TEXAS WATER COMMISSION

Joe D. Carter, Chairman O. F. Dent, Commissioner H. A. Beckwith, Commissioner

BULLETIN 6409

RECONNAISSANCE INVESTIGATION OF THE GROUND-WATER

RESOURCES OF THE GUADALUPE, SAN ANTONIO,

AND NUECES RIVER BASINS, TEXAS

By

W. H. Alexander, Jr., Geologist, B. N. Myers, Hydraulic Engineer, and O. C. Dale, Engineering Technician United States Geological Survey

> Prepared by the U. S. Geological Survey in cooperation with the Texas Water Commission

> > Hall Southwest Water Consultants, Inc. 3303 Northland Drive, Suite 311 Austin, Texas 78731

August 1964

Published and distributed by the Texas Water Commission Post Office Box 12311 Austin, Texas 78711

Authorization for use or reproduction of any original material contained in this publication, i. e., not obtained from other sources, is freely granted without the necessity of securing permission therefor. The Commission would appreciate acknowledgement of the source of original material so utilized. FOREWORD

The ground-water reconnaissance study is the first phase of the State's water-resources planning concerning ground water as outlined in the progress report to the Fifty-Sixth Legislature entitled "Texas Water Resources Planning at the End of the Year 1958." Before an adequate planning program for the development of the State's water resources can be prepared, it is necessary to determine the general chemical quality of the water, the order of magnitude of ground-water supplies potentially available from the principal water-bearing formations of the State, and how much of the supply is presently being used. To provide the data necessary to evaluate the ground-water resources of Texas, reconnaissance investigations were conducted throughout the State under a cooperative agreement with the U.S. Geological Survey. The ground-water reconnaissance investigations were conducted by river basins so that the results could be integrated with information on surface water in planning the development of the State's water resources. The river basins of the State were divided between the Ground Water Division of the Texas Water Commission and the U.S. Geological Survey for the purpose of conducting and reporting the results of the ground-water investigations.

This bulletin presents the results of the Guadalupe, San Antonio, and Nueces River Basins ground-water reconnaissance investigation. It provides a generalized evaluation of the ground-water conditions in the basin and points out areas where detailed studies and continuing observations are necessary. The additional studies will be required to provide estimates of the quantity of ground water available for development in smaller areas, to provide more information on changes in chemical quality that may affect the quantity of fresh water available for development, and to better determine the affects of present and future pumpage. This report was prepared by personnel of the U.S. Geological Survey.

TEXAS WATER COMMISSION

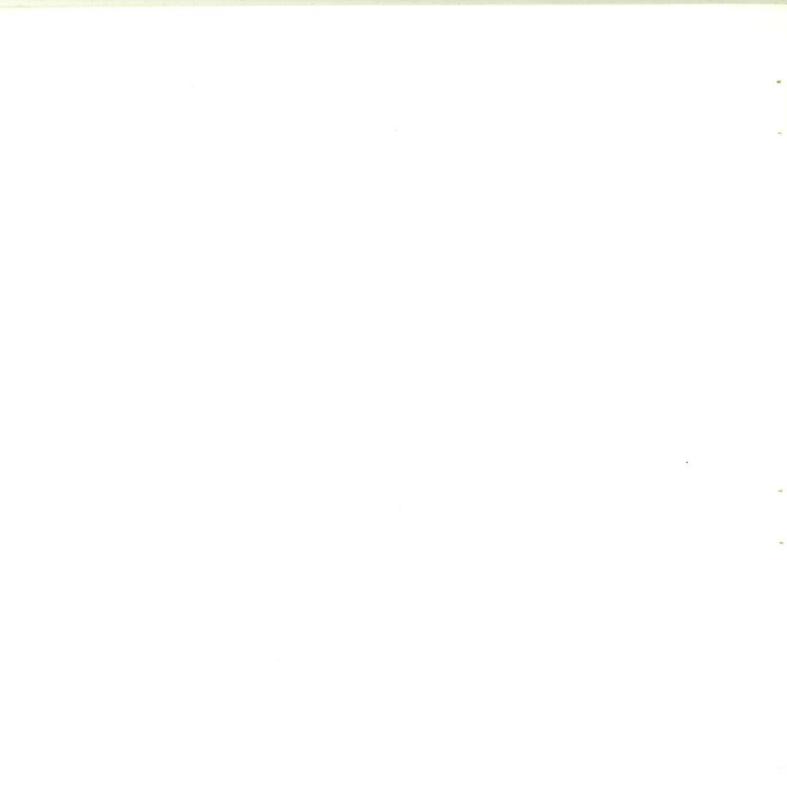
oe D. Carter, Chairman

TABLE OF CONTENTS

Page

-1

ABSTRACT	1
INTRODUCTION	5
Purpose and Scope	5
Location and Extent of the Area	6
Economic Development and Cultural Features	6
Methods of Investigation	8
Well-Numbering System	8
Previous Investigations	11
Acknowledgments	12
GEOGRAPHY	13
CLIMATE	13
GENERAL GROUND-WATER HYDROLOGY	14
Source and Occurrence of Ground Water	14
Recharge, Movement, and Discharge of Ground Water	20
Chemical Quality of Ground Water	20
Changes in Water Levels	25
Hydraulic Characteristics of Aquifers	25
GENERAL GEOLOGY	29
Geologic History	29
Geologic Structure	31
Rio Grande Embayment	31
Balcones Fault Zone	31
Luling Fault Zone	32


211

	Page
Geologic Units and Their Water-Bearing Properties	32
Pre-Cretaceous Rocks	33
Cretaceous System	33
Coahuila Series	33
Comanche Series	37
Trinity Group	37
Travis Peak (Subsurface Pearsall) Formation	37
Pine Island Shale Member	37
Cow Creek Limestone Member	37
Hensell Sand Member	37
Glen Rose Limestone	38
Lower Member	38
Upper Member	38
Fredericksburg Group	39
Walnut Clay	39
Comanche Peak Limestone	39
Edwards Limestone	39
Kiamichi Formation	40
Washita Group	40
Georgetown Limestone	40
Midway Group, Gulf Series, Buda Limestone, and Grayson Shale.	41
Tertiary System	41
Eocene Series	41
Wilcox Group	41
Claiborne Group	42
Carrizo Sand	43

-1

	Page
Mount Selman Formation	43
Reklaw Member	43
Queen City Sand Member	43
Weches Greensand Member	43
Bigford Member	43
Post-Bigford Beds	44
Mount Selman Formation, Undifferentiated	44
Sparta Sand	44
Cook Mountain Formation	45
Cook Mountain Formation and Sparta Sand, Undifferentiated	45
Yegua Formation	46
Jackson Group	46
Oligocene(?) Series	46
Frio Clay	46
Oligocene(?) and Miocene(?) Series	47
Catahoula Tuff	47
Catahoula Sandstone	47
Miocene Series	47
Oakville Sandstone	47
Miocene(?) Series	48
Lagarto Clay	48
Pliocene Series	48
Goliad Sand	48
Tertiary(?) System	49
Pliocene(?) Series	49
Uvalde Gravel	49

	Page
Quaternary System	49
Pleistocene Series	49
Lissie Formation	49
Beaumont Clay	49
Pleistocene and Recent Series	49
Leona Formation and Alluvium	49
GROUND WATER IN THE EDWARDS PLATEAU	50
Primary Aquifer	50
Edwards and Associated Limestones	50
Physical Description	50
Recharge, Movement, and Discharge of Ground Water	51
Chemical Quality of Ground Water	51
Utilization and Present Development	51
Changes in Water Levels	51
Availability and Potential Development	53
Problems	53
Secondary Aquifers	53
Hosston and Sligo Formations	53
Travis Peak Formation (Pearsall Formation in Subsurface)	54
Glen Rose Limestone	54
Recent Alluvium	55
GROUND WATER IN THE WEST GULF COASTAL PLAIN	56
Primary Aquifers	56
Balcones Aquifer	56
Physical Description	56
Occurrence of Ground Water	57

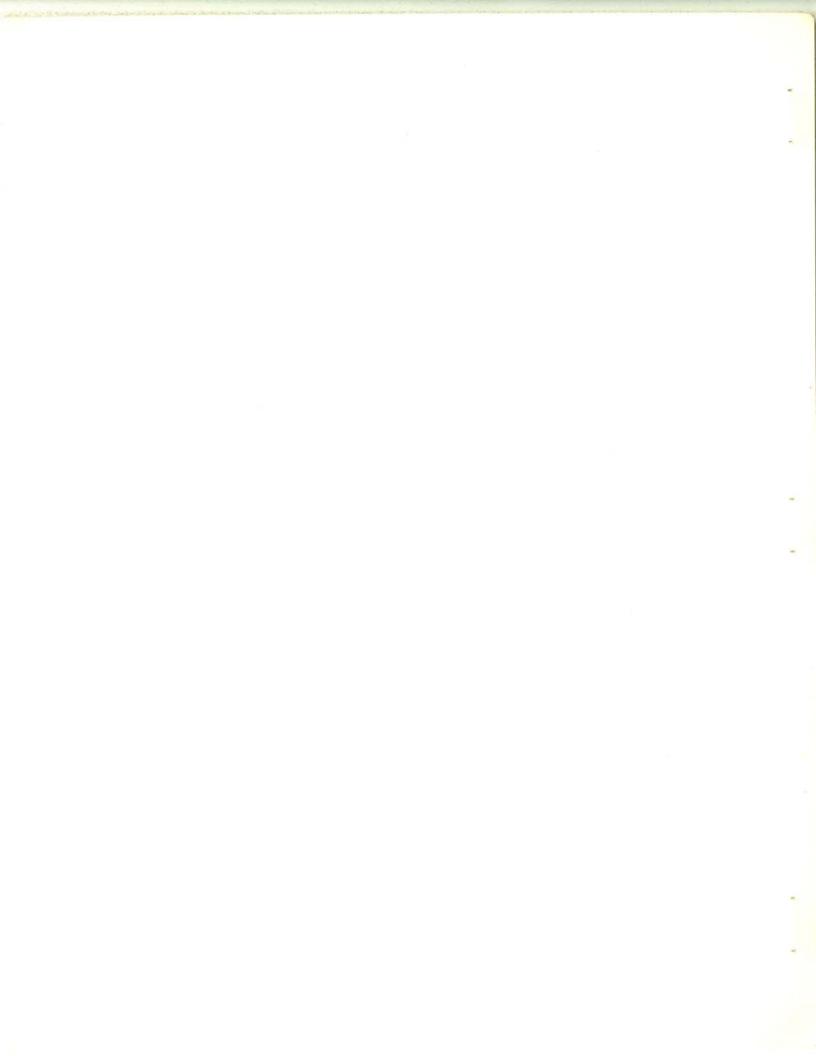
	1460
Recharge of Ground Water	57
Movement of Ground Water	57
Discharge of Ground Water	57
Chemical Quality of Ground Water	61
Utilization and Present Development	61
Changes in Water Levels	67
Availability and Potential Development	67
Problems	70
Carrizo Sand and Wilcox Group, Undifferentiated	70
Physical Description	70
Recharge, Movement, and Discharge of Ground Water	71
Chemical Quality of Ground Water	72
Utilization and Present Development	72
Nueces River Basin	72
San Antonio River Basin	82
Guadalupe River Basin	82
Changes in Water Levels	82
Availability and Potential Development	82
Nueces River Basin	86
San Antonio River Basin	87
Guadalupe River Basin	87
Problems	87
Gulf Coast Aquifer	88
Physical Description	88
Recharge, Movement, and Discharge of Ground Water	88
Chemical Quality of Ground Water	88

Page

	rage
Utilization and Present Development	89
Nueces River Basin	89
San Antonio River Basin	89
Guadalupe River Basin	89
Availability and Potential Development	89
Nueces River Basin	92
San Antonio River Basin	92
Guadalupe River Basin	92
Problems	93
Secondary Aquifers	93
Queen City Sand Member of the Mount Selman Formation	93
Sparta Sand	94
Leona Formation and Alluvium	95
SUMMARY OF GROUND-WATER WITHDRAWALS IN THE GUADALUPE, SAN ANTONIO, AND NUECES RIVER BASINS	96
SELECTED REFERENCES	101

TABLES

1.	Geologic units and their water-bearing properties, Guadalupe, San Antonio, and Nueces River Basins	34
2.	Subdivisions of the Gulf Series	42
3.	Chemical analyses of water from selected wells in the Edwards Plateau, Guadalupe, San Antonio, and Nueces River Basins	52
4.	Estimated recharge to and discharge from the Balcones aquifer, 1934-59, in thousands of acre-feet	58
5.	Discharge of ground water by major wells and springs in the Balcones aquifer, 1961	64
6.	Chemical analyses of water from selected wells in the Balcones aquifer, Guadalupe, San Antonio, and Nueces River Basins	66


