED TUENTS, NO2+NO3 AMMONIA PHORUS, DIS- SOLVED (MG/L DIS- TOTAL TOTAL TOTAL SOLVED (MG/L AS SOLVED (MG/L) AS N) AS P) 16 11 201 .01 .000 .000 60

TABLE 11.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE SEPTEMBER 9, 1976--Continued

DA	TE	TIME	SAM- PLING DEPTH (FT)	SPE- CIFI CON- DUCT ANCE (MICR MHOS	C - 0- F	PH IELD NITS)	TEMP ATU WAT (DEG	JRE, TER	TRAN PAR ENC (SECCH DISK) (M)	Y OXY HI D SO	(GEN, DIS- DLVED (G/L)	D SO (P C SA	GEN, IS- LVED ER- ENT TUR- ION)	
09 09 09 09 09		1215 1217 1219 1221 1223 1225 1227 1229	1.0 10.0 20.0 30.0 40.0 50.0 60.0 71.0	3 3 4 4 4	56 56 60 70 50 50 58 58	8.4 8.3 8.3 8.0 7.5 7.5 7.4 7.3		30.0 29.5 29.0 28.5 27.5 26.5 25.0 25.0		28	7.4 7.4 6.6 4.2 .2		99 97 87 55 3 2 2	
DATE	HARD NESS (MG/ AS CACO	- NE NON L BON	CAR- D ATE S G/L (LCIUM IS- OLVED MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	DI SOL (M	IUM, S- VED G/L NA)	SOF	AD- RP- ION 5 FIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BOI FET	CAR- NATE -FLD G/L S D3)	DI SO (M	FATE S- LVED G/L SO4)
SEP	,	60	18	37	17		10		.3	1.9		176		18
09 09			18	3/	··									
09													2	
09														
09														
09		30	13	61	18		9.4		.3	1.9		260		9.4
03	2	30	10	01	10									
DAT		CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS SUM OF CONSTI TUENTS DIS- SOLVE (MG/L	- GI , NO2- TO D (MI	TRO- EN, +NO3 TAL G/L N)	NITE GEN AMMON TOTA (MG/ AS M	I, IIA AL AL	PHOS- PHORUS TOTAL (MG/L AS P)	, DI SOL (UG	N, IS- IVED G/L FE)	MAN NES DI SOL (UG AS	E, S- VED /L	
SEP									01/		20		10	
09. 09.	•••	16	11	19		.00		000	.010		20		10	
09.				-						•				
09.				-					.000		20		60	
09. 09.	•••			-		.13		20	.000		20			
09.				-	-									
09.	••	14	15	25	8	.00	.3	370	.010)	370	1	280	
					290981	51001	SITE	EC						
DAT		TIME	SAM- PLING DEPTH (FT)	SPE- CIFIC CON- DUCT- ANCE (MICRO MHOS)	- FIE	PH ELD [TS]	TEMPE ATUR WATE (DEG	RE,	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYG DI SOL		OXYG DI SOL (PEI CE SAT ATI	S- VED R- NT UR-	
SEP														
09.		1240	1.0	36		8.5		0.0	2.62	2	7.3		97	
09. 09.	•••	1242	10.0	36 36		8.4	29	.5			7.3		96 93	
09.		1246	30.0	37	0	8.1	28	3.5			4.5		58	
09.		1248	40.0	47	0	7.6		.0			.2		3	
09.		1250 1252	50.0	47		7.5	26	.0			.2		2	
09. 09.		1252	70.0	40		7.3	24	.0	-		.2		2	
09.		1256	80.0	53	0	7.2	23	8.0			.2		2	
09.		1258	90.0	53		7.1		.5			.2		2	
09.	••	1300	99.0	53	U	7.1	22	2.5			.2		2	

TABLE 11.--CHEMICAL-QUALITY SURVEY OF CANYON LAKE SEPTEMBER 9, 1976--Continued

295349098173701 SITE FC

DAT	E	SAM- PLIN ME DEPT (FT	G ANCE H (MICRO	PH - FIELD	TEMPER ATURE WATER) (DEG C	, (SECCH DISK)	OXYGEN	CENT D SATUR	D
SEP 09. 09. 09. 09. 09. 09. 09. 09.	·· 13 ·· 13 ·· 13 ·· 13 ·· 13 ·· 13 ·· 13	12 10. 14 20. 16 30. 18 40. 20 50. 22 60.	0 36 0 36 0 38 0 39 0 39 0 49	4 8.1 3 7.8 0 7.6 0 7.6 0 7.6	30. 29. 28. 27. 26. 25.	0	6.9 5.0 2.1 2.1	9 9 6 7 5 3 1 2 1 2	6 2 4 4 2 7 2 2
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L	DIS- C SOLVED SC (MG/L	DIUM, DIS- DLVED	AD- SORP- TION S RATIO	DIS- E SOLVED ((MG/L	MG/L AS	ULFATE DIS- Solved (MG/L S SO4)
SEP 09	170	22	39	18	10	.3	1.9	182	18
09									
09									
09									
09									
09									
09									
09	270	1	75	19	10	.3	1.8	322	15
DATE	CHLO RIDE DIS- SOLVI (MG/I AS CI	DIS- SOLVEI ED (MG/L AS	CONSTI-	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
SEP									
09	. 16	11	204	.01	.000	000	0	10	
					1.747.272.77	.000			
09									
09									
09				.08	.000	.010	50	10	
09									
09									
09		15	310	.15	.160	.020	40 350	230 400	
	. 15								

