Appendix D

Cost Data Development

CHKD BY	DESCRIPTION SH 3 Corrido		<u>inity Tran</u> : n		JOB NO. 1650250	SHEET 1 of
ioal:	Select pipeline routing for connecting Determine pipeline length, pump stat			iCWA Re	eservoir.	
ssumpti	ons:					
Flow	Required	Q _{total}	=		175 MGD	
Avai	lable Head at CWA Connection	H _{CWA}	=		15 ft	
Rese	ervoir Elevations					
	Bottom	H _{Min}	=		0 ft	
	Current Max	H_{Cur}	=		15 ft	
Pipe	line					
	Hazen Williams Friction	С	=		140	
	Minor Losses		=		4% of calculated	
	84" TWDB Cost (ENR CCI 6018)					(50% urban/50% rura
	84" Cost (ENR CCI 6588)	0010)	=	\$	9.97 /dia. in./ft	
	84" Tunneling TWDB Cost (ENR CCI	6018)		•	\$22.00 /dia in/ft	
	84" Tunneling (ENR CCI 6588) CWA Expansion Construction (from I	יםסר		\$	24.08 /dia. in./ft 80,000,000	
	CWA Expansion Construction (from F		=	\$ \$	12,000,000	
	CWA Expansion Engineering (from H		=	\$	18,000,000	
Pum	p Station					
	Pump Efficiency		=		80%	
	Motor Efficiency		=		90%	
	4700 hp TWDB Cost (ENR CCI 6018)		\$	13,801,000 interpolated	
	4700 hp Cost (ENR CCI 6588)			\$	15,108,173	

Power Costs		
Annual Operation	80	% (2050 avg vs 2050 peak)
Electricity Cost (ENR CCI 6018)	\$ 0.0	6 /kwH
Electricity Cost (ENR CCI 6588)	\$ 0.06	6 /kwH
Other O&M Costs		

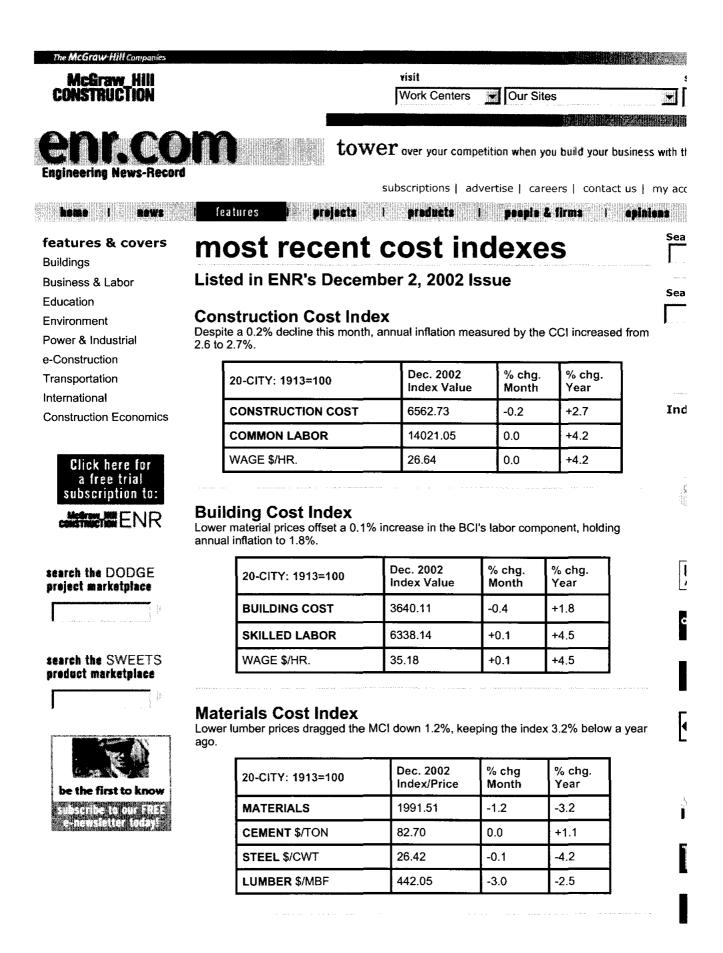
Other Pipeline O&M Costs 1% of Constuction Cost Other Pump Station O&M Costs 2.5% of Constuction Cost CWA 0.10 /1000 gallons \$ 30 years Dept Service Annual Capital Cost (6% ammortized) 7.26% annually Other Costs 22% of Constuction Cost Other Costs **Contingency** 20% of Constuction Cost

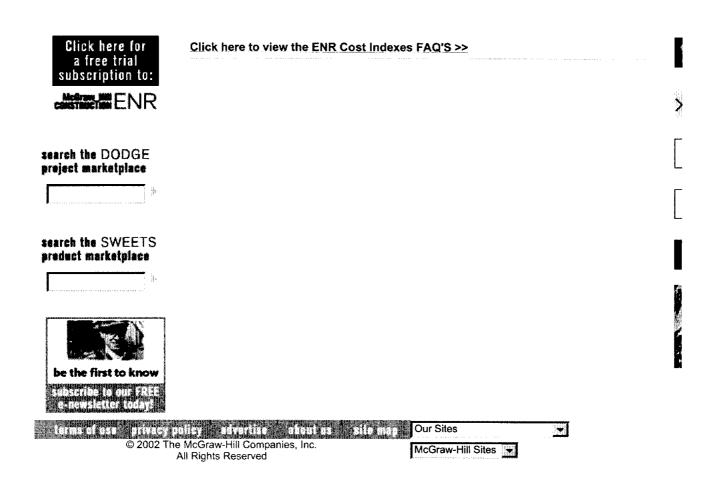
Contingency

BY T. Visosky	DATE 01/09/03 CLIENT GCWA - Trinity Tr	ansfer Study	SHEET <u>1</u> of <u>1</u>
СНКД. ВҮ	DESCRIPTION SH 3 Corridor Evaluation	JOB NO. <u>1650250</u>	

Calculations:

	Frame	wor	k Project 175		
Total Length	mi.		17.9		
- Length of Tunnel	mi.		0.57		
Elevation Head Available					
- H	ft		0		
Pipeline					
- Diameter	in		84		
- Velocity	ft/sec		7.0		
- Friction Loss	ft		122		
Pump Station	_				
- Total head	ft		122		
- Water Power	hp		3,738		
- Duty Pumps	#		5		
- Standby Pumps	.#		0		
- Pump Size	hp		1,038		
	gpm		24,347		
- Total PS Power	hp		5,192		
- Rounded PS	hp		5,200		
Construction Cost (million	IS)			rou	inded
Pipeline		\$	82.7	\$	74
CWA Expansion		\$	80.0	\$	80
Pump Station		\$	15.1	\$	15
Total		\$	177.9	\$	178
Contingency	\$M	\$	19.6	\$	18
Contingency CWA	\$M	\$	12.0	\$	12
Contingency Subtotal	\$M	\$	31.6	\$	30
Subtotal	\$M	\$	209.4	\$	208
	A 14	~	05.0	<i>~</i>	00
Other Costs	\$M	\$	25.8	\$	23
Other Costs CWA	\$M	\$	18.0	\$	18
Other Costs Subtotal	\$M	\$	43.8	\$	41
Subtotal	\$M	\$	253.3	\$	249
Pumping Cost	\$M/year	\$	1.8		
Other O&M Cost	\$M/year	\$	1.2		
CWA Cost	\$M/year		1.0		
Annual Capital Cost	\$M/year	\$	18.4		
Total O&M Cost	\$M/year	\$	22.4		
Total Costs	\$/TG	\$	0.35		


<u>T. Vis</u>		Streets to Ut		geway	1650	1250	SHEET <u>1</u> of
KD. BY	DESCRIPTION to House 3		valuation		JOB NO. <u>1650</u>		
al:	Select pipeline routing for connecting Determine pipeline length, pump sta			WA Re	eservoir.		
sumption	ons:						
Flow	Required	Q _{total}	=		175	MGD	
Avai	lable Head at CWA Connection	H _{CWA}	=		15	ft	
Rese	ervoir Elevations						
	Bottom	H _{Min}	=		0	ft	
	Current Max	H_{Cur}	=		15	ft	
Pipe	line						
	Hazen Williams Friction	С	=		140		
	Minor Losses		=			of calculated head	
	84" TWDB Cost (ENR CCI 6018)			^		interpolated (50%	urban/50% rur
	84" Cost (ENR CCI 6588)	1 6010)	=	\$		/dia. in./ft /dia in/ft	
	84" Tunneling TWDB Cost (ENR CC 84" Tunneling (ENR CCI 6588)	1 60 18)		\$		/dia. in./ft	
	CWA Expansion Construction (from	HBB)	=	\$	80,000,000		
	CWA Expansion Contingency (from		_	\$	12,000,000		
	CWA Expansion Engineering (from		=	\$	18,000,000		
<u>Pum</u>	p Station						
	Pump Efficiency		=		80%		
	Motor Efficiency		=		90%		
	4700 hp TWDB Cost (ENR CCI 601)	B)		\$		interpolated	
	4700 hp Cost (ENR CCI 6588)			\$	15,108,173		
Pow	er Costs						
	Annual Operation			•		(2050 avg vs 2050	peak)
	Electricity Cost (ENR CCI 6018) Electricity Cost (ENR CCI 6588)			\$ \$	0.06 0.066	/kwH /kwH	
Othe	er O&M Costs						
	Other Pipeline O&M Costs				1%	of Constuction Cos	st
	Other Pump Station O&M Costs				2.5%	of Constuction Cos	st
	CWA			\$	0.10	/1000 gallons	
	Dept Service					years	
	Annual Capital Cost (6% ammortize	d)			7.26%	annually	
<u>Othe</u>	er Costs						. 1
	Other Costs				22%	of Constuction Cos	ST ·
Con	tingency						_,
	Contingency				20%	of Constuction Co	st


MONTGOMERY WATSON H

BY T. Visosky	DATE 10/23/02 CLIENT GCWA – Trinity Transfer Study	SHEET <u>1</u> of <u>1</u>
СНКД. ВҮ	Residential Streets to Utility Passageway DESCRIPTION to Route 3 Evaluation JOB NO. 1650250	

Calculations:

	Frame	wor	k Project 175		
Total Length	mi.		16		
- Length of Tunnel	mi.		0.57		
Elevation Head Available					
- H	ft		0		
Pipeline					
- Diameter	in		84		
- Velocity	ft/sec		7.0		
- Friction Loss	ft		109		
Pump Station	<i>t</i> 1		400		
- Total head	ft		109		
- Water Power	hp		3,341		
- Duty Pumps	#		5		
- Standby Pumps	#		0 928		
- Pump Size	hp		920 24,347		
- Total PS Power	gpm hp		4,641		
- Rounded PS	hp		4,841		
- Hounded F S	ηþ		4,700		
Construction Cost (millior	nsì			rou	nded
Pipeline	,	\$	74.3	\$	74
CWA Expansion		\$	80.0	\$	80
Pump Station		\$	15.1	\$	15
Total		\$	169.4	\$	170
Contingency	\$M	\$	17.9	\$	18
Contingency CWA	\$M	\$	12.0	\$	12
Contingency Subtotal	<u>\$M</u>	\$	29.9	\$	30
Subtotal	\$M	\$	199.3	\$	200
Other Costs	\$M	\$	23.6	\$	23
Other Costs CWA	\$M	\$	18.0	φ \$	18
Other Costs Subtotal	\$M	\$	41.6	\$	41
Subtotal	\$M	\$	240.9	\$	241
Cubiolui	•	•		+	_ / .
Pumping Cost	\$M/year	\$	1.6		
Other O&M Cost	\$M/year	\$	1.1		
CWA Cost	\$M/year	\$	1.0		
Annual Capital Cost	\$M/year	\$	17.5		
Total O&M Cost	\$M/year	\$	21.2		
Total Costs	\$/TG	\$	0.40		