Page

7.	Chemical analyses of water from selected wells in the West Gulf Coastal Plain, Nueces River Basin	73
8.	Chemical analyses of water from selected wells in the West Gulf Coastal Plain in the Guadalupe and San Antonio River Basins	77
9.	Pumpage from major wells tapping the Carrizo Sand and Wilcox Group, undifferentiated, 1961	81
10.	Comparative estimates of the availability of ground water in the Carrizo Sand and Wilcox Group, undifferentiated, in the Guada- lupe, San Antonio, and Nueces River Basins	85
11.	Discharge of ground water by major wells in the Gulf Coast aquifer, 1961	90
12.	Comparative estimates of the availability of ground water in the Gulf Coast aquifer in the Guadalupe, San Antonio, and Nueces River Basins	91
13.	Summary of ground-water discharge by major wells and springs in the Guadalupe River Basin, 1961, in acre-feet	97
14.	Summary of ground-water discharge by major wells and springs in the San Antonio River Basin, 1961, in acre-feet	98
15.	Summary of ground-water discharge by major wells and springs in the Nueces River Basin, 1961, in acre-feet	99
16.	Summary of ground-water discharge by major wells and springs in the Guadalupe, San Antonio, and Nueces River Basins, 1961, in acre-feet	100

ILLUSTRATIONS

Figures

1.	Map of the Guadalupe, San Antonio, and Nueces River Basins, Showing Physiographic Provinces	7
2.	Map of Texas Showing the Well-Numbering System Used by the Texas Water Commission	9
3.	Map of Texas Showing Mean Annual Precipitation, in Inches, Based on the Period 1931-55	15
4.	Average Monthly Precipitation at Winter Haven, San Antonio, Dilley, and Beeville	16

5.	Average Monthly Temperature and Precipitation at Kerrville, Uvalde, Seguin, and Cuero	17
6.	Average Monthly Evaporation and Temperature at Winter Haven, San Antonio, Dilley, and Beeville	18
7.	The Hydrologic Cycle in the Guadalupe, San Antonio, and Nueces River Basins	19
8.	Diagram for the Classification of Irrigation Waters	24
9.	Graph Showing Relation of Drawdown to Transmissibility	27
10.	Graph Showing Relation of Drawdown to Time in an Artesian Aquifer.	28
11.	Graph Showing Relation of Drawdown to Time in a Water-Table Aquifer	30
12.	Estimated Annual Recharge to and Discharge from the Balcones Aquifer	59
13.	Discharge from Springs and Wells in the Balcones Aquifer	60
14.	Discharge from Comal Springs, Water Level in Well AY-68-37-301, Precipitation at Boerne, and Comparison of Accumulated Recharge and Accumulated Discharge in the Balcones Aquifer	62
15.	Discharge from Major Springs in the Balcones Aquifer	63
16.	Temperature, Depth, and Quality of Water in the Balcones Aquifer	65
17.	Hydrographs of Representative Wells in the Balcones Aquifer	68
18.	Hydrographs of Representative Wells in the Balcones Aquifer	69
19.	Hydrographs of Wells in the Carrizo Sand in Dimmit, Zavala, Frio, Atascosa, and Wilson Counties	83

[All plates in pocket]

- Geologic Map of the Guadalupe and San Antonio River Basins, Showing Locations of Wells and Springs and Major Subdivisions
- Geologic Map of the Nueces River Basin, Showing Locations of Wells and Springs and Major Subdivisions
- 3. Geologic Section A-A', Guadalupe River Basin
- 4. Geologic Section B-B', San Antonio River Basin

Page

- 5. Geologic Section C-C', Nueces River Basin
- Geologic Section D-D', Guadalupe, San Antonio, and Nueces River Basins
- 7. Approximate Altitude of Water Levels in Wells in the Balcones Aquifer in the Guadalupe, San Antonio, and Nueces River Basins, March 1958
- 8. Map of the Nueces River Basin, Showing the Approximate Altitude of the Top of the Carrizo Sand
- 9. Map of the Guadalupe and San Antonio River Basins, Showing the Approximate Altitude of the Top of the Carrizo Sand
- Approximate Altitude of Water Levels in Wells in the Carrizo Sand, Nueces River Basin, Fall and Winter, 1960-61
- Map of the Nueces River Basin, Showing the Approximate Thickness of Fresh to Slightly Saline Water Sands in the Carrizo Sand and Wilcox Group, Undifferentiated, and in the Gulf Coast Aquifer.
- 12. Map of the Guadalupe and San Antonio River Basins, Showing the Approximate Thickness of Fresh to Slightly Saline Water Sands in the Carrizo Sand and Wilcox Group, Undifferentiated, and in the Gulf Coast Aquifer
- Map of the Lower Nueces River Basin, Showing the Approximate Altitude of the Base of Fresh to Slightly Saline Water in the Gulf Coast Aquifer
- 14. Map of the Lower Guadalupe and San Antonio River Basins, Showing the Approximate Altitude of the Base of Fresh to Slightly Saline Water in the Gulf Coast Aquifer

RECONNAISSANCE INVESTIGATION OF GROUND-WATER RESOURCES THE OF GUADALUPE, SAN ΑΝΤΟΝΙΟ, ТНЕ AND BASINS, TEXAS NUECES RIVER

ABSTRACT

The Guadalupe, San Antonio, and Nueces River Basins, Texas, comprise an area of 27,377 square miles and include all or parts of 39 counties in the southwestern and south-central parts of the State. The Guadalupe Basin includes 5,972 square miles, the San Antonio Basin 4,255 square miles, and the Nueces Basin 17,180 square miles. The three river basins constitute 10.5 percent of the area of Texas and have a population of about 1,000,000 people, about 10.4 percent of the population of the State.

The economy is dependent largely on the availability and quality of ground water for public supply, agriculture, and industry. Surface water supplies only three cities and a small part of the irrigation requirements. The climate of the Guadalupe, San Antonio, and Nueces River Basins ranges from semiarid in the western part of the Nueces Basin to dry subhumid in the eastern and southeastern parts of the Guadalupe Basin. Consequently, the agriculture in a large part of the report area is limited to ranching and irrigation farming where supplies of ground water are available. The larger cities are located in areas where large quantities of fresh ground water are available. The estimated rate of discharge of ground water by major wells and springs in the three-basin area in 1961 was irrigation, 240,000 acre-feet or 220 mgd (million gallons per day); public supply, 150,000 acre-feet (130 mgd); industrial uses, 32,000 acrefeet (29 mgd); and spring flow, 450,000 acre-feet (410 mgd).

The Guadalupe, San Antonio, and Nueces River Basins are in two physiographic sections--the Edwards Plateau of the Great Plains province and the West Gulf Coastal Plain of the Coastal Plain province. The Balcones escarpment, which faces southeastward and separates the two sections, is from 200 to 400 feet high between Hays County and central Uvalde County; farther west the escarpment is less pronounced.

The Edwards Plateau, which includes about 7,300 square miles, is north and northwest of the Balcones escarpment. In the northern part of the Nueces Basin, large areas of the plateau are relatively undissected by stream erosion; however, in the Guadalupe and San Antonio Basins, broad valleys have been cut into the plateau. Only a small amount of land along the streams is suitable for farming; consequently, almost all the Edwards Plateau in the report area is devoted to ranching. The altitude of the plateau ranges from about 2,400 feet on the divides in the northern part of the report area to about 600 feet along the Guadalupe River at New Braunfels. The West Gulf Coastal Plain, which includes about 20,100 square miles, extends from the Balcones escarpment southeastward to the Gulf of Mexico. Low relief and the gentle gulfward slope of the land surface characterize that part of the section near the Gulf of Mexico; the surface is rolling to moderately hilly near the Balcones escarpment. The altitude of the West Gulf Coastal Plain ranges from about 1,500 feet in central Kinney County to sea level at the mouths of the Nueces and Guadalupe Rivers.

The inner part of the Coastal Plain, which includes the cities of San Antonio, New Braunfels, San Marcos, and Uvalde, is the most densely populated part of the report area. Most of the industries are in or near San Antonio, and most of the irrigation is southwest of San Antonio.

The two major physiographic sections, the Edwards Plateau and the West Gulf Coastal Plain, also form two major hydrologic subdivisions.

The Edwards Plateau hydrologic subdivision consists of beds of limestone, dolomitic limestone, marl, shale, sandstone, and conglomerate, all of Cretaceous age. The rocks dip gently toward the south or southeast. Water occurs under water-table conditions in the Edwards and associated limestones, the only primary aquifer in the Edwards Plateau, and the discharge from springs draining the aquifer contributes to the recharge of the Balcones aquifer in the West Gulf Coastal Plain. Because of their importance elsewhere in the Edwards Plateau, the Edwards and associated limestones are regarded as a primary aquifer, although the only pumpage in the report area is for domestic and livestock uses. All the water for public supply and the small amount used for irrigation are obtained from the secondary aquifers -- the Hosston, Sligo, and Travis Peak Formations, and the Glen Rose Limestone of Cretaceous age, and Recent alluvium. Water occurs under water-table conditions in the Recent alluvium and under artesian conditions in the other secondary aquifers. The estimated pumpage in 1961 from major wells in the secondary aquifers was 2,500 acre-feet (2.1 mgd) for public supply and 770 acre-feet (0.7 mgd) for irrigation. The data do not permit an estimate of the potential development of the aquifers in the Edwards Plateau, but it probably is many times the present rate of withdrawal.

The West Gulf Coastal Plain hydrologic subdivision includes the following primary aquifers: The Balcones aquifer, the Carrizo Sand and Wilcox Group, differentiated, and the Gulf Coast aquifer, and the following secondary aquifers: The Queen City Sand Member of the Mount Selman Formation, the Sparta Sand, and the Leona Formation and Recent alluvium. Ground water occurs under artesian conditions in all the primary aquifers and in the Queen City and Sparta; it occurs under water-table conditions in the Leona Formation and Recent alluvium.

The Balcones aquifer in this report refers to that part of the Edwards and associated limestones in which the water is fresh and under artesian pressure. The Balcones aquifer includes about 2,100 square miles in a belt along the inner border of the Coastal Plain. The Balcones aquifer consists of limestone, dolomitic limestone, and marly limestone. The water occurs in a network of channels that have been enlarged by the solvent action of the water on the limestones. The channels generally follow fractures that are associated with and parallel to faults. A large part of the recharge to the Balcones aquifer is seepage from streams that cross the outcrop of the aquifer in the Balcones fault zone. The annual average recharge to the Balcones aquifer during the period 1934-59, which included a 10-year drought, was about 502,000 acre-feet, and the annual average discharge during the same period was about 509,000 acre-feet. The estimated discharge of ground water by major wells and springs in the Balcones aquifer in 1961 was as follows: public supply 130,000 acrefeet (110 mgd), irrigation 61,000 acre-feet (55 mgd), industry 28,000 acre-feet (25 mgd), and spring flow 460,000 acre-feet (410 mgd). The larger springs are at New Braunfels, San Marcos, San Antonio, and near Uvalde. Most of the pumpage for public supply and industrial uses is in the San Antonio area. The quantity of water in storage in the Balcones aquifer may be as much as 15,000,000 acre-feet.

South and southeast of the Balcones aquifer, the Coastal Plain hydrologic subdivision consists chiefly of layers of sand or sandstone alternating with shale or clay. These rocks of Tertiary and Quaternary ages crop out in belts roughly parallel to the coast, dip gently in the gulfward direction, and contain ground water under artesian pressure. Beginning with the Carrizo Sand and Wilcox Group which crops out near the inner border of the Coastal Plain, the aquifers crop out in the gulfward direction in the following order: Queen City Sand Member of the Mount Selman Formation, Sparta Sand, and the Gulf Coast aquifer.

The Carrizo Sand and the sands in the Wilcox Group of Eocene age are interconnected hydrologically. Therefore, they are treated in this report as a single primary aquifer. The Carrizo Sand consists of coarse to fine sand, sandstone, silt, and clay. The Wilcox generally is finer grained, consisting of clay, silt, medium- to fine-grained sandstone, sandy shale, and thin beds of lignite. The thickness of the Carrizo ranges from 200 to 1,000 feet, and the thickness of the Wilcox ranges from 150 to 2,300 feet. The Carrizo Sand yields moderate to large quantities of fresh to slightly saline water which occurs as far downdip as 4,800 feet below sea level in the San Antonio River Basin. The estimated pumpage from major wells tapping the Carrizo and Wilcox in 1961 was for irrigation 170,000 acre-feet (150 mgd), public supply 7,800 acre-feet (7.0 mgd), and industry 1,300 acre-feet (1.2 mgd). Most of the pumpage for irrigation is in the Nueces Basin where the large withdrawals have caused a general decline in the water levels. The pumpage from the Carrizo and Wilcox in 1961 was 180,000 acre-feet (160 mgd) in the Nueces Basin, 2,500 acre-feet (2.2 mgd) in the San Antonio Basin, and 1,300 acre-feet (1.2 mgd) in the Guadalupe Basin. If the water levels were lowered to 400 feet below the land surface along an assumed line of discharge across each basin, the estimated quantities of fresh water available from storage in the Carrizo and Wilcox would be, as follows: Nueces River Basin, 3,200,000 acre-feet; San Antonio Basin, 2,000,000 acrefeet; and Guadalupe River Basin, 3,100,000 acre-feet. Assuming adequate recharge and the water levels at 400 feet, the Carrizo and Wilcox would transmit 62,650 acre-feet per year (about 60 mgd) in the Nueces River Basin, 33,500 acre acre-feet per year (30 mgd) in the San Antonio River Basin, and 52,300 acrefeet per year (46 mgd) in the Guadalupe River Basin.

The Queen City Sand Member of the Mount Selman Formation is a secondary aquifer in the San Antonio and Nueces River Basins. It consists of medium- to fine-grained sand, clay, and shale, and the thickness ranges from 500 to 1,000 feet. The Queen City yields small to moderate quantities of fresh to slighly saline water. The estimated pumpage from major wells tapping the Queen City in 1961 was 760 acre-feet for irrigation in the San Antonio Basin and 780 acrefeet for public supply in the Nueces Basin.

The Sparta Sand is a secondary aquifer in the Guadalupe and Nueces River Basins. It consists of medium- to fine-grained sand and some clay, and maintains a uniform thickness of about 110 feet in the report area. The Sparta yields small to moderate quantities of fresh to slightly saline water in the outcrop area and slightly to moderately saline water downdip. The estimated pumpage from major wells tapping the Sparta in 1961 was 69 acre-feet for public supply in the Guadalupe Basin and 1,400 acre-feet for irrigation in the Nueces Basin.

The Catahoula Tuff, Oakville Sandstone, Lagarto Clay, Goliad Sand, Lissie Formation, and Beaumont Clay are interconnected hydrologically and are considered as a unit and referred to as the Gulf Coast aquifer, one of the primary aquifers in the report area. These stratigraphic units, which consist of sand or sandstone and shale or clay are in the coastward one-half of the Coastal Plain area. The Gulf Coast aquifer has a maximum thickness of about 1,800 feet in the Nueces Basin and about 1,900 feet in the San Antonio and Guadalupe Basins. The Gulf Coast aquifer yields small to large quantities of fresh to moderately saline water. The estimated pumpage from major wells tapping the Gulf Coast aquifer in 1961 was for irrigation 8,700 acre-feet (7.8 mgd), public supply 6,900 acre-feet (6.2 mgd), and industry 2,200 acre-feet (1.9 mgd). The pumpage from the Gulf Coast aquifer in 1961 was 9,100 acre-feet (8.1 mgd) in the Nueces Basin, 2,100 acre-feet (1.9 mgd) in the San Antonio Basin, and 6,600 acre-feet (5.9 mgd) in the Guadalupe Basin. If the water levels were lowered to 400 feet below the land surface along an assumed line of discharge across each basin and the recharge was adequate, the Gulf Coast aquifer would transmit 10,500 acre-feet per year (9.4 mgd) in the Nueces Basin, 723 acre-feet per year (0.6 mgd) in the San Antonio Basin, and 10,000 acre-feet per year (8.9 mgd) in the Guadalupe Basin. The quantity of water released from storage by lowering the water levels to 400 feet would be 11,600,000 acre-feet in the Nueces Basin, 8,340,000 acre-feet in the San Antonio Basin, and 11,600,000 acre-feet in the Guadalupe Basin.

The Leona Formation of Pleistocene age and the Recent alluvium, which have similar hydrologic and geologic characteristics, are considered as a unit--a secondary aquifer in the Guadalupe and Nueces Basins. The Leona Formation, consisting of silt, sand, and gravel from 0 to 80 feet thick, includes the alluvial terraces along the major streams; the Recent alluvium of similar composition and from 0 to 30 feet thick, includes the flood-plain and channel deposits of the present streams. The aquifer yields small to moderate quantities of fresh water. The estimated pumpage from major wells in 1961 was 800 acre-feet in the Guadalupe Basin and 2,100 acre-feet in the Nueces Basin. Most of the pumpage was for irrigation; only a small part was for public supply.

The total discharge in the three basins in 1961 was 910,000 acre-feet, including 20,000 acre-feet pumped for domestic and livestock purposes. The major pumpage was 240,000 acre-feet for irrigation, although springs in the Balcones fault zone area in the Guadalupe River Basin discharged about 380,000 acre-feet and the total spring flow was 450,000 acre-feet. More than 85 percent of the water pumped for irrigation was from wells in the Nueces River Basin, most of which was from the Carrizo Sand and Wilcox Group, undifferentiated. The largest amount of ground water used by industry and public supply was from the Balcones aquifer in the San Antonio River Basin, reflecting the large withdrawals in the metropolitan San Antonio area. RECONNAISSANCE INVESTIGATION OF THE GROUND-WATER RESOURCES OF THE GUADALUPE, SAN ANTONIO, AND NUECES RIVER BASINS, TEXAS

INTRODUCTION

Purpose and Scope

The Texas Water Planning Act of 1957, Senate Bill 1, First Called Session of the 55th Legislature, created a Water Resources Planning Division within the Texas Board of Water Engineers (changed to Texas Water Commission, January 1962). The act directed the Board to submit a statewide report of the water resources of Texas and to make recommendations to the Legislature for the maximum development of the water resources of the State. The report entitled, "Texas Water Resources Planning at the End of the Year 1958, A Progress Report to the Fifty-Sixth Legislature," was submitted in 1958. The report states (Texas Board Water Engineers, 1958, p. 78), "...Initial planning for development of the State's water resources will require that reconnaissance groundwater studies be made in much of the State because time is not available to complete the recommended detailed investigations. Studies of this type will be made chiefly to determine the order of magnitude of the ground-water supplies potentially available from the principal water-bearing formations."

To implement the directive of the Legislature, the Texas Board of Water Engineers and the U. S. Geological Survey began a cooperative project in September 1959 entitled, "Reconnaissance ground-water investigations in Texas." The Planning Division of the Texas Board of Water Engineers based its approach to water-resources development planning upon the needs and availability of both surface water and ground water of each river basin and subdivision of a basin. Therefore, the cooperative program between the Ground Water Branch of the U. S. Geological Survey and the Texas Board of Water Engineers was planned by major river basins. The Geological Survey prepared reports on the Red, Sulphur, and Cypress Basins (E. T. Baker and others, 1963), Brazos Basin (Cronin and others, 1963), the upper Rio Grande Basin (Davis and others, 1962), the lower Rio Grande Basin (R. C. Baker, 1962), and the Gulf Coast region (Wood and others, 1963). The Texas Board of Water Engineers prepared reports on the Canadian Basin (Texas Board Water Engineers, 1960), Sabine Basin (B. B. Baker and others, 1963), Neches Basin (B. B. Baker and others, 1963), Trinity Basin (Peckham and others, 1963), Colorado Basin (Mount and others, 1962), and the middle Rio Grande Basin (Brown and others, 1962).

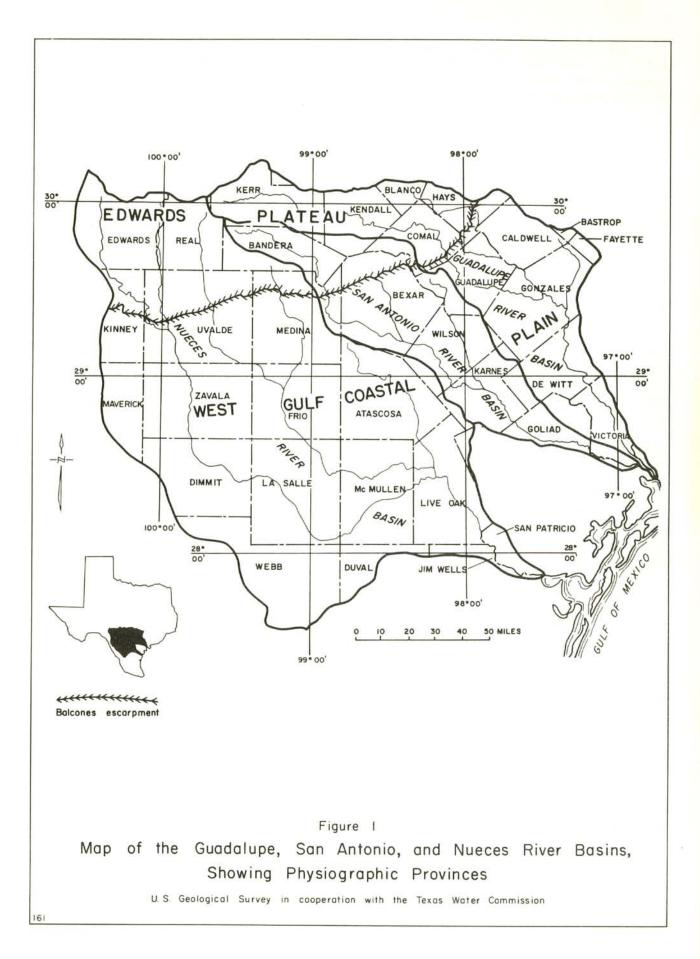
- 5 -

The studies of the river basins were designed to have their principal emphasis on the following items (Texas Board Water Engineers, 1958, p. 78): "...(1) Inventory of large wells and springs; (2) compilation of readily available logs of wells and preparation of generalized cross sections and maps showing subsurface geology; (3) inventory of major pumpage; (4) pumping tests of principal water-bearing formations; (5) measurements of water levels in selected wells; (6) determination of areas of recharge and discharge; (7) compilation of existing chemical analyses of water and sampling of selected wells and springs for additional analyses; (8) correlation and generalized analysis of all data to determine the order of magnitude of supplies available from each major formation in the area and general effects of future pumping; and (9) preparation of generalized reports on principal ground-water resources of each river basin."

Location and Extent of the Area

The Guadalupe, San Antonio, and Nueces River Basins in Texas comprise an area of 27,377 square miles, including all or parts of 39 counties in the south-western and south-central part of the State. The report area is bordered on the west and southwest by the Rio Grande Basin, on the south and southeast by the Coastal basins and the Gulf of Mexico, on the east by the Lavaca Basin, and on the north and northeast by the Colorado River Basin. The area is irregular, ranging in width from about 190 miles to less than 1 mile and averaging about 100 miles (Figure 1). The area lies between latitude 27°20' and 30°18' N and longitude 96°50' and 100°40' W.

Economic Development and Cultural Features


The Guadalupe, San Antonio, and Nueces River Basins constitute 10.5 percent of the area of Texas and have a population of about 1,000,000 people, about 10.4 percent of the population of the State. Cities having more than 10,000 population (1960 census) are San Antonio, 606,871; Victoria, 33,047; San Marcos, 12,713; New Braunfels, 15,631; and Uvalde, 10,293.

The early settlements at San Antonio, New Braunfels, and San Marcos were located at large springs (Sellards and Baker, 1934, p. 51). Numerous summer camps and "dude ranches" have been developed in the "Hill Country" along springfed streams, chiefly in Kerr and Bandera Counties. The "Hill Country," a local name for the dissected border of the Edwards Plateau, is famous also for its hunting facilities for deer, turkey, and other game. San Antonio, founded in 1718, is one of the oldest cities in the southwestern part of the United States. It is the financial, commercial, and cultural center of southern Texas and is one of the important military centers in the United States.

Manufacturing has contributed substantially to the economy of the area. More than 700 manufacturing establishments employ 25,700 people with a payroll in excess of 88 million dollars a year. Much of the manufacturing is concentrated in or near San Antonio and is related to the production of petroleum and natural gas, gravel, brick and tile, and cement. The value of these products is more than 170 million dollars annually.

Agriculture is also an important industry in the area. The Winter Garden district in Dimmit and Zavala Counties and adjacent areas produces large quantities of vegetables that are irrigated with ground water. Livestock raising and dairying are practiced successfully throughout the area.