Client: Comment	Gulf Coast Water Auth		Table		Paragraph		Dear	Maria
No.	From	Page No.	No.	Figure No.	Paragraph	Comment	Response	Version
1	Robert Istre; GCWA	ES-4	-	-	2	change 'temporary' to 'short-term water'	changed	September 2002
2	Robert Istre; GCWA	ES-7	-	ES-7	-	First phase change to 30 MGD from 40 MGD	changed	September 2003
3	Robert Istre; GCWA	ES-7	-	•	1	1 change '2010' and '2019' to'2013' and '2025'		September 2002
4	Robert Istre; GCWA	1-3	-	•	2	change 'prior' to 'in'	changed	September 2002
5	Robert Istre; GCWA	2-1	-	-	3	Confirm source of '148 MGD' min. recorded flow of the Brazos River	confirmed	September 2002
6	Robert Istre; GCWA	2-2	-	-	2	change 'field tests indicate that' to 'current'	changed	September 2002
7	Robert Istre; GCWA	2-2	-	-	2	change 'installed' to 'available'	changed	September 2002
8	Robert Istre; GCWA	2-2	-	-	2	delete 'in the range of	deleted	September 2002
9	Robert Istre; GCWA	2-2	-	-	2	change '260 mgd' to '203 mgd'	changed	September 2002
10	Robert Istre; GCWA	2-2	-	-	2	add 'to'	added	September 2002
11	Robert istre; GCWA	2-2	-	-	3	delete 'primarily'	deleted	September 2002
12	Robert Istre; GCWA	2-2	-	-	3	add 'noi'	added	September 2002
13	Robert Istre; GCWA	2-2	-	-	3	delete 'but the American Canal'	deleted	September 2002
14	Robert Istre; GCWA	2-2	2-2	-	- change 'B-4' to 'Ranch'add 'Take Point'		incorporated	September 2002
15	Robert Istre; GCWA	2-4	-	-	9 Confirm capacity of Lynchburg Reservoir - 1.5 BG		confirmed	September 2002
16	Robert Istre; GCWA	2-4	-	2-3	Add CWA system capacities		added	September 2002
17	Robert Istre; GCWA	3-2	3-1	-	-	change 'Reliant Energy' to 'Centerpoint'; add it to municipal demand		September 2002
18	Robert Istre; GCWA	3-2	3-1	-	-	change 'Union Carbide' to 'Dow Chemicals'	changed	September 2002
19	Robert Istre; GCWA	3-4	3-4	-	-	Give reference for source of Table	incorporated	September 2002
20	Robert Istre; GCWA	3-5	3-6			Chocolate Bayou Water Company', 'Solutia' and 'Oxychem' demands switch to Western Service Area demand	incorporated	September 2002
21	Robert Istre; GCWA	3-7	3-7	-	-	Add 'Oxychem', 'Equistar' and 'Chocolate Bayou Water Company'	added	September 2002
22	Robert Istre; GCWA	3-7	3-8	-	-	Update population data for 'Missouri City'	updated	September 2002
23	Robert Istre; GCWA	3-9	-	-	3	change FBSD's proposed GW reduction rules beyond 2025 to show 60% conversion	incorporated; with the qualifier that the FBSD has not yet planned for 2025 and beyond	September 2002
24	Robert Istre; GCWA	3-11	3-12	-	-	delete Sugar Land's surface water requirement for 2010; and change Missouri City's demand in accordance with reduced population information from Lee Dorger-Dir. of Public Works		September 2002
25	Robert Istre; GCWA	3-12	3-13	-	-	Add 'Oxychem', 'Equistar' and 'Chocolate Bayou Water Company'	added	September 2002
26	Ralph Rundle; CWA	3-15	-	-	-	Mention 'Desalination' as 'Other potential raw water sources'	added	September 2002

Job: Gulf Coast Water Authority Trinity River Conveyance Study Client: Gulf Coast Water Authority

COST ESTIMATING PROCEDURES TWDB REGION H

The cost estimates of this study are expressed as one of three main categories that were dictated by TWDB guidelines: capital costs, other project costs, and annual project costs. Capital costs consist of all material, labor, and equipment expenses that are expended in the construction activities of a project. Other project costs include expenses that are not directly associated with the construction activities, such as engineering, land and easement acquisition, environmental studies, mitigation, and construction interest. Annual project costs consist of all costs that are incurred by the project upon implementation, either in repayment of borrowed funds or operating and maintaining the facility. Table 1 illustrates the primary components of the preliminary cost estimate. Cost estimating methods for the technical evaluation of alternatives considered for use in Texas TWDB Region H are explained in the following sections.

CAPITAL COSTS	OTHER PROJECT COSTS
 Pump Stations Pipelines Water Treatment Plants Water Storage Tanks Off-Channel Reservoirs Well Fields Injection Recovery ASR Wells Dams & Reservoirs Relocations Water Distribution System Improvements Other Items 	 Engineering, Financial & Legal Services, and Contingencies Includes Design, Bidding & Construction Phase Services, Geotechnical, and Surveying Land and Easements Land Purchases Temporary Easements Permanent Easements Includes Legal Services, Sales Commisions, & Surveying Environmental - Studies and Mitigation Environmental & Archaeology Studies Permitting Mitigation Interest During Construction

.

TABLE 1 MAJOR ESTIMATING CATEGORIES

ANNUAL COSTS

1. Debt Service

(....

- 2. Operation & Maintenance (O&M)
- 3. Pumping Energy Costs
- 4. Purchase of Water (if applicable)

Region H Water Planning Group

1

1 CAPITAL COSTS

Capital costs, generally known as construction costs, have been compiled from a variety of reliable sources and analyzed for trends that can be used for estimating purposes. Once a trend has been identified, a set of representative values is entered into a cost table, from which the user can easily and efficiently locate a cost estimate. Each cost table is explained in the detail in the following sections. All data was adjusted to the Second Quarter of 1999 by using the Engineering News Record's Construction Cost Index (ENR CCI) ratio. The ENR CCI value for the Second Quarter of 1999 is 6018, determined by averaging the index values of April, May, and June of 1999 (6008, 6006, and 6039, respectively). For example, to update a representative cost from January of 1997 (ENR CCI value 5765), the cost from January of 1997 would be multiplied by the ratio of 6018 over 5765. The ENR CCI values are based on representative (steel, cement, and lumber) material and labor construction costs, averaged across 20 cities. The index measures the amount of money it would cost to purchase a theoretical quantity of services and goods in one year, as opposed to another. Monthly index values are reported from 1977 to the present and annual average values are reported back to 1908.

1.1 Pump Stations

Í:

The cost of a pump station depends upon a wide variety of conditions, including pump discharge, pumping head, pump type, site conditions, desired usage, and structural design. In constructing a preliminary estimate of the cost of a pump station, the intent is not to determine the pump type or details of the station structural design, but rather to estimate the cost of a general station capable of pumping the desired discharge at the necessary head conditions. Regional pump station project cost estimates and construction records were used to adjust published EPA historical pump station cost data. By using a comprehensive and reliable source of pump station cost data, recognizing the trend, and then adjusting that trend to similar projects in the region, a representative set of values for this region was determined. The cost table for this section, shown in Table 2, displays the costs for pump stations at a variety of horsepower requirements, based on peak discharge and design head. Higher horsepower requirements may require multiple pump stations.

Pump stations are generally classifications mansmission on interverse structures, depending on the source of the water coming into the station. Unterverse normally pump vale model traves caters source, such as a river or reservoir, and therefore continue interverse mansmission are permitted. Travenues on stations normally act as proster low conditions into the station are permitted. Travenues on stations normally act as prosters in a plant or pipeline and do not require interverse since the inlet pipe flow conditions are fairly constant. The total cost for the intake of a pump station has been estimated as an additional 20 percent of the pump station construction cost. While 10 percent is structural additions, the other 10 percent is trash rack screens and miscellaneous rack cleaning equipment.

2

Pump Station Horsepower	Pump Station Construction Cost			
(HP)	(\$)			
0	0			
700	6,205,000			
1000	7,632,000			
2000	10,404,000			
3000	12,026,000			
4000	13,177,000			
5000	14.069,000			
6000	14,799,000			
7000	15,415,000			
8000	15,949,000			
9000	16,420,000			
10000	16,842,000			
12000	17,571,000			
15000	18,464,000			
20000	19,614,000			
¹ Values as of Second Quarter	1999.			
² Add 20 percent for pumps sta	tions with intake structures.			
Add 35 percent for pumps stations with standby power.				

TABLE 2 PUMP STATION COSTS

į,

 (\cdot)

All electrical costs, with the exception of standby power, are included in the base pump station construction cost. Standby power, normally either a diesel generator or a dual power feed, is necessary to insure that the pump station can remain operational in the event of a power failure. Standby power is an optional feature which has been estimated as an additional 35 percent of the base pump station construction cost.

The costs of pump stations located in water treatment plants are accounted for in the water treatment plant cost table.

Region H Water Planning Group

o:\civiftengineer/emoo65\cost estimating\3- cost estimating report textem0065 cost Estimating -r15.doc

3

1.2 Pipelines

1.

Pipeline capital costs are dependent upon a variety of factors, including pipe material used, trenching slopes and depths, fill material quality, frequency of valves/fittings, number of obstruction crossings, necessity of pavement removal and replacement, utility interference, traffic control, geologic conditions, and degree of urbanization. Due to the lack of significant quantities of rock in the primarily sandy clay soil of the region, only one soil type was analyzed. Table 3 shows the unit costs for pipe diameters from 12-inches to 144-inches, based on level of urban development.

Pipe Diameter	Rural Construction	Urban Construction
(inches)	(\$ / LF)	(\$ / LF)
12	55	90
14	65	110
16	75	130
18	90	145
20	100	165
24	125	210
27	145	240
30	170	280
33	185	305
36	205	340
42	245	405
48	285	475
54	335	55 5
60	380	635
64	410	685
66	430	710
72	485	805
78	525	870
84	575	955
90	625	1,040
96	675	1,125
102	725	1,210
108	780	1,295
114	830	1,385
120	885	1,475
144	1,105	1,840

TABLE 3 PIPELINE UNIT COSTS

The unit costs are based on open cut construction methods, with the exception of special crossings. Special crossings at railroads, streets, and rivers will likely be accomplished by horizontal boring, also known as pipe jacking. Horizontal boring costs are shown in Table 4.

Pipe Diameter	Total Cost
(inches)	(\$ / LF)
4	560
6	585
8	580
10	610
12	600
16	680
18	745
20	730
24	845
30	940
36	1045
42	1170
48	1295
54	1430
60	1565
66	1650
72	1730
78	1795
84	1850
¹ Values as of Second Quarter 19 ² Costs based on Horizontal Boria	

TABLE 4 PIPELINE CROSSING UNIT COSTS

1.3 Water Treatment Plants

Water treatment plant capital costs are shown in Table 5 for three alternative treatment methods. One process is used almost exclusively on groundwater sources. The other two processes use filtration, mostly for surface water sources, and the quality of the source water normally dictates which one is used.

Groundwater is commonly treated by chlorination only, because the process is relatively inexpensive compared to filtration and the treatment equipment is small enough that each groundwater well can normally have its own. The most common of the surface water treatment methods is conventional filtration treatment. When influent suspended solids concentrations are sufficiently low that they are completely removed by filtration and result in a reasonable backwash cycle on the filtration units, direct filtration can be used. The direct filtration plant is essentially the same as the conventional filtration plant,

except the sedimentation process is deleted. Wastewater effluent is sometimes reclaimed for aquifer injection or non-potable use, but this process is discussed later in Section 1.11.