- 6 -

The Guadalupe, San Antonio, and Nueces River Basins are served by several rail, air, and bus lines, and many hundreds of miles of paved Federal and State highways and secondary roads. Marine shipping also is available to the area through the port of Corpus Christi and the Gulf Intracoastal Canal.

Methods of Investigation

Fieldwork in the Guadalupe, San Antonio, and Nueces River Basins was started in September 1961 and completed in August 1962. Basic data were collected and assembled by O. C. Dale, G. H. Shafer, C. R. Follett, H. B. Harris, and P. L. Rettman of the U. S. G eological Survey. The investigation included an inventory of all the major wells in the area and an inventory of the amount of water pumped during 1961. For the purpose of this report, major wells include public supply, industrial, and irrigation wells that yield more than 50 gpm (gallons per minute). However, all public-supply wells were included in the inventory regardless of capacity. Data also were collected for domestic, livestock, and test wells in selected areas for use as geologic or hydrologic control points. The chemical analyses of 46 water samples collected during the investigation and several hundred other analyses that had been made before the study began were used in delineating areas of usable water and as a guide in interpreting quality of water from electric logs. Records of changes in groundwater levels obtained by periodic measurements of water levels in selected observation wells were used to show the effects of recharge and discharge and other natural or artificial factors. Pumping tests were made to determine the hydraulic characteristics of the aquifers in several localities. The geologic and hydrologic characteristics of many of the aquifers are shown by means of geologic sections, contour maps on the tops of formations, saturated-thicknessof-sand maps, and water-table maps. These maps were prepared from more than 1,000 electric and drillers' logs of wells and several hundred water-level measurements, and served as a basis for evaluating the availability of water, water problems, and the over-all potential of the aquifers. The descriptions of the geologic formations and their water-bearing properties were summarized chiefly from published reports. (See Selected References.)

Well-Numbering System

The numbers assigned to wells and springs in the report conform to the statewide system used by the Texas Water Commission. The system is based on the division of Texas into 1-degree quadrangles bounded by lines of latitude and longitude. Each 1-degree quadrangle is divided into 64 smaller quadrangles, 7-1/2 minutes on a side, each of which is further divided into 9 quadrangles, 2-1/2 minutes on a side. Each of the 89 1-degree quadrangles in the State has been assigned a 2-digit number for identification (Figure 2). The 7-1/2 minute quadrangles are given 2-digit numbers consecutively from left to right, beginning in the upper left-hand corner of the 1-degree quadrangle, and the 2-1/2 minute quadrangles within each 7-1/2 minute quadrangle are similarly numbered with 1-digit numbers. Each well inventoried in each 2-1/2 minute quadrangle is assigned a 2-digit number. The well number is determined as follows: From left to right, the first 2 numbers identify the 1-degree quadrangle; the next 2 numbers identify the 7-1/2 minute quadrangle; the fifth number identifies the 2-1/2 minute quadrangle; and the last 2 numbers designate the well within the 2-1/2 minute quadrangle.

In addition to the 7-digit well number, a 2-letter prefix is used to identify the county. The prefix for the 39 counties that are all or partly in the Guadalupe, San Antonio, and Nueces River Basins are as follows:

County	Prefix	County	Prefix	County	Prefix
Atascosa	AL	Fayette	JT	Live Oak	SJ
Bandera	AS	Frio	KB	Maverick	TB
Bastrop	AT	Gillespie	KK	McMullen	SU
Bee	AW	Goliad	KP	Medina	TD
Bexar	AY	Gonzales	KR	Nueces	UB
Blanco	AZ	Guadalupe	KX	Real	WA
Caldwell	BU	Hays	LR	Refugio	WH
Calhoun	BW	Jim Wells	PW	San Patricio	WW
Coma1	DX	Karnes	PZ	Uvalde	YP
DeWitt	HX	Kendal1	RB	Victoria	YT
Dimmit	HZ	Kerr	RJ	Webb	YZ
Duval	JB	Kinney	RP	Wilson	ZL
Edwards	JJ	La Salle	RX	Zavala	ZX

In the report, only the degrees of latitude and longitude are shown on the maps; the 7-1/2 minute and 2-1/2 minute lines are not shown, as they would obscure other details. However, a well whose number is known can be located by identifying the 1-degree quandrangle from Figure 2 and using the degree lines on the individual well maps. Similarly, a well located on a map can be identified approximately by dividing a 1-degree quadrangle into 7-1/2 minute or 2-1/2 minute quadrangles.

Previous Investigations

A report by Deussen and Dole (1916) on "Ground water in La Salle and McMullen Counties, Texas," was the first of a number of county reports in the report area. Deussen (1924) and Trowbridge (1923, 1932) wrote comprehensive reports on the geology of the Coastal Plain, which together included more than one-half of the report area.

The Winter Garden district in Dimmit and Zavala Counties and adjacent areas was one of the first projects selected for study when a statewide investigation of the ground-water resources of Texas was begun by the U. S. Geological Survey in cooperation with the Texas Board of Water Engineers. Fieldwork began in 1929 and the first report on the Winter Garden district was published in 1931 by White and Meinzer. Other reports include those by Livingston and Lynch (1937), Livingston (1947b), Turner and Robinson (1934), White, Turner, and Lynch (1934), Moulder (1957), Turner and others (1960), and Mason (1960).

A comprehensive investigation of the geology and hydrology of 13 counties in and near the Edwards Plateau (Figure 1) was started in 1932 as a cooperative project between the U. S. Geological Survey and the Texas Board of Water Engineers. The project has since been enlarged by the cooperation of the San Antonio City Water Board, the Edwards Underground Water District, the San Antonio City Public Service Board, and the Bexar Metropolitan Water District. Preliminary results of the investigation were reported by Livingston and others (1936)

- 11 -

and by Livingston (1947a); other reports include those by Lang (1953, 1954) and Livingston (1942). The hydrology of the San Antonio area was discussed by Sayre and Bennett (1942), Petitt and George (1956), and Garza (1962a). Detailed investigations on the geology and ground-water resources of nine counties include those for Uvalde and Medina (Sayre, 1936), Comal (George, 1952), Edwards (Long, 1962), Bexar (Arnow, 1959), Medina (Holt, 1959), Hays (DeCook, 1960), Kinney (Bennett and Sayre, 1962), Bandera (Reeves and Lee, 1962), Uvalde (Welder and Reeves, 1962), and Real (Long, 1958). Garza (1962b) reported on the chemical analyses of water from observation wells in the vicinity of San Antonio. The geology and ground-water resources of 11 counties in the Coastal Plain were described by Lonsdale (1935), Sayre (1937), Lonsdale and Day (1937), Rasmussen (1947), Sundstrom and Follett (1950), Anders (1957, 1960), Dale and others (1957), Anders and Baker (1961), Marvin and others (1962), and Mason (1963). Investigations of the ground-water resources of Gonzales, DeWitt, La Salle, and McMullen Counties are scheduled for completion in 1963. Many reports concerning small areas are in the open files of the U. S. Geological Survey and Texas Water Commission.

During the period 1936-57, a statewide inventory of water wells, by counties, was undertaken by the Texas Board of Water Engineers in cooperation with the U. S. Geological Survey. These reports, published in mimeographed form, include records of wells, drillers' logs, water analyses, and maps showing the locations of wells and springs.

Periodic measurements of water levels in selected observation wells in the principal aquifers of the State are made by the Texas Water Commission. These measurements help to evaluate the effects of ground-water development in relation to available supply. Records of such measurements in hundreds of wells in 15 counties in the report area are available for the period 1929-63. The records, by counties, are published periodically by the Texas Water Commission. Records of water levels in some observation wells also are published by the U. S. Geological Survey in the annual reports on water levels and artesian pressures in the United States. (See Selected References.)

A statewide inventory of the public-water supplies of Texas was made in the 1940's by the Texas Board of Water Engineers in cooperation with the U. S. Geological Survey. These reports, Sundstrom and others (1948, 1949) and Broadhurst and others (1950, 1951), include descriptions of the public water-supply systems, chemical analyses of ground water and surface water, logs of selected wells, and discussions of the water resources and standards of water quality. Almost all the area in the Guadalupe, San Antonio, and Nueces River Basins is included in the report on the public-water supplies of southern Texas by Broadhurst and others (1950).

Acknowledgments

The collection of basic data was greatly facilitated by the cooperation of well drillers and well owners. Appreciation is expressed also for the information furnished by several petroleum geologists, officials of the cities and industries, the Soil Conservation Service of the U. S. Department of Agriculture, and the county agricultural agents.

GEOGRAPHY

The Guadalupe, San Antonio, and Nueces River Basins are in two physiographic sections--the Edwards Plateau of the Great Plains province and the West Gulf Coastal Plain of the Coastal Plain province (Figure 1 and Fenneman, 1938, p. 100). The Balcones escarpment separates these two sections and extends southward from Austin, about 10 miles northeast of the report area, through San Marcos, New Braunfels, and San Antonio, thence westward across Medina, Uvalde, and Kinney Counties. The southeastward-facing escarpment is from 200 to 400 feet high between Austin and central Uvalde County; farther west, the escarpment is less pronounced. The Balcones escarpment is the remnant of a fault scarp caused by the vertical movement of the rocks in the Balcones fault zone.

The Edwards Plateau and the top of the Balcones escarpment are partly protected from erosion by a cap of very resistant limestone. In the northern part of the Nueces Basin, broad areas of the plateau are relatively undissected by stream erosion; however, in the Guadalupe and San Antonio Basins, broad valleys have been cut in the plateau and remnants of the resistant limestone form cliffs on the crests of the divides. Only a small amount of land along the streams is suitable for farming; consequently, almost all the Edwards Plateau in the report area is devoted to ranching. The altitude of the plateau ranges from about 600 feet along the Guadalupe River where it cuts through the Balcones escarpment at New Braunfels to about 2,400 feet on the divides in the northern part of the report area.

The West Gulf Coastal Plain extends from the Balcones escarpment southeast to the Gulf of Mexico (Figure 1). Low relief and the gentle gulfward slope of the land surface characterize that part of the section near the Gulf of Mexico; the surface is rolling or moderately hilly in that part of the section near the Balcones escarpment. Low ridges formed by beds of resistant sandstone roughly parallel the coast line. The ridges, or cuestas, are asymmetrical in cross section and have a steeper slope facing inland. The streams that drain the Coastal Plain have flood plains bounded by terraces which may be several miles wide. The altitude of the West Gulf Coastal Plain ranges from about 1,500 feet in central Kinney County to sea level at the mouths of the Nueces and Guadalupe Rivers.

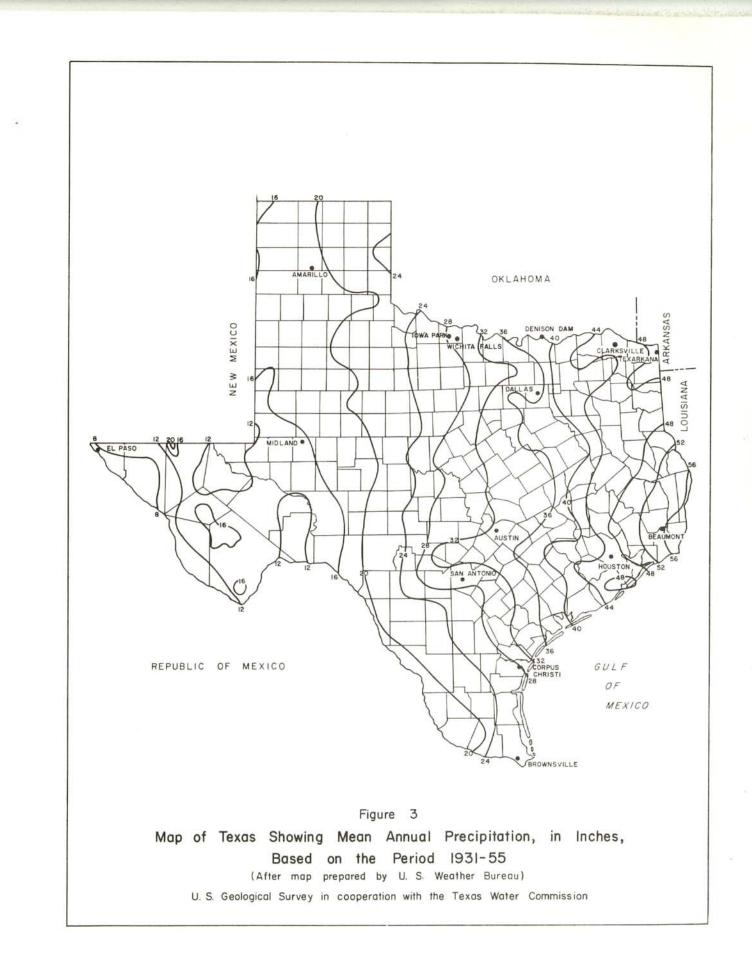
CLIMATE

The climate of the Guadalupe, San Antonio, and Nueces River Basins ranges from semiarid in the western part of the Nueces Basin to dry subhumid in the eastern and southeastern parts of the Guadalupe Basin (Thornthwaite, 1952, p. 32). According to Thronthwaite's classification, which is based on a moisture index, the potential evapotranspiration is compared with the precipitation. When precipitation is the same as potential evapotranspiration and water is available as needed, water is neither deficient nor in excess, and the climate is neither dry nor moist. As water deficiency becomes larger with respect to potential evapotranspiration, the climate becomes more arid; conversely, as water surplus becomes larger, the climate becomes more humid.