Plant	Groundwater Chlorination	Direct Filtration	Conventional Filtrati
Capacity	Plant Cost	Plant Cost	Plant Cost
(MGD)	(5)	(\$)	(\$)
1 -	385,000	2,862,000	3,578,000
10	2,246,000	16,682,000	20,852,000
50	7,000,000	52,000,000	65,000,000
75	10,500,000	78,000,000	\$7,500,000
100	14,000,000	104,000,000	130,000,000
150	21,000,000	156,000,000	195.000,000
200	28,000,000	208,000,000	260,000,000
use as of Sal	cond Quarter 1999.	······································	

TABLE 5 WATER TREATMENT PLANT COSTS

As can be seen in Table 6, the choice of treatment methods is dictated by both the quality of the influent water source and the intended destination of the treated water. Surface waters treated by direct filtration and wastewater reclamation are not intended for conveyance to a public water distribution system. The reason for this is that surface water and wastewater effluent normally has a high suspended solids content and the treatment processes cannot remove enough of the suspended solids to produce a water quality necessary for public water supplies.

		Source		Destination				
Water Treatment Method	Groundwater	Surface Water	Wastewater	Aquifer or Non-Potable Use	Public Water System Distribution			
Groundweter Chlorination	•			•	•			
Direct Filtration	•		1	•	•			
Direct Filtration		•		•				
Conventional (Filtration)		•		•	•			
Wastewater Redametion			•	•				

1.4 Storage Tanks

(. .

Storage tanks are used in a variety of different water supply systems, including pump stations, distribution systems, and pipelines. Several factors influence the cost of storage tanks, including frequency of use, capacity, type of construction materials, location, architectural treatment, and corrosion resistance. Steel tanks are normally constructed in elevated or ground-level locations, while prestressed concrete tanks are normally constructed at or below grade. Concrete does not require cathodic protection or any type of protective exterior coating. Below grade tanks require no architectural treatment, but have higher excavation and backfill costs. The costs of storage tanks are shown in Table 7 are based on ground-level prestressed concrete construction for a range of capacities.

Region H Water Planning Group

11/12/00 3/74 DVI

Storage Capacity	Cost			
(MG)	(\$)			
0.01	161,998			
0.05	192,277			
0.10	250,864			
0.5	494,717			
1.0	741,476			
2.0	1,105,507			
4.0	1,662,686			
6.0	2,226,462			
7.5	2,691,516			
9.0	3,065,107			
10.0	3,302,218			
15,0	4,709,555			

WATER STORAGE TANK COSTS

1.5 Off-Channel Reservoirs

6....

An off-channel reservoir is a reservoir that receives minimal or no natural inflow. Two methods are normally employed in the construction of off-channel reservoirs. A dam can be constructed along a minor tributary or a ring dike can be constructed. Since little or no natural inflow reaches the reservoir, water is normally supplied by pumping from a nearby river or other location. The cost of the off-channel reservoir is highly dependent on the height of the levees that are constructed and the area of land that is available for use. Land costs will be considerably higher for a shorter ring dike with a much larger circumference that can still hold the same capacity as a taller ring dike with a smaller circumference. Table 8 shows the cost of off-channel reservoirs for a range of capacities.

Storage Volume	Ring Dike Cost
(ac-ft)	(\$)
500	965,000
1,000	1,393,000
2,500	2,313,000
5,000	4,590,000
7,500	5,733,000
10,000	6,733,000
12,500	7,642,000
15,000	10,788,000
17,500	11,732,000
20,000	15,728,000
22,000	16,542,000
25,000	17,705,000
alues as of Second Quar	ter 1999.
alues are based on ring of /alues also used for cost of	like construction. of dams on minor tributaries.

OFF-CHANNEL RESERVOIR COSTS

1.6 Well Fields

Ċ

The costs for public water supply wells are shown in Table 9, as estimated by LBG-Guyton Associates, Inc. The costs include well completion, pumps, and all other necessary facilities. Irrigation wells costs are assumed to amount to 55 percent of public water supply well costs for wells of equivalent depth and capacity.

Region H Water Planning Group

11/15/00 2:34 PM

o:\civillengineerhemoo65\cost estimating\1- cost estimating report texthem0065 cost Estimating -r15.doc

Weil Depth	1	Well Capacity (gpm)									
(feet)		200		400		700		1,000	1,500		
S	Static V	Vater Leve	Les	is Than 200) Fee	it Below La	ind S	Surfaçe			
300	\$	150,000	\$	229,200	\$	250,800		-		-	
500	\$	180,000	\$	260.400	\$	285,600	\$	404,400		-	
700	\$	235,000	\$	282,000	\$	308,400	\$	430,800	\$	459,600	
1,000	\$	270,000	\$	328,800	\$	355,200	\$	469,200	\$	498,000	
1,500	\$	310,000	\$	340,200	\$	405,600	\$	520,200	\$	564,000	
Statio	c Wate	r Levels B	etwe	en 200 and	300	Feet Belov	n La	nd Surface	•		
500	5	160,000	\$	221,000	,	-		*		-	
700	\$	190,000	\$	224,400	\$	315,800	S	440,200	\$	470,600	
1,000	\$	240,000	\$	335,400	5	385,600	\$	485,500	\$	530,100	
1,500	\$	320,000	\$	350,900	\$	415,600	\$	530,900	\$	600,500	
Stati	c Wate	r Levels B	etwe	en 300 and	400	Feet Below	w La	nd Surface	:		
500	\$	170,000		-		-		-		-	
700	\$	210,000	\$	238,000	\$	350,000	\$	470,000	\$	500,000	
1,000	S	260,000	\$	414,400	\$	367,200	\$	510,000	\$	550,000	
1,500	\$	330,000	\$	415,000	\$	564,000	\$	690,000	\$	750,000	
Stati	c Wate	r Levels B	etwe	en 400 and	500	Feet Belov	кLа	nd Surface	; ;		
1,000	\$	283,000	\$	400,800	\$	485,800	S	596,400		•	
1,500	5	328,000	s	434,400	\$	576,000	\$	767,000		_	

PUBLIC SUPPLY WELL COSTS

² Costs based on underreamed, gravel-packed wells, with steel casing and stainless steel screens.
³ Costs as estimated by LBG-Guyton Associates.

⁴ Irrigation well costs assumed to be 55% of above public water supply well cost values.

1.7 Dams and Reservoirs

Dam and reservoir construction costs were estimated on an individual case basis due to the unique nature of each project. Most dams and reservoirs that are currently under consideration have been studied in detail in the past and the previous cost estimates normally include both construction cost and other project costs. In most cases, the cost estimates from these previous studies were used, after adjusting the costs with the ENR CCI to the Second Quarter of 1999.

1.8 Relocations

In some cases, projects required the use of lands that contain existing facilities or improvements. While relocation of existing utilities, roads, homes, businesses, and other facilities is oftentimes an option, outright purchase cost of the land must be allowed for in

cases where it is not deemed acceptable to relocate. Relocation cost estimates are addressed on an individual project basis due to the variation in the cost of the land and facilities which require relocation.

1.9 Water Distribution System Improvements

A water distribution system is used to distribute water throughout the service area by means of pump stations, piping, valves, storage tanks, and a variety of other equipment and facilities. When a city or entity requires additional water, improvements to the water distribution system are normally necessary. The cost of the water distribution system improvements varies considerably, based on the extent of the existing and proposed facilities and the wide variety of facilities that make up a water distribution system. Costs are estimated on an individual basis using previous proposed water distribution facility studies and cost estimates.

1.10 Stilling Basins

Stilling basins are normally used in water distribution systems to decrease the water flow velocity and allow sediment to settle out prior to discharging into a canal, reservoir, or other body of water. Stilling basin costs are estimated based on a target detention time of two hours and includes all excavation and hauling costs necessary to construct the basin. Optional mechanical sedimentation basin dredging equipment is not included. Stilling basin construction costs, when applicable, are estimated as \$2,800 per cfs of discharge.

1.11 Wastewater Reclamation Plants

Wastewater effluent can be treated by a variety of methods for aquifer or other nonpotable uses. The reverse osmosis membrane treatment method, including denitrification, was used to estimate the wastewater reclamation plant costs that are shown in Table 10. Reclaimed wastewater should not be sent directly to a public water distribution system.

11/15/00 2:34 PM

onviviblengineeAemoo6Seost estimatingU-cost estimating report textlem0065 cost Estimating wrl5.doc

Plant Capacity	Wastewater Reclamation Plant Cost
(MGD)	(\$)
1	5,048,000
10	25,301,000
50	51,500,000
75	77,250,000
100	103,000,000
150	154,500,000
200	206,000,000

TABLE 10 WASTEWATER RECLAMATION PLANT COSTS

1

(....

² Based on Reverse Osmosis Membrane process, with Denitrification, from Trans-Texas Water Program, Southeast Area, Technical Memorandum entitled "Wastewater Reclamation", March 19, 1998.

o.\eivil\engincer\emood@urant	11 Region	H Water Planning Group
 	stimating report texthem0065 cost Estimation	

2 OTHER PROJECT COSTS

2.1 Engineering, Financial and Legal Services, and Contingencies

Engineering, financial and legal services, and contingencies are estimated as a lump sum, according to TWDB guidelines, as 30 percent of the total construction cost for pipelines and 35 percent of the total construction cost for all other types of projects.

2.2 Land and Easements

Land related costs for a project are typically one of two types: land permanently purchased for construction of a facility, or easement costs. The amount and cost of land purchased for various types of projects is considered on an individual project basis, taking into consideration similar project experience. Easement costs, on the other hand, can vary considerably in a single project, based on the variety of site conditions that a pipeline may encounter along its path. Easements are generally acquired for pipeline projects and can normally be classified as temporary or permanent. Permanent easements are purchased for the land that the pipeline will remain in once it is completed, including a wide enough buffer zone to allow maintenance access and protect the pipeline from other parallel utilities. Temporary easements are "rented" to allow extra room for material and equipment staging, as well as other construction related activities.

Land related costs include legal services, sales commissions, and surveying. Ten percent of the total land and easement costs is added to account for all legal services, sales commissions, and surveying associated with the land related purchases. Land costs can vary considerably throughout the region, based on degree of urbanization and other economic factors. County appraisal district records, previous project estimates, and other land value sources are used to estimate the land related costs.

2.3 Environmental and Archaeology Studies, Permitting, and Mitigation

Costs for environmental studies, archaeological studies, permitting, and mitigation are estimated on an individual project basis, taking into consideration previous project estimates, the judgement of qualified professionals, and any other available information. In the case of reservoir projects, mitigation costs were generally equal to the land value of the acreage that would be inundated.

2.4 Interest During Construction

Interest during construction is calculated as the cost of the interest on the borrowed funds, less the return on the unspent portion of the borrowed funds that are invested during construction. Interest during construction is calculated, according to TWDB guidelines, as the total interest accrued by a 6 percent annual interest rate on the total borrowed funds at the end of the construction phase, less a 4 percent annual rate of return on investment of unspent funds.

Region H Water Planning Group

11/15/00 2:34 PM

3 ANNUAL COSTS

Annual costs are expenses which the owner of the project can expect once the project is completed. Each of these costs is described in detail in the following subsections.

3.1 Debt Service

(...

Debt service is the total annual payment that is required to repay borrowed funds. Debt service was calculated according to TWDB Section 1.71 of Exhibit B, assuming an annual interest rate of 6 percent and a repayment period of 40 years for reservoir projects and 30 years for all other projects.

3.2 Operation and Maintenance

Operation and maintenance (O&M) costs include all labor and materials required to run the facility and and keep it operational, including periodic repair and/or replacement of facility equipment. In accordance with TWDB guidelines, O&M costs are calculated as 1 percent of the total estimated construction costs for pipelines, distribution facilities, tanks, and wells, 1.5 percent of the total estimated construction costs for dams and reservoirs, and 2.5 percent of the total estimated construction costs for intake structures and pump stations. Water treatment plant cost estimates are shown in Table 10 below.

TABLE 11 OPERATION AND MAINTENANCE COSTS FOR WATER TREATMENT PLANTS

Plant Capacity (MGD)	Groundwater Chlorination Plant Cost (\$)	Direct Filtration Plant Cost (\$)	Wastewater Reclamation Plant Gost (\$)		
1	146,000	156,000	195,000	211,700	
10	1,460,000	1,560,000	1,950,000	2,117,000	
50	7,300,000	7,800,000	9,750,000	10,585,000	
75	10,950.000	11,700,000	14,625,000	15.877,500	
100	14,600,000	15,600,000	19,500,000	21,170,000	
150	21,900,000	23,400,000	29,250,000	31,755,000	
200	29,200,000	31,200,000	39,000,000	42,340,000	

3.3 Pumping Energy Costs

Power costs are calculated on an annual basis, using calculated horsepower input and a power purchase cost of \$0.06 per kWh, per TWDB guidelines.

3.4 Purchase of Water

The purchase of water, if applicable to the management strategy being considered, is dependent on the source and type (raw or treated) of water being purchased. The cost is

addressed on an individual project basis due to the wide variety of water types and sources.

Ċ

Ć

Ć

Region H Water Planning Group

14

11/15/00 2:34 PM

Appendix F Public Meetings – Powerpoint Presentations

Trinity Transfer Water Study Draft Report Public Hearing

November 21, 2002 – 1:30 pm

Gulf Coast Water Authority Board Room 3630 Highway 1765 Texas City, TX 77591

<u>Agenda</u>

1:30-1:45 pm	Check in/Look at Exhibits
1:45-2:15 pm	Trinity Transfer Water Study Presentation
2:15-2:45 pm	Questions/Comments
2:45-3:00 pm	Wrap Up/Informal Discussions

Primary Contact

Tom Visosky MWH Americas 5100 Westheimer, Ste 580 Houston, TX 77056 713-403-1600

Agency Contact

Robert Istre GCWA 3630 Highway 1765 Texas City, TX 77591 409-935-2438

TRINITY WATER TRANSFER STUDY

Project Background

Study Participants:

- Gulf Coast Water Authority (GCWA)
- City of Houston (COH)
- Coastal Water Authority (CWA)
- Texas Water Development Board (TWDB)

TWDB - Region H Water Management Plan: GCWA and COH "Major Water Providers"

GCWA and COH "Major Water Providers" for the region. Transfer of Trinity River Water from COH to GCWA.

Study Parameters

- Review of existing regional water facilities
- Review previous TWDB/GCWA Reports; update water demand projections
- * Raw water transmission analysis
- Cost estimate

Regional Service Areas

Eastern Service Area

Municipal Demand

- Galveston
 - Texas City
- Texas G
- Dickinson
- La Marque
- Santa Fe
 Hitchcock
- Dow Chemical

Industrial Demand

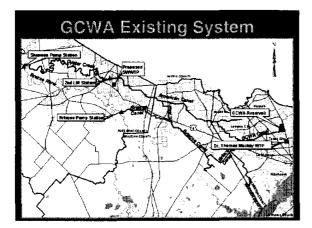
British Petroleum

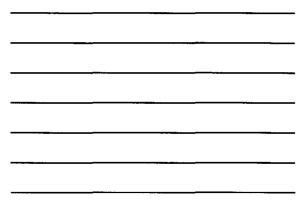
- Company • Sterling Chemicals
- Valero Energy
- Marathon Petroleum
- Eagle Concrete
- Centerpoint (Receives treated water)

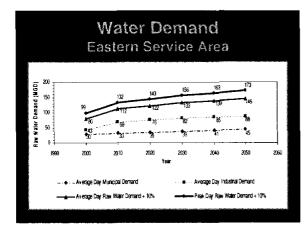
Regional Service Areas

Western Service Area

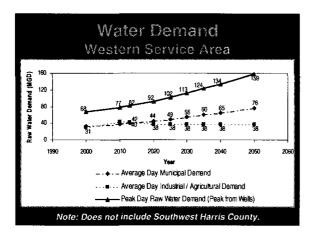
- Municipal Demand
- Southwest Harris
- County
- Sugar Land
- Missouri City
- Pearland
- Alvin
- FBWCID #2
- Manvel
- Arcola

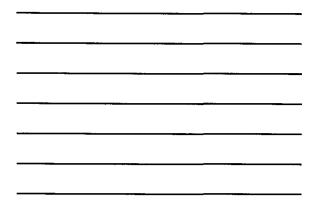

- Industrial Demand Chocolate Bayou Water Company Solutia
- Oxychem
- Texas Brine
- Texas Department of
- Corrections Fluor Daniel

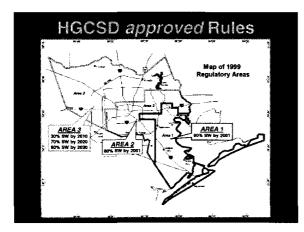


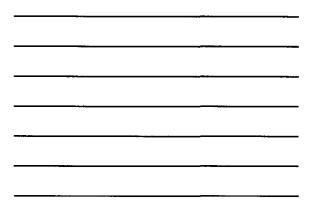

GCWA Existing System

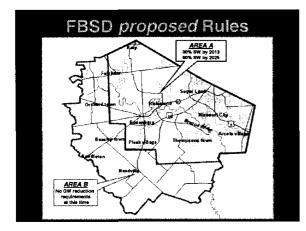
Canal System A

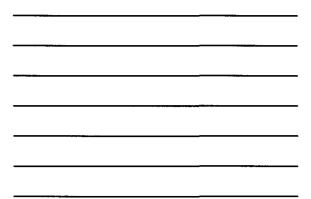

- Shannon Pump Station
- 2nd Lift Station
 American Canal
- Canal System B
- Briscoe Pump Station
- Briscoe Canal
- GCWA Canal
- GCWA Reservoir
- Dr. Thomas Mackey Water Treatment Plant

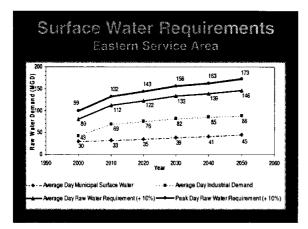


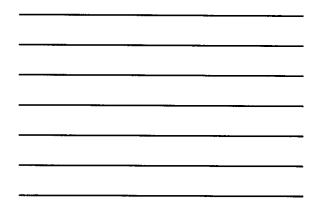


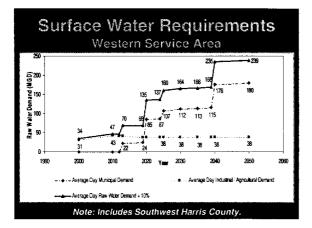


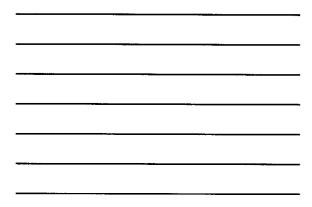


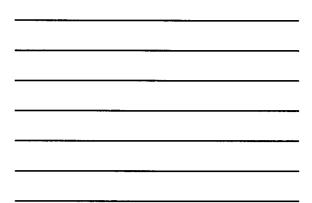


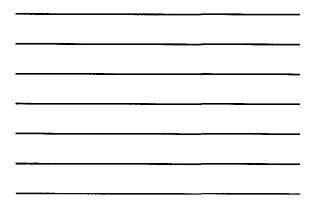


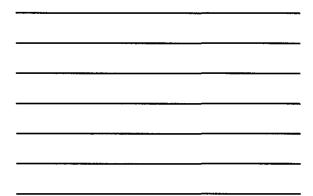








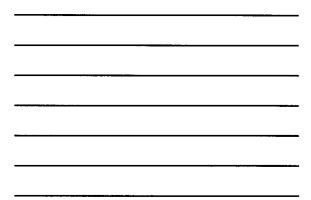

Regional Water Needs	2000	2010	2013	2020	2025	2030	2035	2040	2650
Existing GCWA Water Rights	212	212	212	212	212	212	212	212	212
Valla in Second Arria New Michile March	24			2.79 -	100	984	199	24.	255
Fordian Construction Base Water Construction	~	1121	- NIC	- 199	• >,	1.65	1914	•*.4	146
Exilog Kan Wita Dates or sur sus	w.	41	2.2	. 39		, in	95	1	- 174
foreering logies of me				• :					
Starty Contractory 2006						13.5	139	1.15	1.32
¥lach ac et tougeans fin barn. Narabati aa tour Anne								30	
Surplus Raw Water	- 58	41	27	5	0	47	46	7	2


Pegronol	Na			83 f.	мy	0	Č.		
		(M	GD						
Regional Water Neods	2000	2010	2013	2020	2025	2030	2035	2040	2050
医皮白喉炎 额氏角软叶片小白	- 10°	. 12	1.1		1.47				12
Western Service Ares Raw Water Demand	34	58	70	135	160	164	166	235	239
u site en en el cara a Alexa Bala Weller (l'are el l	-			1.0			1197		
Executing Read Withold Plantist for Said Seal		11	21	÷.	.25	<i>e-</i> s	٦.	· '+.`	-174
Nemiservy I. († 1998) Serve Denise Here Waler († 2004)					····		155	1.3	18,
Form each to up you in units Wald while inter Archi									
Surplus Raw Writer	98	41	27	5	0	47	46	7	2

 	<u></u>	· · · · · · · · · · · · · · · · · · ·

Regional Water Supply Scenario (MGD)									
Regional Water Needs	2000	2010	2013	2020	2025	2030	2035	2040	2050
Baleria (10.84.85 de m.145)	:: V		212		12	- 42	12		212
Aventiam (variatio Anel) Now (Variatio Ale) et 1	3.5	53	70	•:5	• 20	152	97.8	- 55	25.4
Eastern Service Arca Raw Water Demand	80	112	115	122	128	133	139	139	146
Pix Cophow Algori Debug - Station	-25	÷.	14	-45	• •	7	-3	48.5	1.54
fermany part to soliter						2.45	1.5		145
Tents, Bara Marine 1,94. Frances et al actor of these							1 11		1.41
Maritan Erici China.									
Surplus Raw Water	98	11	27	5	0	47	46	7	2

Regional	Na		Su GD		oly	S	:er	nar	io
Regional Water Veeds	2000	2010	2013	2020	2025	2630	2035	2040	2050
e Alberg outward where All rep.	22	11	112	21.1			212	11.1	212
Washern Grinka, A.K.S. Filia M. Hint Collina			74	:05	175	154	ħ€	205	ಮಿ
Taloons and in Arra Heaview Stor Contraint	yi.	£1.1	1	1.25	4.5	Y.3	1211	• 01	140
Existing Rew Water Deficit or Surplus	98	41	27	-45	-75	-86	-93	·162	-174
fers replaced to re-			1	5.5	`				
Process Base Web (PLACA)						155	` 22	120	148
Rome moved is partical for Contra Weather for the trade of the									يەۋ.
Surplus Raw Water	98	41	27	5	- 0	47	46	7	2

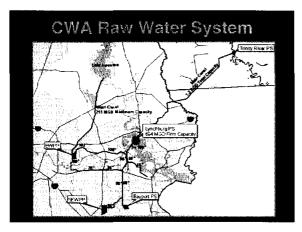

			Su GD		эly	Ś	:er	lai	io
Regional Water Needs	2060	2010	2013	5050	2025	2030	2035	2040	2050
(1) 如果你在我的话题。"	•••	• • • • • • •			11	19	· · · ·	21	11
Western Laaten Alla Eine weer Treinen			19				9.5	5.1	
gi uten uten e Ate Noto de Cellin Intern	5.	N1/	۹۰.	• ::	• >	۰. ۱	۰	150	115
Fictoripalise de mo Cartori e estruit			2	: •		16.	÷.	**	
Temporary Supplies On-Line				50	75		_		
							1.	1	147.
Surplus Raw Water	98	11	27	5	0	47	46	7	2