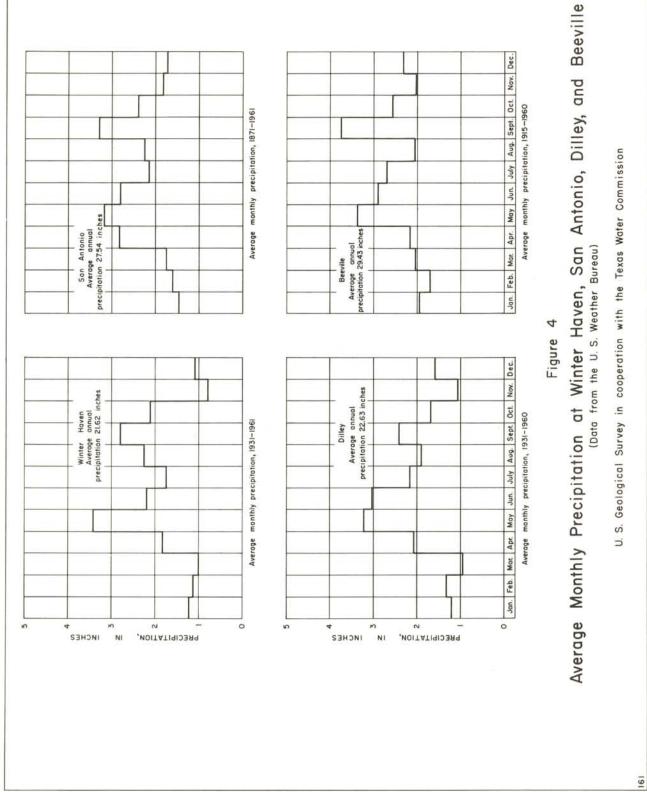
Thornthwaite's map (1952, Fig. 30) indicates no surplus moisture in the Guadalupe, San Antonio, and Nueces Basins. The moisture deficiency decreases eastward, and, consequently, the climate changes from semiarid to dry subhumid.

Precipitation ranges from an annual mean of about 22 inches in the western part of the Nueces Basin to about 34 inches in the eastern part of the Guadalupe Basin (Figure 3). The average monthly precipitation at Winter Haven, San Antonio, Dilley, and Beeville, 35 miles south-southeast of Karnes City, are shown in Figure 4. The average monthly temperature and precipitation at Kerrville, Uvalde, Seguin, and Cuero are shown in Figure 5. In general, most of the precipitation is during the spring and summer. However, in the Nueces Basin, where the climate is semiarid, precipitation generally is insufficient for growing most crops without supplemental supplies of water.

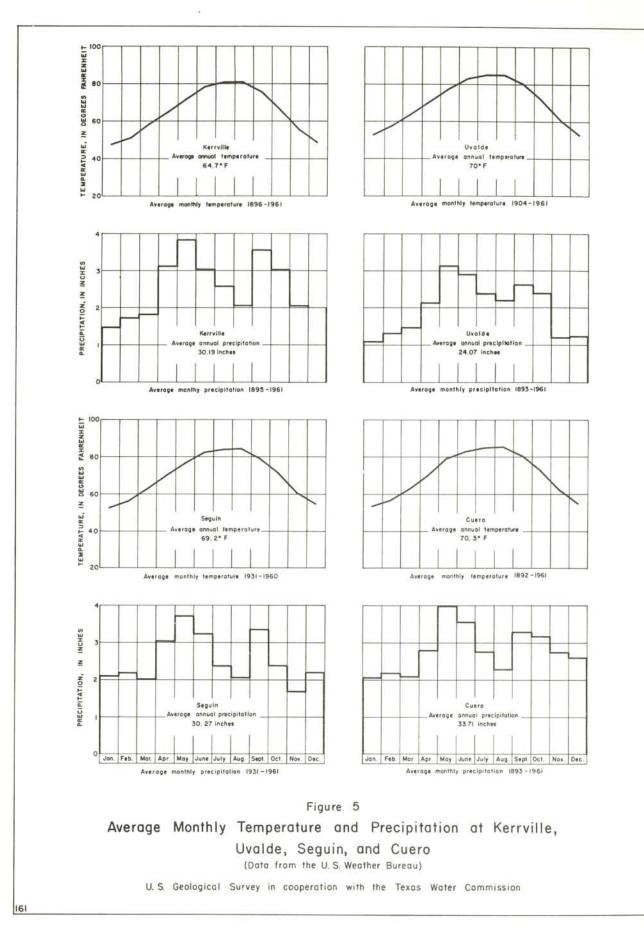
Temperature and evaporation records at Winter Haven, San Antonio, Dilley, and Beeville show that the temperature and evaporation are highest during June, July, and August (Figure 6). The average annual evaporation ranges from more than 78 inches in the western part to about 60 inches in the eastern, which is about two or three times the average annual precipitation. The length of the growing season differs from year to year, but the average ranges from 221 days in Kerr County to 334 days in Nueces County.


GENERAL GROUND-WATER HYDROLOGY

The following discussion of some of the general principles of ground-water hydrology is presented as a review to aid in understanding the hydrologic discussions of the aquifers in the Guadalupe, San Antonio, and Nueces River Basins.

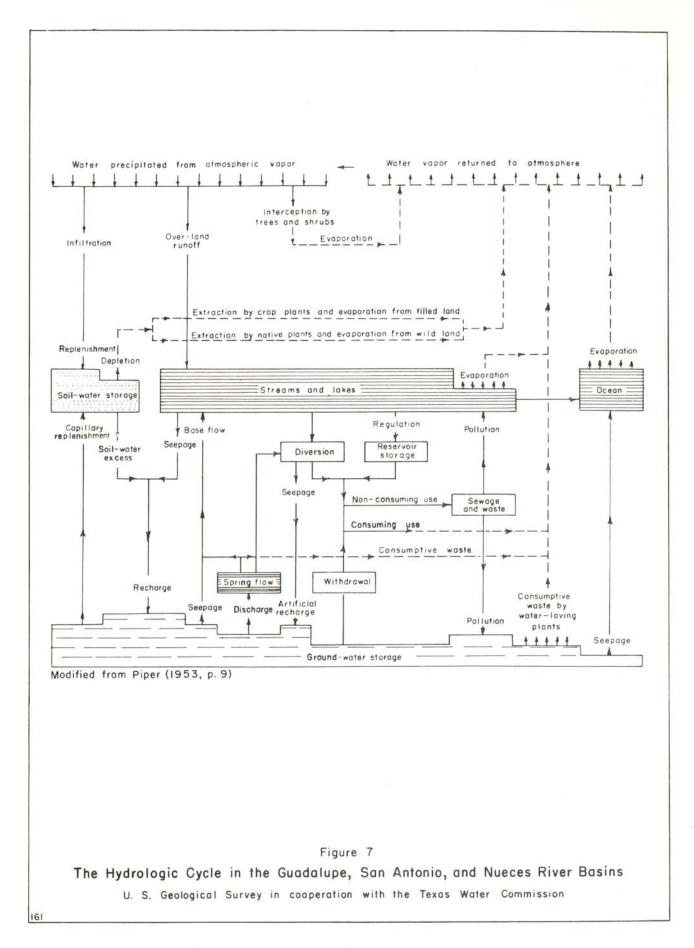

Source and Occurrence of Ground Water

The source and occurrence of ground water are integral parts of the hydrologic cycle, during which water follows paths of various length and complexity (Figure 7). The primary source of all ground water is precipitation. Water from precipitation, which is not evaporated at the surface, transpired by plants, or retained by capillary forces in the soil, migrates downward by gravity through the zone of aeration until it reaches the zone of saturation, where the rocks are saturated with water. The upper surface of the zone of saturation is the water table. Open spaces in the rocks--interstices or pore spaces between grains in clastic rocks, such as sand and gravel, and cracks, fissures, or solution cavities in carbonate rocks, such as limestone--contain the water in the zone of saturation.


Aquifers may be divided into two classes--water table, or unconfined aquifers, and artesian, or confined aquifers--depending on the mode of occurrence of the water. Unconfined water occurs in water-table aquifers wherever the upper surface of the zone of saturation is under atmospheric pressure only and is free to rise or fall with changes in the volume of water stored. A well penetrating a water-table aquifer becomes filled with water to the level of the water table. Confined water occurs in artesian aquifers which are separated from the zone of aeration by rocks of lower permeability; hence, the water is confined an under pressure. A well that penetrates an artesian aquifer becomes filled with water to a level above the point where the water was found. The level or surface to which the water will rise in artesian wells is called the piezometric surface. Although the terms water table and piezometric surface are synonymous in the outcrop area, the term piezometric surface as used in this report is applicable only in artesian areas. If the pressure is sufficient to cause the water to rise above the land surface, the well will flow.

- 15 -

- 16 -



- 17 -

12 Winter Haven San Antonio 0 FAHRENHEIT Average annual evaporation Average annual evaporation 10 1928-1952 1931-1961 65.74 Inches 68.19 inches 01101 ratio INCHES 8 00 DEGREES Temperature -Temperature z EVAPORATION . 6 z TEMPERATURE. Average annual temperature Average annual temperature 1950 - 1961 1931-1960 60° 4 71.7 °F 68.8" F 40° 2 20* 0 Average monthly evaporation and temperature Average monthly evaporation and temperature 12 Dilley Beeville 6 FAHRENHEIT 10 Average annual evaporation Average annual evaporation 1915 - 1960 1931-1960 Evaporation 60.57 Inches 78.84 inches INCHES 8 DEGREES mperature N vaporatio EVAPORATION, 80* 6 Z neratu TEMPERATURE, Average annual temperature Average onnual temperature 1931 - 1960 1896 - 1960 60* 4 70.8° F 70.9° F 40° 2 20" 0 Jan. Feb. Mar Apr. May June July Aug. Sept. Oct. Nov. Dec. Jan, Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Average monthly evaporation and temperature Average monthly evaporation and temperature Figure 6 Average Monthly Evaporation and Temperature at Winter Haven, San Antonio, Dilley, and Beeville (From Bloodgood, Patterson and Smith, 1954, and records of the U.S. Weather Bureau) U.S. Geological Survey in cooperation with the Texas Water Commission

- 18 -

161

- 19 -

Recharge, Movement, and Discharge of Ground Water

Aquifers may be recharged either by natural or artificial processes. Natural recharge comes from rain, either where it falls or by runoff enroute to a water course, melting snow or ice, water in streams, lakes, or other natural bodies of water, subsurface transfer of water from one saturated rock unit to another, infiltration resulting from irrigation, and disposal of industrial wastes and sewage. Artificial recharge is accomplished by injection through wells and infiltration basins of various kinds.

The natural source of water for recharge is precipitation. In general, the greater the seasonal precipitation on the intake area of an aquifer the greater the recharge. Also, a given amount of rainfall in a short period usually produces less recharge than the same amount of rainfall over a longer period, although there are exceptions. A larger proportion of the precipitation infiltrating during the dormant or nongrowing season will reach the zone of saturation than during the season of active plant growth.

Gravity is the motivating force in the movement of water. After initial infiltration, the dominant direction of movement through the zone of aeration is vertical. After reaching the zone of saturation, the movement of the water generally has a large horizontal component in the direction of decreasing head or pressure. The movement is seldom uniform in direction or velocity. The water may be impeded by structural barriers, such as faults and folds, or by masses of impervious material--or the water may follow a devious path along courses of material having the least resistance to flow.