 ,		

Regional Water Needs 2000 2016		anin''											
PARTY ROLL THE STORE STORE	2013	and a T		(MGD)									
		2020 i	2025	2030	2035	2040	2050						
	.``			3	101	12	5.45						
Written Server Asso Rev. Water Discourt (* 19)		: 71	- A.	96 4	t et	136	250						
Elements of the second se		•:	12	133	139	139	146						
the strength on Al the Alt		32.		.:	•*	96.2	• • 1						
To secure the second second													
Trinity River Watar (CWA)				133	139	139	146						
n lenn mellen slage soch her lande Millense kendel av Astr						×	30						
Surplus Rew Water 98 41	27	5	0	47	46	7	2						

Regional \	Na		Su GD		ly	Sc	er	ıaı	io
Regional Water Needs	2000	2010	2013	2020	2025	2030	20:15	2040	2050
seating as AA Area Supti-	212	2.4	2.2	217	. U.	72	14	212	212
Mattern Senzer Alexi Rizz Walen Theraeli			20	135	19C		¥2,	235	239
na Comitio a Lo Antia New Ministria mana	٠.	113	1.5	÷ 1,	1.5	153	-173 1	139	16,
Selondérik Artik Setel Jeñoriak	43		22	:4		5£.	чe	1.5.7	•1.a
the second second	·····								
the second s						1.5.			
Permanent Supplies On-Line (Western Service Area)								30	30
Surplus Raw Water	98	41	27	5	0	47	46	7	2

Regional Water Needs	≦ma	2010	GD.		2025	2030	2025	2040	2050
Exclorificate Alfred Viena	1 1 1			2020	1.525	2030	2035	2040	2050
Magazine a constante Registrate di anang			•.	1.1				174	
El cument da secar Auso. Acos Waltar El remana	+ 2	۰.	11.	1.		• •		129	146
n Constantia India Denominina dia stati		.`	Ŀ.	;÷		·•.	÷.,		174
The second provide the second se				· · · ·				·	148
en encedica, le concelar Mantena a Alisa	-							JC.	.97
Surplus Raw Water	98	41	27	5	0	47	46	7	2


<u> </u>	 		
		_	

Regional Supply Overview

- Trinity River Water to transfer Eastern Service Area
- Brazos River Water available to Western Service Area

CWA Existing System

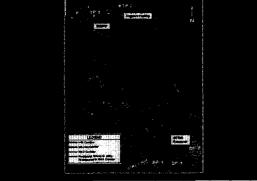
- Trinity River Pump Station
- Lynchburg Pump Station
- S East Water Purification Plant
- Southeast Water Purification Plant
- Bayport Pump Station

Trinity Transfer Facilities

- Take points
- Pump station
- Pipeline
- Delivery points

Pipeline Design Assumptions

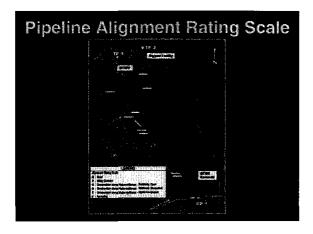
- Pipeline materials :
 - Welded Steel Pipe (AWWA C200) or
 - Reinforced Concrete Cylinder Pipe (AWWA C300)
- Capacity: 175 MGD
- Maximum velocity : 8 ft/s
- Diameter : 84 in


Pump Station Design Assumptions

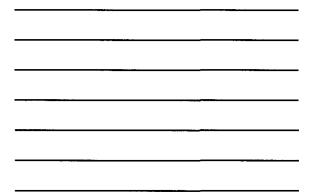
- Pipeline losses : C = 140
- ∷ Minor losses : 4% of Pipeline losses
- Total Dynamic Head = 109 ft
- Pump type : Vertical Turbine
- Number of pumps : 5 duty VFD + 1 spare VFD
- Pump horsepower : 4.700 hp

Alternate Pipeline Corridors

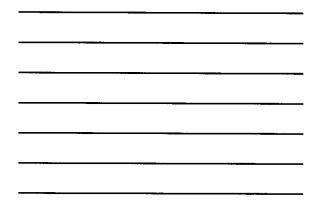
- Pipeline corridors:
- 1-45
- ∘ SH-3
- Residential streets to utility passageway to SH-3
- SH-146

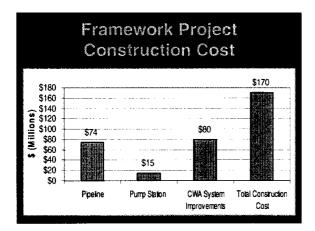

Alternate Pipeline Corridors

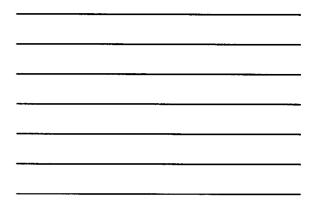
Corridor Selection Criteria

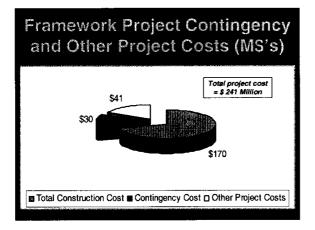

Construction difficulty rating:

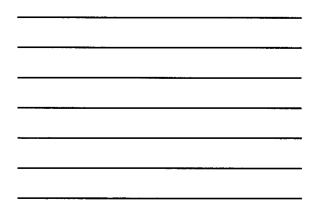
- A: Rural
- B: Utility Corridor
- C: Construction along Highway/Street - Relatively Open
- D: Construction along Highway/Street
 Relatively Congested
 - E: Construction along Highway/Street
 - Highly Congested
 - F: Tunneling

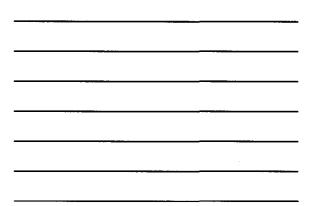


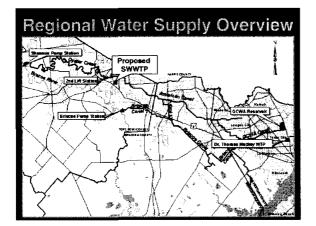

· · · · · · · · · · · · · · · · · · ·

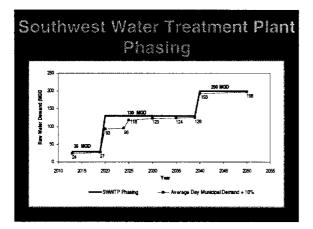

		ram	ewor	k Proje	ct
Take Point	Delivery Point	Length (miles)	Capacity (MGD)	Pipeline Diameter (inches)	Pump Station (total installed hp)
TP-2	DP-1	16	175	84	4,700

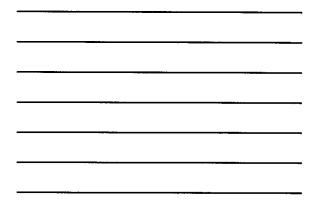



Cost Estimating Parameters						
Cost Care Dary	ett av orthogen	Sourre				
	NATION POLIS					
1. 200 p. 1 12 - 14						
	et an elle angeneration of the	179 - 2 199 - 25				
		1 <i>11</i> 1 5				
	Assessment Carlot Const. 21. Sectors of Const.	$\uparrow N \rightarrow \gamma$				
S1 >::	sate for a straight set	N'N H				
lander an en an ander Aladem van Karland - Frieder ander a		- K등로 - 전월년 -				
usep ble om produktion and brand to Usep ble om produktion ble formul Next Stationers of p						








Pipeline and Pump Station (Millions per Year)	(Millions per	CWA (Millions per Year)	Annua: Capital Costs (Millions per Year)		Unit Cost for Delivaries (S/1.000 gallons)
\$11	\$16	\$10	\$ 17.5	\$ 212	\$ 0 33
	\$16	\$10	\$ 17 5		\$ 0 33

Water Management Strategy	Yield (MGD)	Total Capital Cost (MS)	Total Annual Cost (MS)	S/AF
Trinity Transfer (MWH)	175	241	21	107
Reditas Bosterion GWDB Region Hi	21	132	1Ĉ	112
Alfons Crick Reservan (TWDB Region H)	89	157	12	121
Little River Reservor aTWDB Rusion Hi	115	345	25	197
Denty Danufer dWD8 Region Hi	25	-73	5	

Conclusions

- Trinity Transfer
 - 2030 175 MGD constructed capacity
- Temporary Water Supplies
 2020 to 2030 75 MGD
- Permanent Water Supplies for Western Service Area
 - 2040 and beyond 30+ MGD
- Southwest Water Treatment Plant
 - Phase 1: 2013 30 MGD
 - Phase 2: 2020 130 MGD
 - Phase 3: 2040 200 MGD

TRINITY WATER TRANSFER STUDY

Trinity Transfer Water Study Public Presentation of Report

December 20, 2002 - 10:00 am

Location

Greater Fort Bend Economic Development Council Auditorium One Flour Daniel Drive Lakepoint Plaza, Building D Sugarland, TX 77478

Agenda

10:00-10:15 am	Check in/Look at Exhibits
10:15-11:15 am	Trinity Transfer Water Study Presentation
11:15-11:45 am	Questions/Comments/Wrap-Up

Primary Contact

Tom Visosky MWH Americas 5100 Westheimer, Ste 580 Houston, TX 77056 713-403-1600

Agency Contact

Robert Istre GCWA 3630 Highway 1765 Texas City, TX 77591 409-935-2438

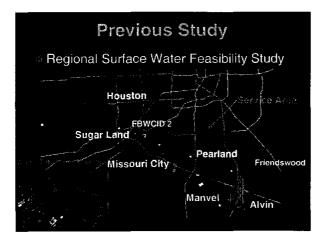
Registration required at visitors desk.

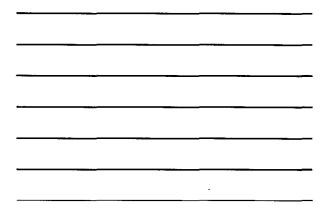
Notice:

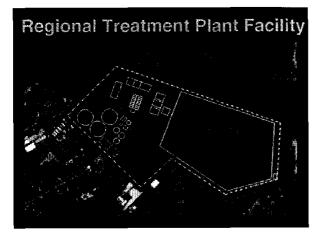
All interested parties are welcome. Please pass information along as appropriate. Please RSVP to Tom Visosky at 713-403-1625 by 12/17.