The rate of movement of ground water is a direct function of the size of the open spaces and interconnecting passages in rocks. The movement of ground water may range from velocities and volumes approaching zero to those of rapidly flowing streams. In most sand and gravel, the movement of ground water is very slow, ranging from tenths of a foot per day to many feet per year. Faster rates of movement usually are associated with cavernous limestone aquifers, where water flowing in subterranean channels may have velocities comparable to surface streams.

Water is discharged from aquifers both naturally and artificially. The most abvious method of natural discharge is by springs. Other means of natural discharge include seepage to streams, lakes, and marshes that intersect the water table, transpiration by vegetation, and evaporation through the soil where the water table is close to the land surface. Ground water also is discharged naturally beneath the land surface by transfer of water from one aquifer to another in response to differences in head. Because gravity is the motivating force in its movement, ground water is always discharged naturally from an aquifer at a lower altitude than the intake or recharge area of that aquifer. Withdrawal of water from pumping and flowing wells represents artificial discharge of ground water.

Chemical Quality of Ground Water

The mineral constituents of ground water are dissolved principally from the soil and rocks through which the water has passed; consequently, the differences in chemical character of ground water reflect in a general way the nature of the geologic formations in contact with the water. Deep water usually is free from contamination by organic matter, but the chemical content of

- 20 -

ground water usually increases with depth. The temperature of ground water near the land surface generally approximates the mean annual air temperature of the region and increases with depth.

The suitability of a water supply depends on the chemical quality of the water and the limitations associated with the comtemplated use of the water. Various criteria for water-quality requirements have been developed including most categories of water quality, bacterial content, physical characteristics, and chemical constituents. Usually, water-quality problems of the first two categories can be alleviated economically, but the removal or neutralization of undesirable chemical constituents can be difficult and expensive. For many purposes the total dissolved-solids content constitutes a major limitation on the use of the water. A general classification of water based on dissolved-solids content is as follows (Winslow and Kister, 1956, p. 5):

Description	Dissolved-solids content, in parts per million
Fresh	Less than 1,000
Slightly saline	1,000 to 3,000
Moderately saline	3,000 to 10,000
Very saline	10,000 to 35,000
Brine	More than 35,000

The United States Public Health Service has established and from time to time revises standards of drinking water to be used on common carriers engaged in interstate commerce. The standards are designed to protect the traveling public and may be used to evaluate public water supplies. According to the standards, chemical constituents should not be present in a water supply in excess of the listed concentrations shown in the following table except where other more suitable supplies are not available. Some of the standards adopted by the U. S. Public Health Service (1962, p. 7-8) are as follows:

Substance	Concentration (ppm)
Chloride (Cl)	250
Fluoride (F)	ste.
Iron (Fe)	.3
Manganese (Mn)	. 05
Nitrate (NO3)	45
Sulfate (SO ₄)	250
Total dissolved solids	500

* When fluoride is present naturally in drinking water, the concentration should not average more than the appropriate upper limit shown in the following table.

Annual average of maximum daily air temperatures	and the second sec	ed control	
(°F)	Lower	Optimum	Upper
50.0 - 53.7	0.9	1.2	1.7
53.8 - 58.3	.8	1.1	1.5
58.4 - 63.8	.8	1.0	1.3
63.9 - 70.6	.7	.9	1.2
70.7 - 79.2	.7	.8	1.0
79.3 - 90.5	.6	.7	.8

Water having concentrations of chemical constituents in excess of the recommended limits may be objectionable for various reasons. In areas where the nitrate content of water is in excess of 45 ppm (parts per million), a potential danger exists. Concentrations of nitrate in excess of 45 ppm in water used for infant feeding have been related to the incidence of infant cyanosis (Maxcy, 1950, p. 271). High concentrations of nitrate may be an indication of pollution from organic matter, commonly sewage. Excessive concentrations of iron and manganese in water cause reddish-brown or dark-gray precipitates that stain clothes and plumbing fixtures. Water having a chloride content exceeding 250 ppm may have a salty taste, and sulfate in water in excess of 250 ppm may produce a laxative effect. Excessive concentrations of fluoride in water may cause teeth to become mottled; however, fluoride in concentrations of about 1 ppm may reduce the incidence of tooth decay (Dean, Arnold, and Elvove, 1942, p. 1155-1179).

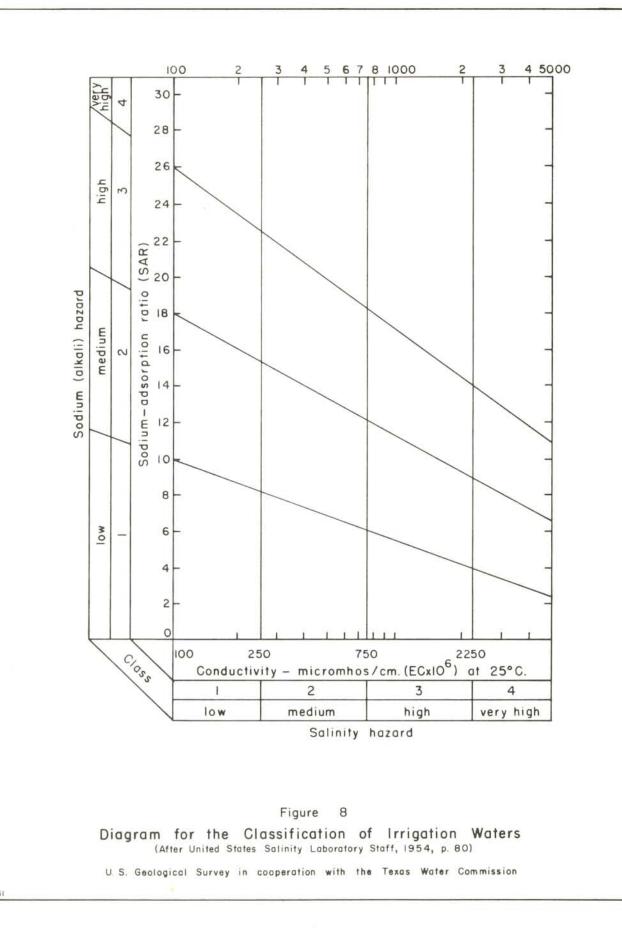
Calcium and magnesium are the principal constituents in water that cause hardness. Excessive hardness causes increased consumption of soap and induces the formation of scale in hot water heaters and water pipes. The commonly accepted standards and classifications of water hardness are shown in the following table:

Hardness range (ppm)	Classification
60 or less	Soft
61 - 120	Moderately hard
121 - 180	Hard
More than 180	Very hard

The quality of water for industry does not depend necessarily on potability. Water suitable for industrial use may or may not be acceptable for human consumption. Ground water used for industry may be classified into three principal use categories--cooling, process, and boiler.

Cooling water usually is selected for its temperature and source of supply, although its chemical quality also is significant. Any characteristic that may

affect adversely heat-exchange surfaces is undesirable. Calcium, magnesium, aluminum, iron, and silica may cause scale. Corrosiveness is another objectionable feature. Calcium and magnesium chloride, sodium chloride in the presence of magnesium, acids, oxygen, and carbon dioxide are among substances that make water corrosive.


The quality of water for the production of steam must meet rigid requirements. Here the problems of corrosion and encrustation are intensified greatly. Some treatment of boiler water may be needed, and it may be better to evaluate the suitability of the water for treatment rather than for direct use as raw water. Silica in boiler water is undesirable because it forms a hard scale, the scale-forming tendency increasing with pressure in the boiler.

Process water is subject to a wide range of quality requirements. Usually rigidly controlled, these requirements commonly involve physical, chemical, and biological factors. In general, water used in manufacture of textiles must be low in dissolved-solids content and free of iron and manganese. The paper industry, expecially where high-grade paper is made, requires water in which all heavy metals are either absent or in small concentrations. Water free of iron, manganese, and organic substances normally is required by many beverage industries. Unlike cooling and boiler water, much of the process water is consumed or undergoes a change in quality in the manufacturing process and is not available generally for reuse.

The suitability of water for irrigation depends on the chemical quality of the water and other factors such as soil texture and composition, crop types, irrigation practices, and climate. Many classifications of irrigation water express the suitability of water in terms of one or more of these variables and offer criteria for evaluating the relative overall suitability of irrigation water rather than placing rigid limits on the concentrations of certain chemical constituents. The most important chemical characteristics pertinent to the evaluation of water for irrigation are the proportion of sodium to total cations, an index of the sodium hazard; total concentration of soluble salts, an index of the salinity hazard; residual sodium carbonate; and concentration of boron.

Sodium can be a significant factor in evaluating quality of irrigation water because of its potential effect on soil structure. A high percentage of sodium in water tends to break down soil structure by deflocculating the colloidal soil particles. Consequently, soils can become plastic, movement of water through the soil can be restricted, drainage problems can develop, and cultivation can be rendered difficult. A system of classification commonly used for judging the quality of water for irrigation was proposed in 1954 by the U. S. Salinity Laboratory Staff (1954, p. 69-82). The classification is based primarily on the salinity hazard, as measured by the electrical conductivity of the water, and the sodium hazard, as measured by the SAR (sodium-adsorption ratio). This classification of irrigation water is diagrammed in Figure 8.

An excessive concentration of boron renders a water unsuitable for irrigation. Scofield (1936, p. 286) indicated that boron concentrations as much as 1 ppm are permissible for irrigating most boron-sensitive crops and concentrations as much as 3 ppm are permissible for the more boron-tolerant crops, as shown in the following table:

Class	es of water	Sensitive	Semitolerant	Tolerant
Rating	Grade	crops (ppm)	crops (ppm)	crops (ppm)
1	Excellent	< 0.33	< 0.67	<1.00
2	Good	0.33 to .67	0.67 to 1.33	1.00 to 2.00
3	Permissible	.67 to 1.00	1.33 to 2.00	2.00 to 3.00
4	Doubtfu1	1.00 to 1.25	2.00 to 2.50	3.00 to 3.75
5	Unsuitable	> 1.25	> 2.50	>3.75

Permissible limits of boron for irrigation waters

Quality limits for livestock are variable. The limit of tolerance depends principally on the kind of animal, and, according to Heller (1933, p. 22), the total amount of soluble salts in the drinking water, more so than the kind of salt, is the important factor. Heller also suggests that as a safe rule, 15,000 ppm dissolved-solids content should be considered the upper limit for most of the more common stock animals.

Changes in Water Levels

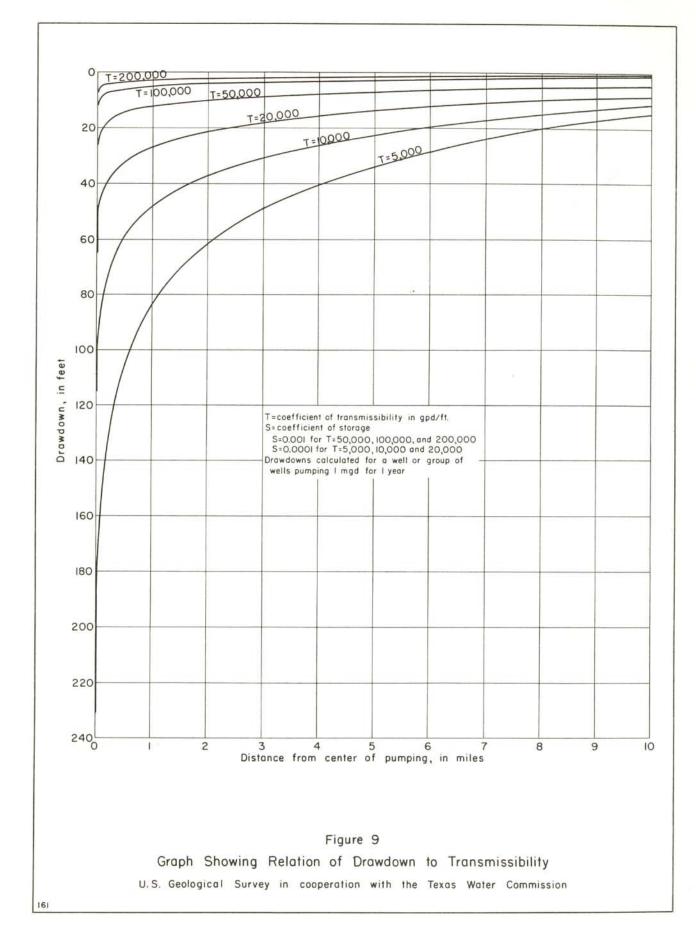
Water levels in wells respond continuously to natural and artificial factors acting on the aquifers. In general, the major factors that control changes in levels are the rates of recharge to and discharge from the aquifers. Changes of levels are caused also by variations in atmospheric pressure, variations in the load on aquifers commonly caused by changes in the level of streams, lakes, and other bodies of water overlying artesian aquifers, tidal effects, and other less common disturbances. The fluctuations usually are gradual, but in some places levels rise or fall from several inches to feet in a few minutes.