TRINITY WATER TRANSFER STUDY

Study Participants


- Gulf Coast Water Authority (GCWA)
- City of Houston (COH)
- Coastal Water Authority (CWA)
- a Texas Water Development Board (TWDB)


Project Background

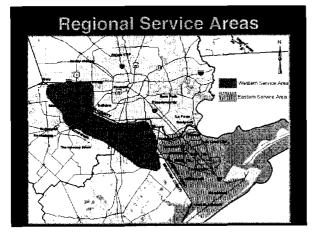

- TWDB Region H Water Management Plan Identified:
- GCWA and COH "Major Water Providers" for the region.
- Transfer of Trinity River Water from COH to GCWA.
 - Trinity River Water to transfer Eastern Service Area
 - Brazos River Water available to Western Service Area

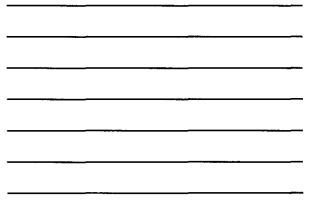
Study Parameters

- Review previous TWDB/GCWA Studies; update water demand projections
- Review of existing regional water facilities
 Assume surface water compatibility with Western Service Area groundwater
- Raw water transmission analysis
- Cost estimate

Regional Service Areas

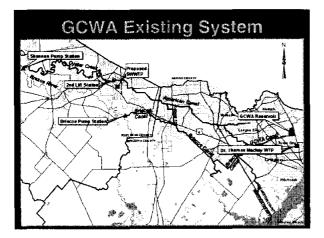
Eastern Service Area

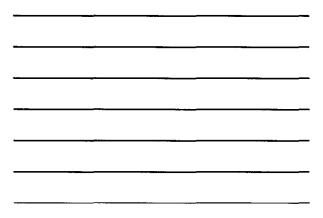

- Municipal Demand
 - Galveston
 - Texas City
 - Dickinson
 - La Marque
 - Santa Fe
 - Hitchcock
 - Centerpoint
 - (Receives Ireated water)
- Industrial Demand
- Dow Chemical
- Company
- Sterling Chemicals
- Valero Energy
- Marathon Petroleum
- Eagle Concrete

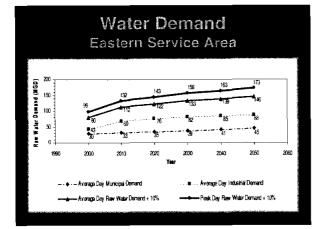

Regional Service Areas

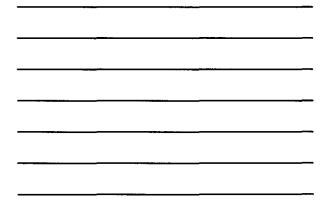
Western Service Area

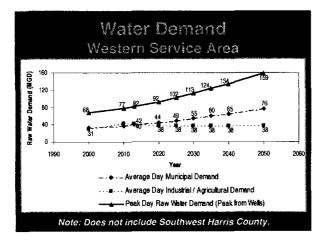
- Municipal Demand
- Southwest Harris
- County
- Sugar Land
- Missouri City
- Pearland
- Alvin
- FBWCID #2
- Manvel
 Arcola

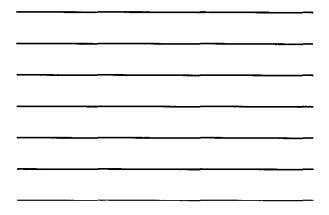

- Industrial Demand
 Chocolate Bayou
 Water Company
 Solutia
 - Oxychem
- Texas Brine
 Texas Department of
- Corrections
- Fluor Daniel

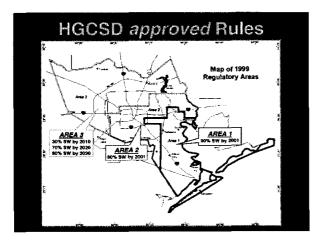


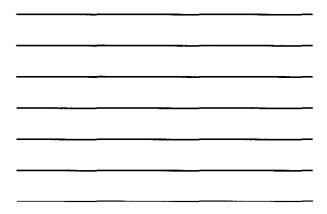

GCWA Existing System

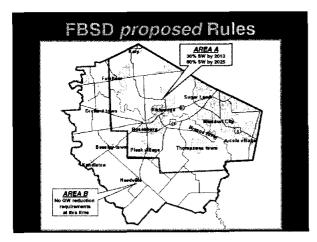

- Canal System A
- Shannon Pump Station/2nd Lift Station
- American Canal
- Canal System B
- Briscoe Pump Station
 Briscoe Canal
- GCWA Canal
- GCWA Reservoir
- Dr. Thomas Mackey Water Treatment Plant
 50 MGD Capacity

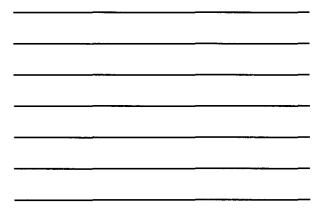


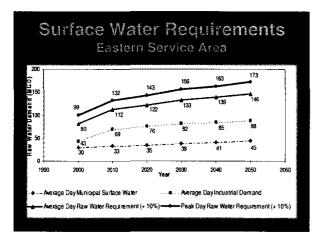


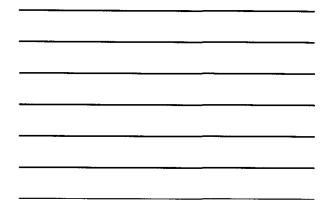

.

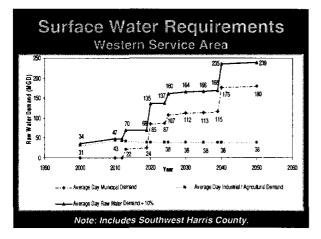


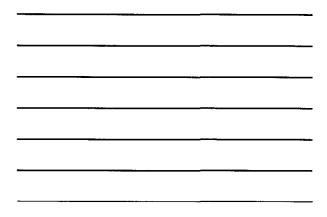


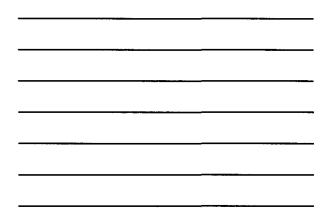


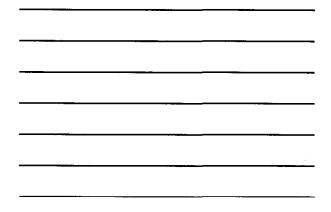








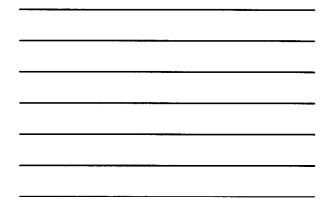


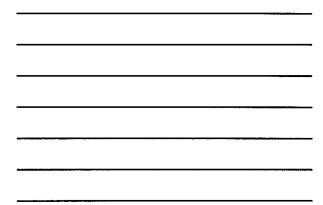

Regional Water Supply Scenario (MGD)									
Regional Water Needs	2000	2010	2013	2020	2025	2030	2035	2040	2050
Existing GCWA Water Bights Western Service Area Bare Water Serviced	212	:0		1.15	1:51	11	1:45	212 73%	212
Gal Marin Persona Asian Rass Walter Demons	50	10) ⁻	1.00	112	1172:	133	194	139	146
t visting Bear Wieler Geboelsting at Lec	-";	11		35	<u>э</u> .	:w,	-95	162	;7a
Tompology regimes of site Trinity Bare Wire LICKA						1,20	1.34	1.36	1. pr.
aramaroki Superevisi sise Webben Surkis Alse								.30	547
Surplus Raw Water	- 98	41	27	5		-17	-16	1 7	2

Regional Water Needs	2000	2010	2013	2020	2025	2030	2035	2040	2050
Western Service Area Raw Water Demand	34	58	70	135	160	164	166	235	239
For some some av Bran Reventional av andere av	51	: 1.?		• •			151	•* <u>,</u>)	-43
Bachteg (M. Were) 1999 Bachter	es	:-		т.	. "	20	.0	84	475
The dy Alexandra Alexandra The dy Alexandra Alexandra						123		- 26	rar.
en entrem die Leurie van De Lieurie Westerne wester Anne								×.,	- 50
Surplus Raw Water	- 98	-31	21	5	0	47	46	7	2

<u></u>		
, <u>, , , , , , , , , , , , , , , , , , </u>	 	

Regional Water Supply Scenario (MGD)												
Regional Water Needs	2000	2010	2013	2020	2025	2030	2035	2040	2050			
Ex on Judit A Vision Robert	21,		112	.112	· · .	11.	112	1.33	1.00			
Western Levels Aller San With Formers	1.4	° 6	<i>.</i>	125	net,	55	15-iy	265	239			
Eastern Service Area Raw Water Demand	80	1 \$2	115	122	128	133	139	139	146			
Existing Real Water Defection Subjus	ы,	.:*	27	.E.	<u>;</u> =,	<u>э</u> н",	ii.	16.2	- 24			
Contensity and the set of the					- 2		_					
for by Roser With HUMPAN			-			2,35	1 (J. S.	1.4.4	146			
ANG									30			
Surplus Raw Water	98	41	27	5	U	47	46	7	2			

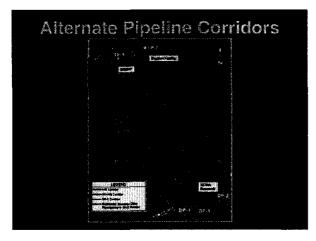

Regional \	Na		Su GD	~ 4	Лy	S	:er	nar	İO
Regional Water Needs	2000	2010	2013	2020	2025	2630	2035	2040	2050
Sector WAWA RUMA	-01	1.12		24.	1 C 1 C	.212			310
Menter i Servici Anta Rogi Wits Elevation	24			1.3	1.9			235	239
Eastern Ferring Area Haw Winter Lorr ent	N:	•••	1.0		· · ·	135	· • •	1.15	(44)
Existing Raw Water Deficit or Surplus	98	41	27	-45	-75	-86	-93	-162	-174
Terloring adult in factoria. Terlog Kiwa Watan (1994)			• • • • •				•		140
Barristan Barristan (Barrino), 1995 Marina Barristan Barristan								30	30
Surplus Baw Water	98	41	27	5	0	47	46	7	2

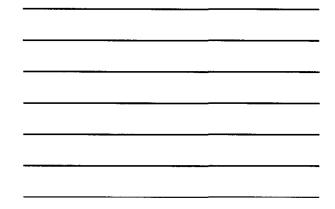

Regional Water Needs	2900	2010	2013	5050	2025	2030	2035	2040	2050
n yang setiya Marina dan se		: *.		1111	1.25	.	÷.,	21.2	2.2
Mala and Tenner, An a Bay (Mala Canton)	• :		- 25	- 19	- 15	*+ 4		<u>а к</u> с,	
galomi Divo Alia HaziWabira (marti			· · .	1.5	1.4	•3 e	1.17	1317	14,
e a completen Maria a Central de completa com	<i>ψ</i> ;	<i>.</i>	A.	.:		₽£,	-12	·6:	174
Temporary Supplies On-Line			†	50	75				
Terry Last Ware, 11 MA							1	1.45	1.36
Surplus Raw Water	98	41	27	5	0	47	46	7	2

·		
	<u></u>	
<u> </u>		

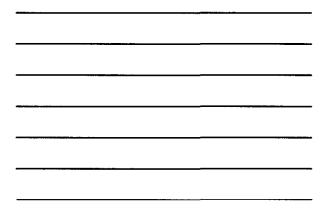
Regional Water Supply Scenario												
(MGD)												
egional Water Needs	5000	2010	2013	2020	2025	2030	2035	2040	2050			
energianava anto in pro-								21/				
Fator Kenzu Acar Watu Cenend	24			* 55	10.5			215	.559			
HERE BOOKS, AND MARKETS, COMMON	50		115	• •	•	133	139	139	146			
oratile prinave Weat in Sente se Brazeline	251	41		.÷-	2	- F;	~	-16 .	-174			
capany dupon to the			<u>+</u>	×.	<i></i>							
nity River Water (CWA)						133	139	139	146			
Brieken baar van andere. Solfen van Alie								.40	371			
urplus Raw Water	98	41	27	5	0	47	46	7	2			
potens z Allo	98	41	27	5	0	47	46					

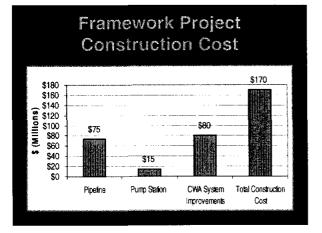
Regional \	Na	ter	Su	ipp	ly	Sc	er	nar	io		
(MGD)											
Regional Water Needs	2000	2010	2013	2020	2025	2030	2035	2040	2050		
Example: 10000 trates or parts	- 49	215	per	1.2	1.1	212	3113	212	212		
Wenger sins is Anla Rew Winter Germine	:1			108	- 40, S	50)	165	235	239		
E Automickenzise Ansa Real Water Damara	50	112	115	1997	1.17	11	1.0	1.13	146		
Excitenți falos Wisca Octobrica Sportul	-15			40	1.	8.	31	te at	174		
Treasurery State Los Line re-			÷	· · · ·							
They Story With UNA-						1212	129	- 39	145		
Permanent Supplies On-Line (Western Service Area)								30	30		
Surplus Raw Water	98	-11	27	5	0	47	46	7	2		

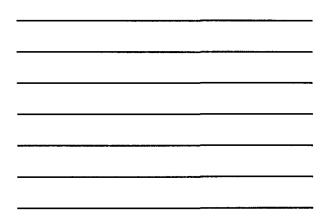

Regional Water Supply Scenario

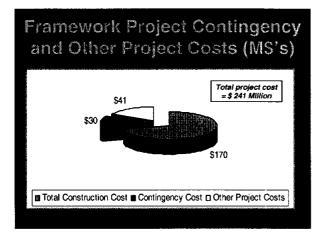

Regional Water Needs	2000	2010	2013	2020	2025	2030	2035	2040	2050
en en al Marchel Perre -	1.3		• •	.11.	112	- 11	112	11)	11.2
Mentre Strengen a. Fra Wing Strengen	14	1.85		194		974	• <i>•</i> 24	5,56,	.09
ele sente environne el Fone da ancienta de	1	111	112	•	· · ·	1.53	154	ير 1	-14.
gine die gehander van de Deutscher van de	44	41	;	4.	1	њ,	Vî.	-55-	174
Terretera dur sulvaure				· · .					
to serve on the Article of MA						• • •	1		*-i5
 Brance Couples of the P Weight and the Association 								-20	
Surptus Raw Water	98	41	27	5	0	47	46	7	2

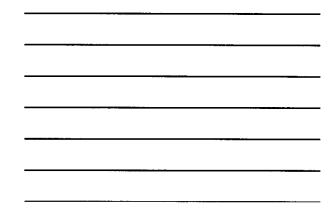
Trinity Transfer Facilities


- CWA Improvements
 - Additional capacity at Lynchburg PS
 - Additional conveyance capacity from Lynchburg PS to Take point
- Take points
- Pump station
- Pipeline
- **Delivery** points

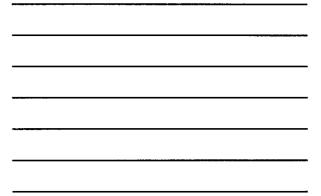

CWA Raw Water System Trinity River PS 3. . .

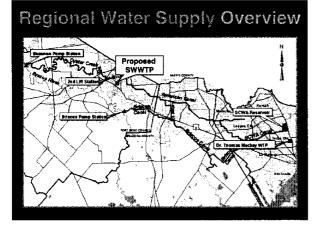


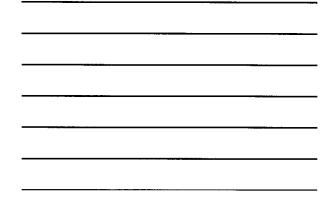


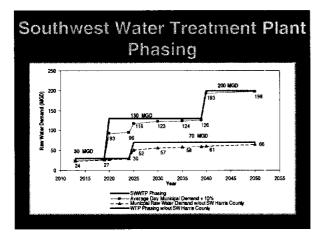

	Fram	ework Pr	oject
Length (miles)	Capacity (MGD)	Pipeline Diameter (inches)	Pump Station (total installed hp)
16	175	84	4,700

Framework Project O & M Unit Cost for New Deliveries


Pipeline and Pump Station (Millions per	(Millions per		Annual Capital Costs (Millions per Year)	Cost	Unit Cost for Deliveries (S-1,000 gallons)
Year)	(((((((((((((((((((por rocor	per riser	per Year)	(Gritton gailoris)
\$11	\$15	\$10	\$17.5	\$ 212	\$ 0.33


\$0.33 (1000 gallons - \$107 acre tee)


Note: Cost of water purchase not included. All water is assumed transferred.



Water Management Strategy	Yield (MGD)	Totał Capital Cost (M\$)	Total Annual Cost (MS)	S/AF
Trinity Transler (MWH)	175	241	21	107
Bemas Reservor (TWDB Region = 0	81	132	10	112
Allens Creek Heservor (FWDB Region H)	80	157	12	121
utile Hover Reserver IWDE: Region 13	115	961	25	197
Inety Transfer (TWD8: Region th	25	63	5	230

Summary

- Trinity Transfer
 - 2030 175 MGD constructed capacity
- Temporary Water Supplies
 2020 to 2030 75 MGD
- Permanent Water Supplies for Western Service Area
 - 2040 and beyond 30+ MGD
- Southwest Water Treatment Plant
 - Phase 1: 2013 30 MGD
 - Phase 2: 2020 130 MGD
 - Phase 3: 2040 200 MGD

Next Steps

Identify Interested Parties

- Perform Alignment Study and Right of Water Acquisition for Trinity Transfer Facilities
- Perform Siting Study for SWWTP and Distribution System including Right of Way Determination and Acquisition
- Develop Temporary Raw Water Supplies
- Perform Blending Study of Surface Water and Western Service Area Groundwater

Study Contacts

Primary Contact

Tom Visosky MWH Americas 5100 Westheimer, Ste 580 Houston, TX 77056 713-403-1600

Agency Contact

Robert Istre GCWA 3630 Highway 1765 Texas City, TX 77591 409-935-2438

TRINITY WATER TRANSFER STUDY

1

Appendix G

Comments

Client: Comment	Gulf Coast Water Auth		Table		Paragraph		Dear	Maria
No.	From	Page No.	No.	Figure No.	Paragraph	Comment	Response	Version
1	Robert Istre; GCWA	ES-4	-	-	2	change 'temporary' to 'short-term water'	changed	September 2002
2	Robert Istre; GCWA	ES-7	-	ES-7	-	First phase change to 30 MGD from 40 MGD	changed	September 2003
3	Robert Istre; GCWA	ES-7	-	•	1	change '2010' and '2019' to'2013' and '2025'	changed	September 2002
4	Robert Istre; GCWA	1-3	-	•	2	change 'prior' to 'in'	changed	September 2002
5	Robert Istre; GCWA	2-1	-	-	3	Confirm source of '148 MGD' min. recorded flow of the Brazos River	confirmed	September 2002
6	Robert Istre; GCWA	2-2	-	-	2	change 'field tests indicate that' to 'current'	changed	September 2002
7	Robert Istre; GCWA	2-2	-	-	2	change 'installed' to 'available'	changed	September 2002
8	Robert Istre; GCWA	2-2	-	-	2	delete 'in the range of	deleted	September 2002
9	Robert Istre; GCWA	2-2	-	-	2	change '260 mgd' to '203 mgd'	changed	September 2002
10	Robert Istre; GCWA	2-2	-	-	2	add 'to'	added	September 2002
11	Robert istre; GCWA	2-2	-	-	3	delete 'primarily'	deleted	September 2002
12	Robert Istre; GCWA	2-2	-	-	3	add 'noi'	added	September 2002
13	Robert Istre; GCWA	2-2	-	-	3	delete 'but the American Canal'	deleted	September 2002
14	Robert Istre; GCWA	2-2	2-2	-	-	change 'B-4' to 'Ranch'add 'Take Point'	incorporated	September 2002
15	Robert Istre; GCWA	2-4	-	-	9	Confirm capacity of Lynchburg Reservoir - 1.5 BG	confirmed	September 2002
16	Robert Istre; GCWA	2-4	-	2-3		Add CWA system capacities	added	September 2002
17	Robert Istre; GCWA	3-2	3-1	-	-	change 'Reliant Energy' to 'Centerpoint'; add it to municipal demand	incorporated	September 2002
18	Robert Istre; GCWA	3-2	3-1	-	-	change 'Union Carbide' to 'Dow Chemicals'	changed	September 2002
19	Robert Istre; GCWA	3-4	3-4	-	-	Give reference for source of Table	incorporated	September 2002
20	Robert Istre; GCWA	3-5	3-6			Chocolate Bayou Water Company', 'Solutia' and 'Oxychem' demands switch to Western Service Area demand	incorporated	September 2002
21	Robert Istre; GCWA	3-7	3-7	-	-	Add 'Oxychem', 'Equistar' and 'Chocolate Bayou Water Company'	added	September 2002
22	Robert Istre; GCWA	3-7	3-8	-	-	Update population data for 'Missouri City'	updated	September 2002
23	Robert Istre; GCWA	3-9	-	-	3	change FBSD's proposed GW reduction rules beyond 2025 to show 60% conversion	incorporated; with the qualifier that the FBSD has not yet planned for 2025 and beyond	September 2002
24	Robert Istre; GCWA	3-11	3-12	-	-	delete Sugar Land's surface water requirement for 2010; and change Missouri City's demand in accordance with reduced population information from Lee Dorger-Dir. of Public Works		September 2002
25	Robert Istre; GCWA	3-12	3-13	-	-	Add 'Oxychem', 'Equistar' and 'Chocolate Bayou Water Company'	added	September 2002
26	Ralph Rundle; CWA	3-15	-	-	-	Mention 'Desalination' as 'Other potential raw water sources'	added	September 2002

Job: Gulf Coast Water Authority Trinity River Conveyance Study Client: Gulf Coast Water Authority

Comment No.	From	Page No.	Table No.	Figure No.	Paragraph	Comment	Response	Version
COMMENT	S DURING THE PUBLI	IC MEETIN	IG HELD	ON NOVEM	BER 21, 2002			
27	Carlton Getty (Asst. Secretary/Treasurer; GCWA)	-	-	•	-	Industrial demand for the Western Service Area was thought to be higher than expected.	A consensus was reached within the GCWA Board members that these numbers can be used since the corresponding industrial entities gave them.	October 2002 (Public Hearing - November 21, 2002)
28	Carlton Getty (Asst. Secretary/Treasurer; GCWA)	-	-		-	What type of Legislature would have to be initiated to make this transfer a reality	David Meesey from the TWDB said that this may or may not be an Interbasin Transfer. MWH to coordinate with TWDB to further investigate this.	October 2002 (Public Hearing - November 21, 2002)
29	W. W. Latimer (President, GCWA)	9	F	-	-	Why do we need the transfer?	Robert Istre informed the purpose of this study was to put a price tag on the transfer	October 2002 (Public Hearing - November 21, 2002)
30	Domenic Di Censo	-	-	-	-	There is no argument on the need of the Southwest Water Treatment Plant	-	October 2002 (Public Hearing - November 21, 2002)
31	W. W. Latimer (President, GCWA)	-	-	-	-	What is the source of water for the Allen's Creek Reservoir ? Is it the Brazos?	Bob Higggins: Yes	October 2002 (Public Hearing - November 21, 2002)
32	W. W. Latimer (President, GCWA)	-	-	-	-	How does the Allen's Creek Reservoir operate?	David Meesey explained that this is a "scalping reservoir"; and it is usually 1/2 full to full.	October 2002 (Public Hearing - November 21, 2002)
33	Jo Trahan	-	-	•	-	This study is more important for the people in the Western Service Area. Is this presentation goin to be presented to them?	Bob Higggins: We are more than willing to present this to them.	October 2002
34	Jo Trahan	-		-	-	Since this study is more pertinent for the Western Service Area, is the City of Houston serious about this? Do you really want this?	Jun Chang, City of Houston: Yes, it is just a matter of time, we have to decide when this would happen.	October 2002 (Public Hearing - November 21, 2002)
35	Jo Trahan	-	-	-	•	This study gives us a good idea of future problems. Even if we say that the water demands are overly optimistic, we know what the future water supply will look like.	-	October 2002 (Public Hearing - November 21, 2002)