Fluctuations due to natural factors generally are cyclic. Daily fluctuations are caused chiefly by barometric fluctuations, tidal effects, or changes in rate of evapotranspiration. Annual fluctuations are the result generally of changes in the amount of precipitation and evapotranspiration throughout the year; hence, changes in the amount of water available for recharge.

Water-level fluctuations of considerable magnitude may result from withdrawal of water from wells. In water-table aquifers, fluctuations of levels due to pumping are less pronounced generally than in artesian aquifers, the decline of level being the result of a decrease in the storage of water. In artesian aquifers, levels fluctuate primarily from an increase or decrease in pressure; the change in the amount of water in storage may be small.

Hydraulic Characteristics of Aquifers

The extraction of water from a well establishes a hydraulic gradient toward the well, the gradient being either that of the water table or piezometric surface. In a pumping or flowing well, the elevation of the water table or piezometric surface is lower than it was before discharge was started, and the difference between the discharging level and the static level (water level before pumping started) is the drawdown. The water table or piezometric surface surrounding a discharging well assumes more or less the shape of an inverted cone called the cone of depression.


Formulas have been developed to show the relations among the discharge of a well, the shape and extent of the cone of depression, and the properties of the aquifer, such as permeability, specific yield, and porosity. Permeability is defined as the capacity for transmitting water under pressure, quantitatively expressed as the rate of discharge of water in gallons per day through a cross section of 1 square foot under a unit hydraulic gradient; specific yield is the quantity of water that a formation will yield under gravity if it is first saturated and then allowed to drain; and the porosity is the ratio, in percent, of the aggregate volume of interstices in a rock to its total volume. The formulas indicate that, within limits, discharge from a well varies directly with drawdown--that is, doubling the drawdown of a well will double or nearly double its discharge. The discharge per unit of drawdown, or specific capacity, is of value in estimating the probable yield of a well drilled in a given formation.

Aquifer tests employing these formulas also supply hydraulic information about the aquifer with which the coefficients of transmissibility and storage may be computed. The coefficient of transmissibility is the rate of flow of water in gallons per day through a vertical strip of the aquifer 1 foot wide extending through the vertical thickness of the aquifer at a hydraulic gradient of 1 foot per foot and at the prevailing temperature of the water. The transmission capacity of an aquifer is defined as the quantity of water that can be transmitted through a given width of an aquifer at a given hydraulic gradient.

The coefficient of storage is the volume of water that the aquifer releases from or takes into storage per unit surface area, per unit change in the component of the head normal to that surface. Under artesian conditions, the coefficient of storage is a measure of the ability of the formation to yield water from storage by compression of the formation and the expansion of the water as the piezometric surface is lowered. The coefficient of storage for an artesian aquifer is small compared to that of a water-table aquifer; consequently, after an artesian well starts discharging, a cone of depression is developed over a wide area in a short time. In a water-table aquifer, the coefficient of storage is much larger, as it reflects removal of water from storage by gravity drainage of the aquifer, and, under these conditions, it is nearly equal to the specific yield.

Figure 9 shows the theoretical relation between drawdown and the distance from the center of pumpage for different coefficients of transmissibility. The calculations of drawdown are based on a withdrawal of 1 million gallons per day over a 1-year period from aquifers having coefficients of transmissibility and storage as shown. For example, if the coefficients of transmissibility and storage are 5,000 gpd (gallons per day) per foot and 0.0001, respectively, the drawdown or decline in the water level would be 85 feet at a distance of 1 mile from a well or group of wells discharging 1,000,000 gpd for 1 year.

Figure 10 shows the relation of drawdown to time with pumpage from an artesian aquifer of infinite areal extent. It shows that the rate of drawdown decreases with an increase of time. The equilibrium curve shows the drawdown-time relation when a line source of recharge is 20 miles from the point of discharge.

1

- 27 -

100,000 Graph Showing Relation of Drawdown to Time in an Artesian Aquifer 10,000 U. S. Geological Survey in cooperation with the Texas Water Commission DISTANCE FROM PUMPED WELL, IN FEET Equilibrium curve Figure 10 T(coefficient of transmissibility)=20,000gpd/ft. Solid curves are for an aquifer of infinite areal extent. Dashed curve is for an aquifer that crops out 20 miles from pumped well. S (coefficient of storage)= 0.0001 2 Q(discharge rate)= 100 gpm 0 DRAWDOWN, IN FEET 9 õ 4 9 2 4 8 191

- 28 -

Figure 11 shows the relation of drawdown to time with pumpage from a watertable aquifer of infinite areal extent. The drawdown is less than that in an artesian because of the larger coefficient of storage, other factors being equal. equal.

Wells drilled close together commonly create cones of depression that intersect, thereby excessively lowering the water table or piezometric surface. The overlapping of cones of depression or interference between wells may cause a serious decrease in yield of the wells, an increase in pumping costs, or both.

In discussing relative well yields in this report, small yields are less than 100 gpm (gallons per minute), moderate yields are from 100 to 1,000 gpm, and large yields are more than 1,000 gpm.

GENERAL GEOLOGY

Geologic History

The rocks described in this report are sediments that accumulated along the interior border of the extensive Gulf Coast geosyncline during the latter part of the Mesozoic Era and the Cenozoic Era. The following rock systems are represented, in ascending order: Cretaceous rocks of Mesozoic age and Tertiary and Quaternary rocks of Cenozoic age.

Cretaceous time began with a broad invasion of the sea from the south and southeast, across a landmass that had been reduced to low relief by erosion. The ancient landmass in the northern part of the report area is composed of Paleozoic strata bordered on the south and southeast by metamorphic rocks of unknown age (Flawn and others, 1961, Pl. 2). In the report area and in the area to the north, the Cretaceous formations from the Houston Formation to the Edwards Limestone are overlapped by younger formations, each of which in turn rests on pre-Cretaceous formations.

The Cretaceous sea continued its northward advance, and by Eagle Ford time, it had reached Colorado (Adkins <u>in</u> Sellards, Adkins, and Plummer, 1932, p. 260-261). Near the end of Cretaceous time, the sea retreated Gulfward. The Cretaceious Period marked the last great epicontinental marine invasion, and succeeding Tertiary seas were restricted to relatively narrow areas near the continental margin.

Tertiary history is characterized by the alternation between the encroachment of the Gulf of Mexico and deposition from the heavily loaded large streams. This oscillation of the sea prevailed throughout the early and middle part of the Tertiary Period, and many hundreds of feet of clastic sediments were deposited. In late Pliocene or early Pleistocene time, gravel, sand, and silt were deposited by streams over much of the Coastal Plain area. Erosion lowered much of the land surface, and as a result, remnants of ancient stream deposits were left as terraces capping some of the divide areas. Much of this terrace material is lag gravel composed of flint and other resistant rock fragments. Terraces of Pleistocene age underlain by gravel, sand, silt, and clay are common along the larger streams.

100,000 Graph Showing Relation of Drawdown to Time in a Water-Table Aquifer 10,000 Geological Survey in cooperation with the Texas Water Commission 100 100 DISTANCE FROM PUMPED WELL, IN FEET Figure II T (coefficient of transmissibility)=20,000 gpd/ft. 20 year 1004eors S (coefficient of storage)=0.15 Q (discharge rate) = 100 gpm U.S. 0 2 ТЕЕТ и , имод маяд ⊙ ∞ ¯ 9 0 4 9 00 2 4 191

Geologic Structures

The structure of the rocks affects the occurrence and movement of ground water in the Guadalupe, San Antonio, and Nueces River Basins. Among the principal structural features in the report area are the Rio Grande embayment, the Balcones fault zone, and the Luling fault zone, all in the Gulf Coast geosyncline.

The configuration of the Gulf Coast geosyncline in the report area is indicated by the pattern of the outcrops of the Tertiary rocks (Plates 1 and 2). In the Guadalupe and San Antonio Basins, the outcrops of the formations trend southwestward, but in the western part of the Nueces River Basin, the formations make a broad, nearly right-angle turn southward. The amount of subsidence that has taken place in the geosyncline is indicated by the slope of the surface of the pre-Cretaceous rocks. According to Flawn and others (1961, Pl. 4), in the Nueces River Basin this surface slopes southward from an altitude of 1,000 feet above sea level in northern Real County to 2,500 feet below sea level in the central parts of Kinney, Uvalde, and Medina Counties, and to more than 12,000 feet below sea level in the central parts of Zavala and Frio Counties. In the Guadalupe and San Antonio River Basins, the pre-Cretaceous surface slopes southeastward from an altitude of 1,000 feet above sea level in northern Kendall County to 2,500 feet below sea level in northern Guadalupe County and the central part of Bexar County, and to more than 8,000 feet below sea level in the central part of Wilson County and southern Guadalupe County. The effect of this subsidence during the accumulation of the sediments is illustrated by the alternating beds of sand, silt, and clay of Tertiary and Quaternary age, which crop out in belts that roughly parallel the coast. The oldest formation crops out close to the northern and northwestern boundary of the Coastal Plain and progressively younger formations are exposed toward the coast (Plates 1 and 2). The formations thicken toward the coast and dip southeastward at an angle slightly greater than the slope of the land surface. The regional dip increases from the youngest to the oldest formations. The alternation of permeable and relatively impermeable strata within this structure is favorable to the occurrence of water under artesian pressure.

Rio Grande Embayment

The Rio Grande Embayment extends into Dimmit and Zavala Counties where it is composed of an anticline trending southeasterly across central Dimmit County flanked by southeastward-trending synclines in southwestern Zavala County and in southern and southwestern Dimmit County. These structures are clearly shown by the configuration of the top of the Carrizo Sand (Plate 8) and by the position of the outcrop of the Carrizo Sand, which in the vicinity of Carrizo Springs swings several miles east of its position to the north and south of Carrizo Springs. The dip of the rocks on the anticline and on the flanking synclines is low, generally not more than 80 feet per mile, and, consequently, the Carrizo Sand occurs at shallower depths over a large part of the Winter Garden district than in the rest of the report area. Eastward in the San Antonio and Guadalupe Basins (Plate 9), the dip is as much as 150 feet per mile.

Balcones Fault Zone

The Balcones fault zone consists of a series of more or less parallel faults in a belt about 15 miles wide that extends across the report area from the southern part of Hays County southwestward to Bexar County, and thence generally westward to Uvalde County (Plates 1 and 2). West of Uvalde County, the fault zone grades into a monocline that dips rather steeply southward. The faults are approximately parallel to the trend of the fault zone in Hays, Comal, and Bexar Counties; in Medina County and northeastern Uvalde County, the individual faults are also approximately parallel, but they occur at small angles to the trend of the fault zone (Plates 1 and 2). Most of the faults are of the normal or tension type with the downthrow to the south or east, depending on the strike. They range in length from a few hundred feet to about 50 miles. The displacement is greatest generally near the middle of the fault trace, and the maximum displacement of any single fault is about 700 feet (Petitt and George, 1956, p. 19). In Comal County, the combined displacement of all faults is about 1,500 feet. During faulting, fractures were developed in the limestone adjacent to the faults. These fractures are mostly parallel to the faults, and when enlarged by the solvent action of ground water, they become effective channels for the movement of ground water.

Luling Fault Zone

The Luling fault zone, 10 to 20 miles southeast of the Balcones fault zone, extends from northern Bastrop County, which adjoins Caldwell County on the east, to southeastern Medina County (Plates 1 and 2). It is a belt of more or less parallel faults, but not as wide as the Balcones fault zone. The faults of the Luling zone are normal faults also, but in contrast to those in the Balcones fault zone, the downthrown sides are on the northwest sides of the fault planes (Plate 1). The displacements of the faults range from a few feet in single faults to more than 1,500 feet for the combined displacement of several faults.

A graben separates the Balcones and Luling fault zones (Zink, 1957, Fig. 3). The structural significance of this graben is not obvious because of the strong tilting of the area to the southeast. In Caldwell County, the graben contains more than 1,000 feet of Upper Cretaceous shale and marl (Rasmussen, 1947, p. 10) and similar rocks occur in the graben elsewhere in the report area. Consequently, the rocks in the graben may be expected to yield only small amounts of ground water.