Comment No.	From	Page No.	Table No.	Figure No.	Paragraph	Comment	Response	Version
COMMENT	S FROM TEXAS WAT	ER DEVEL	OPMENT	BOARD, ref	LETTER D	ATED DECEMBER 27, 2002.		
36		-	-	•	-	Add list of references of reports reviewed and cited in the report	incorporated	January 2003
37		_	-	•	-	Report does not explain why residential streets to utility passageway to SH-3 is the more promising alignment, and the conclusion isn't obvious from Table 4-7.	New Appendix giving cost details of SH-3 corridor added, and the text was modified accordingly.	January 2003
38		TOC-i	-	-	-	Page no. ES-4 for Raw Water Demand Overview and Trinity Transfer Timing, Page no. ES-5 for Framework Project & Probable Costs and page no. ES-7 should be ES-5, ES-6 and ES-8 respectively	incorporated	January 2003
39		тос-іі	•	-	-	Listing for page 3-11 should be Industrial and Agricultural Water Demand Projections	incorporated	January 2003
40		TOC-ii	•	-	-	Listing for page 3-13 should be Southwest Water Treatment Plant	incorporated	January 2003
41		TOC-il	-	•	-	Page no. 3-14 for Other Potential Raw Water Sources should be 3-15	incorporated	January 2003
42		TOC-iii	-	-	-	The last word in the listing for Appendix A should be Projections instead of Forecasts.	incorporated	January 2003
43		TOC-iv	-	•	-	Page no. ES-5 for Framework Project should be ES-6	incorporated	January 2003
44		TOC-iv	•	-	-	Listing for Table 3-5 should be Projected Peak Day Municipal Water Demand in Eastern Service Area (MGD)	incorporated	January 2003
45		TOC-iv	-	-	-	Listing for Table 3-9 should be Municipal Average Day Average Water Projection Demand for Western Service Area (MGD)	incorporated	January 2003
46		TOC-iv	-	-	-	Listing for Table 3-12 should be Projected Municipal Surface Water Requirements in the Western Service Area (MGD)	incorporated	January 2003
47		TOC-v	-	-	•	Page no. 4-4 for Pipeline Feasibility Criteria Assumptions should be 4-5	no change	January 2003
48		-	-	•		List of figures should be added	incorporated	January 2003
49		ES-1	-		-	Define acronym CDM	incorporated	January 2003
50		ES-3	-	ES-2	-	The municipal demand is shown as 30 MGD, but the demand, as presented in Table 3-1, is 32 MGD	The municipal demand should be 32 MGD. The text was altered accordingly.	January 2003
51		ES-8	•	-	•	Possibly change to "Currently surface water treatment capacity does not exist"	incorporated	January 2003
52		ES-8	-	ES-7	-	The huge jumps in demand should be explained, i.e. from 38 to 95 MGD about 2020 and from 126 to 193 MGD about 2040	These jumps reflect the changes in the subsidence district's groundwater reduction rules - an explanation to this effect is added in the report.	January 2003
53		-	-	-		Some of the graphics could be presented in a more easy-to-read fashion	incorporated	January 2003
54		1-1	-	-	Line 3	The first time Senate Bill 1 is used, it should be referred to as Senate Bill 1 of the 75th Texas Legislature.	incorporated	January 2003
55		2-1	-		Last line, Gulf Coast Water Authority	For clarity the sentence might include the name of the facility, i.e. the Dr. Thomas Mackey plant.	incorporated	January 2003

Comment No.	From	Page No.	Table No.	Figure No.	Paragraph	Comment	Response	Version
56		2-1	-		2nd sentence under Surface Water Source and Supply	State that the Brazos flows through Waco and Richmond, instead of through Waco to Richmond.	incorporated	January 2003
57		2-1	2-1	•		Does 212 MGD total reflect water rights under drought of record conditions?	No. GCWA has entered into a contract with the Brazos River Authority (BRA) for water stored in the BRA reservoirs. When flow in the Brazos decreases, GCWA can request of the stored BRA water. This explanation is mentioned in text.	January 2003
58		2-2 and 2- 3	-	-		These pages discuss the silting of canals from the Brazos and what could be accomplished to increase delivery. What is effect of silting on the Texas City Reservoir, which supplies the Dr. Thomas Mackey Water Treatment Plant?	Majority of the sedimentation would occur in lakes in Fort Bend County, and in the approximately 50 miles of GCWA canals. Over a long period, silting would reduce capacity of the reservoir and, reservoir dredging may be required.	January 2003
59		2-2	-	-	2, line 5	Should be capacity of 203 MG.	The amount in question is the capacity of the Shanon Pump Station, and so it should be 'MGD'	January 2003
60		2-2, 2-3 and 2-4	-	-	-	Titles at top of page should be Planning Area Existing Infrastructure instead of Planning Area Existing Envirostructure.	incorporated	January 2003
61		2-3	-	-	2nd sentence	Report should state that the City currently operates two surface water treatment plants.	incorporated	January 2003
62		2-3	-	-	Water Treatment Facilities	Tiki Island is listed twice	deleted repeated word	January 2003
63		-	2-3 and 2-4	÷	-	Missing these tables	Tables have been deleted.	January 2003
64		2-4	-	-		Title: Coastal Water Authority should be all caps	incorporated	January 2003
65		2-4	-	-	1, sentence 1	The Lynchburg Reservoir and Cedar Point Lateral System either aren't included or aren't labeled in Figure 2-3.	incorporated	January 2003
66		2-4	-	-	•	Last sentence on page needs a verb	incorporated	January 2003
67		3-1 and 3 2	-	-	-	Exclude the TWDB in references to the Region H Regional Water Plan.	incorporated	January 2003

Comment No.	From	Page No.	Table No.	Figure No.	Paragraph		Response	Version
68		3-2	-	-	-	Population subtotal in Table 3-1 should be 181,000 to correspond to the total given in Table 3-2	incorporated	January 2003
69		3-3	-	-	-	The first line should refer to the Region H Regional Water Plan municipal water use projections instead of the TWDB municipal water use projections	incorporated	January 2003
70		3-5	3-6	-	-	Table based on information supplied by GCWA. The assumptions and basis for that data would be helpful especially since the demand is projected to more than double and the amount for industrial customers is so much greater than that for municipal customers	GCWA conducts annual surveys and these demand projections are results of the survey. This explanation is mentioned in the text.	January 2003
71		3-6	-	-	Current Population and Water Usage, line 2	The statement should be as reported in the Region H Plan instead of as reported by the TWDB through the Region H Plan.	incorporated	January 2003
72		3-6	-	-	Current Population and Water Usage, line 3	The current western demand is given as 200 MGD rather than the 64 MGD as shown in Table 3-7.	The demand should be 64 MGD. Text changed.	January 2003
73		3-6	3-7	-	•	Population subtotal in Table 3-7 should be 222,600 to correspond to the total given in Table 3-8.	incorporated	January 2003
74		3-7	3-8	-	-	Table contains the same population projections as the Region H Regional Water Plan, except for Missouri City. Although the numbers for Missouri City are reasonably close, the report might explain why the City of Missouri City's data were used.	Population data from 2010 through 2050 reduced by 10% of Region H values after consultations with City of Missouri City's Dir. of Public Works, Lee Dorger. This explanation also added in the footnote to Table 3-8. Also please refer requesting comment number 24.	January 2003
75		3-7 and 3 8	3-9 and 3-11	-	-	Comparing the two tables, it is an apparent increase in total peaking factor from 2.03 in years 2000 and 2010 to 2.08 in years 2020 through 2050. What is the basis for this increase?	Due to rounding of water projection numbers. Also, the peaking factor for each 'Municipal Utility' is constant for the entire planning period.	January 2003
76		3-9	-	-	Line 3	Delete District after Harris and Galveston Coastal Subsidence District, since the ends in Districts.	incorporated	January 2003
77		3-9	-	-	Next to last paragraph	Clarify that the City of Houston's consultant is CDM. Spell out CDM when it is first used in the report.	incorporated	January 2003

Comment No.	From	Page No.	Table No.	Figure No.	Paragraph	Comment	Response	Version
78		3-10	-	-	-	An explanation of how CDM arrived at their demand figures for Southwest Harris County would be helpful, especially since it more than doubles the surface water demands starting in 2020.	CDM arrived at these demand figues by analysis census data and using a per capita water generation factor. This process was explained in a meeting with CDM, and the results were presented to MWH. Data presented in Appendix C.	January 2003
79		3-10	-	-	-	The first sentence under Figure 3-2 appears erroneous. Should the statement be surface water rather than groundwater?	The statement should be surface water. Change incorporated.	January 2003
80		3-10	3-12	-	-	Table shows a jump in surface water requirements from 60 MGD in year 2035 to 120 MGD in year 2040 in Southwest Harris County. Please explain, since allowable groundwater pumping remains constant in that interval.	As per information from report by CDM. See Appendix C.	January 2003
81		3-11	3-13	-	-	Please explain the unusual fluctuations in water demand for the farmers on A & B Systems	Data relies on estimates provided by customers to GCWA.	January 2003
82		3-12	-	-	-	Will groundwater be used to meet peak water demands? Is a 10% total loss for filter backwash and for conveyance reasonable? Was a 10 % loss also included for projected average day water demands as stated on page ES-8?	Yes, groundwater will be used to meet peak water demands. The 10% total loss for filter backwash and conveyance is based on the Regional Surface Water Plant Feasibility Study for Mid-Brazoria County Planning Group Report, dated September 2001. Also, the Eastern Service Area will convey water through pipelines thus reducing water losses, and the Western Service Area canal system will be reduced thus reducing the water losses. Due to this, a 10% total loss is believed to be appropriate. A 10% loss was included as stated on page ES-8.	January 2003
83		3-14	3-14	-	-	Why are the supplies shaded in Table?	Shading was done to highlight them. Shading removed from table	January 2003

Comment No.	From	Page No.	Table No.	Figure No.	Paragraph	Comment	Response	Version
84		3-15	-	-	-	Another potential source of raw water would be scalping a portion of flood flows into off-channel reservoirs.	incorporated	January 2003
85		4-2	4-1	-	-	Table states as an initial screening issue, that the I-45 corridor has a narrow construction within right-of-way. It would be informative if the right-of-way were defined. Is this right-of-way allowed along public roads by the Texas Department of Transportation or for an existing water line along I-45?	Texas Department of Transportation was recontacted, and they reconveyed the limited availability of the right-of-way along the I-45 corridor.	January 2003
86		4-3	•	-	-	Plural verb should'nt be used with a singular subject	incorporated	January 2003
87		4-3	-	-	-	The rating scale is from A to F rather than A to G. Also, A is the least difficult instead of the most difficult	incorporated	January 2003
88		5-1	5-1	-	-	Provide additional reference information on the sources used for the cost estimate parameters	New Appendix giving Region H Construction Cost development procedures included.	January 2003
89		5-2	-	5-2		Does \$74 million pipeline construction cost consider any dewatering due to possible high water table conditions?	Cost includes standard construction cost for the region.	January 2003
90		5-2	5-2	-	-	What fraction of 175 MGD ultimate demand was used to determine the \$.33 cost per 1,000 gallons?	The \$.33/1,000 gallons cost was based on the year 2050 GCWA peak raw water requirement of 175 MGD (design capacity).	January 2003
91			-	-		Appendix A: Title should be Region H Water Plan not TWDB Population and Consumptive Water Demand Projections	incorporated	January 2003
92		-	-	-	-	Appendix A: Population and Consumptive Water Demand Forecasts are not included for Brazoria County	incorporated	January 2003