Geologic Units and Their Water-Bearing Properties

The geologic units that are of importance as sources of ground water in the report area range in age from Early Cretaceous to Pleistocene. In this report, the principal water-bearing units or aquifers are referred to as primary or secondary, depending on whether they yield large amounts of water in relatively large areas (primary aquifers), or whether they yield either large amounts of water in relatively small areas or small amounts of water in relatively large areas (secondary aquifers). The primary aquifers are the Edwards and associated limestones; the Balcones aquifer; the Carrizo Sand and Wilcox Group, undifferentiated, both of Eocene age; and the Gulf Coast aquifer from Miocene to Pleistocene in age. Secondary aquifers are the Hosston, Sligo, and Pearsall Formations, and the Glen Rose Limestone, all of Cretaceous age; the the Queen City Sand Member of the Mount Selman Formation and the Sparta Sand, both of Eocene age; the Leona Formation of Pleistocene age; and alluvial deposits of Recent age. The primary and secondary aquifers and their waterbearing properties are discussed in detail in the section on the major hydrologic subdivisions--the Edwards Plateau and the West Gulf Coastal Plain. Many other water-bearing formations yield small quantities of water in the report area, but because of their local extent, they are not discussed in detail.

The thickness of the various stratigraphic units and a brief discussion of their character and water-bearing properties are shown in Table 1.

Pre-Cretaceous Rocks

Pre-Cretaceous rocks do not crop out in the report areas, but underlie rocks of Cretaceous age at increasingly greater depths southward. These rocks, probably Paleozoic in age, consist of black, red, and green non-calcareous shale, sandstone, limestone, schist, and slate.

They are not known to yield water to wells in the report area.

Cretaceous System

The Cretaceous System of rocks in the Texas-Mexico region has been divided into the Coahuila, Comanche, and Gulf Series. Rocks of the Coahuila Series crop out in Mexico, and their probable equivalents are exposed at the surface in Arkansas, but do not crop out in Texas. The formations have been identified in oil tests in south-central and southwestern Texas, but are seldom recognized in water wells.

Coahuila Series

The oldest basinward strata of Cretaceous age, extending from Arkansas to Mexico, have been classified by Imlay (1945, p. 1416-1469) as the Hosston, Sligo, and Pearsall Formations, in ascending order. The Pearsall is the subsurface equivalent of the Travis Peak Formation of the Comanche Series. The Hosston and Sligo Formations are correlative with the Nuevo Leon and Durango Groups of the Coahuila Series of Mexico.

The Hosston Formation ranges in thickness from 0 to 900 feet and is composed of conglomerate, sandstone, red and green clay, shale, dolomite, and limestone. The overlying Sligo Formation ranges in thickness from 0 to 200 feet and is composed of limestone, in places dolomitic, sandy dolomite, shale, and sandstone. The Hosston and Sligo form a wedge from 0 to 1,100 feet thick between the underlying Paleozoic rocks and the overlying Pearsall Formation, the wedge thinning generally northward.

Small to moderate supplies of fresh water are obtained from the Hosston and Sligo Formations in Bandera County and from the Hosston Formation in northwestern Bexar County. Similar supplies might be expected in parts of Comal, Hays, Blanco, Kendall, and Kerr Counties. Table 1.--Geologic units and their water-bearing properties, Guadalupe, San Antonio, and Nueces River Basins

$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	Approximate thickness Lithologic character (ft.)	Water-bearing properties
$ \begin{array}{c cccc} \mbox{Picturary} \\ \mbox{picturary} \\ \mbox{pictureres} \\ \mbox{picture} \\ \mbox{pictureres} \\ \mbox{pictureres} \\ \mbox{picture} \\ \mbox{picture} \\ \mbox{picture} \\ \mbox{picture} \\ \mbox{picture} \\ \mbox{pictureres} \\ picture$	30 Clay, silt, sand, and gravel.	Yields small to moderate quantities of fresh water.
Pleistocene Beaumont Clay 50-600 C Tertiary(1) Plosene(7) Lissie Formation 500-600 1 Tertiary(1) Plocene(7) Uvalde Gravel 0-30 0 30 Tertiary(2) Plocene Uvalde Gravel 0-30 0 30 0 Tertiary(1) Plocene S00-600 S00-600 100-500 30 10 30 10 Mocene Mocene S00-600 S00-600 S00-600 30 30 10 30<	80 Silt, sand, and gravel.	Yields small to moderate quantities of fresh water; locally it yields sufficient quantities of water for irrigation.
Tertiary(?) Pliocene(?) Lisste Formation 500- 600 30 Tertiary(?) Pliocene(?) Uvalde Gravel 0- 30 0 Niocene(?) Roind Sand 100- 500 30 30 Miocene(?) Lagarto Clay 500-1,000+ 30 Miocene(?) Oakville Sandstone 200-800 30 Miocene(?) Oakville Sandstone 200-1,000+ 30 Tertiary Oligocene(?) Catahoula Sandstone 5- 10 Miocene(?) Oakville Sandstone 200-1,000+ 300-1,000+ Tertiary Oligocene(?) Frio Clay 200-1,000+ Becene Jackson Yegua Formation 670-1,000+	600 Clay and beds of sand.	Yields small to moderate quantities of fresh to slightly saline water in Victoria and Calhoun Counties.
Tertiary(?) Pliocene(?) Uvalde Gravel 0- 30 0 Fertiary(?) Pliocene 00- 500 100- 500 100- 500 Miocene(?) Coliad Sand 100- 500 100- 500 100- 500 Miocene(?) Miocene(?) Coliad Sand 100- 500 100- 500 Miocene(?) Miocene(?) Coliad Sand 100- 500 100- 500 Miocene(?) Miocene Coliad Sand 200- 800 10 Miocene(?) Miocene Catahoula Sandstone 200- 800 10 Miocene(?) Miocene(?) Catahoula Sandstone 5- 10 10 Miocene(?) Miocene(?) Tuff 500-1,000+ 10 Miocene(?) Jackson Tuff 500-1,000+ 10 Misocene(?) Jackson 900-1,500 100-1,500 Eocene Socene Yegua Formation 670-1,000+	Thick beds of sand containing lenses of gravel interbedded with clay and silt.	Yields small to large quantities of fresh water to wells in Goliad and Victoria Counties.
Pliocene Pliocene 100-500 100-500 Miocene(?) Lagarto Clay 500-1,000+ 0 Miocene Oakville Sandstone 200-800 1 Miocene Oakville Sandstone 200-800 1 Miocene Tuff 500-1,000+ 1 Tertiary Oligocene(?) Frio Clay 500-1,000+ Jackson Tuff 500-1,000+ Fertiary Oligocene(?) 900-1,500 Bocene Jackson 900-1,500 Frio Clay Sound 900-1,500 Bocene Medua Frio Clay 500-1,000+	30 Gravel composed almost entirely of flint.	Caps some divide areas; not known to contain appre- ciable quantities of water because of its topo- graphic position and thickness.
Miocene (?) Lagarto Clay 500-1,000+ Miocene (?) Oakville Sandstone 200-800 Miocene (?) Catahoula Sandstone 5-10 Miocene (?) Oakville Sandstone 50-1,000+ Ind Tuff 50-1,000+ Oligocene (?) Prio Clay 200-300 Oligocene (?) Jackson 900-1,500 Eocene Securition 670-1,000+	Sand and sandstone interbedded with clay and gravel. Calitche char- acteristic of formation in area of outcrop.	Yields small to moderate quantities of fresh to slightly saline water to wells in Collad County and large supplies of fresh water to wells in Victoria County.
Miocene Oakville Sandstone 200- 800 Miocene (?) Nuocene (?) 5- 10 Miocene (?) catahoula Sandstone 5- 10 Oligocene (?) or 500-1,000+ Tertiary Oligocene (?) Frio Clay 200- 300 Jackson Jackson 900-1,500 Eocene Vegua Formation 670-1,000+	Clay and sandy clay interbedded with sand and sandstone.	Yields small to moderate quantities of fresh to slightly saline water to wells in Karnes and Live Oak Counties.
Miocene(?) and 01 (gocene(?) 5- 10 0r 01 (gocene(?) or Tuff 500-1,000+ 01 (gocene(?) Frio Clay 200- 300 01 (gocene(?) Frio Clay 200-1,500 Jackson Yegua Formation 670-1,000+	800	Do.
01 igocene(?) or 500-1,000+ Uligocene(?) Frio Clay 200- 300 Jackson 900-1,500 Eocene Yegua Formation 670-1,000+	10 Sandstone, locally cemented to quartzite.	Occurs only in small area in eastern Gonzales County. Not known to yield water to wells in report area.
011gocene(?) Frio Clay 200- 300 Jackson 900-1,500 Eocene Yegua Formation 670-1,000+	Tuff, tuffaceous clay, sandy clay, bencontric clay, and lenticular sandstone.	Yields small to moderate quantities of fresh to slightly saline water in Karnes and Live Oak Counties.
Jackson 900-1,500 900-1,500 Yegua Formation 670-1,000+	300 Clay and silty clay with small amounts of sand and gypsum.	Not known to yield water to wells.
Yegua Formation 670-1,000+	Clay, sand, silt, bentonitic clay, volcanic ash, lignite, and tuffaceous sand.	Yields small to moderate quantities of fresh to moderately saline water in Karnes and Live Oak Counties.
	Medium to fine sand, silt, and clay in San Antonio and Guadalupe River Basins. Chiefly clay, with some sandy clay, lignite, gypsum, lime- stone, and limestone concretions in Nueces River Basin.	Generally yields small quantities of slightly to moderately saline water. Locally yields moder- ate quantities of fresh water in the San Antonio and Guadalupe River Basins. Yields small quan- tities of moderately to very saline water in the Nucces River Basin.
Cook Mountain Formation 400- 450 Chiefly fo (San Antonio and Guadalupe River 400- 450 Chiefly fo Basins) Basins) Bypsum.	400- 450 Chiefly fossiliferous clay and shale, a few lenses of sandstone and limestone, and some glauconite and gypsum.	Yields small quantities of slightly to moderately saline water.

(Continued on next page)

.

- 34 -

Comanche Series

The Comanche Series has been divided into the Trinity, Fredericksburg, and Washita Groups, in ascending order. The oldest rocks exposed in the report area are part of the Trinity Group--the Cow Creek Limestone Member of the Travis Peak Formation crops out in northern Comal County, and the overlying Hensall Sand Member of the same formation crops out along the Blanco River in western Hays County and along the Guadalupe River in eastern Kendall County (Plate 1).

Trinity Group

Travis Peak (Subsurface Pearsall) Formation

In the report area, the Trinity Group includes the Travis Peak Formation and the overlying Glen Rose Limestone. Imlay (1945, p. 1441) assigned the rocks above the Sligo Formation and below the Glen Rose Limestone to the Pearsall Formation in the subsurface section in south Texas, the type section being at a well in Frio County. He subdivided the Pearsall Formation into the Pine Island Shale, Cow Creek Limestone, and Hensell Shale Members, in ascending order. These members compose a lithic sequence similar to the members of the Travis Peak Formation (Hill, 1901, p. 141) where they crop out, and Imlay suggested that the name Travis Peak be restricted to the formation where it is exposed at the surface in Kendall, Hays, and Comal Counties (Plate 1).

<u>Pine Island Shale Member</u>.--In Bandera County, the Pine Island Shale Member of the Pearsall Formation consists of sandy fossiliferous dark-blue to gray shale containing thin interbedded layers of dolomitic limestone. The thickness of the member ranges from 45 feet in the northern part of the county to about 70 feet in the southern part. The Pine Island yields no water to wells, but it is an important stratigraphic marker on electric logs of wells.

<u>Cow Creek Limestone Member</u>.--The Cow Creek Limestone Member of the Travis Peak and Pearsall Formations consists chiefly of sandy fossiliferous limestone and dolomite in Bandera County, but it is essentially a massive detrital limestone in Hays County. The member maintains a fairly uniform thickness of 50 to 75 feet throughout its extent in the report area. The Cow Creek and the underlying Pine Island Shale produce an easily recognized resistivity pattern on electric logs of wells. The Cow Creek yields small quantities of fresh water to wells in a large part of the Edwards Plateau.

<u>Hensell Sand Member</u>.--The Hensell Sand Member of the Travis Peak Formation (the Hensell Shale Member of the Pearsall Formation) consists of poorly cemented conglomerate, sandstone, and ferruginous clay in the northern part of Bandera County, changing to sandstone, shale, limestone, and sandy dolomite in the southern part. The member is 150 feet thick in the northern part of Bandera County and only 20 feet thick in the southern part. Lozo and Stricklin (1956, Fig. 4) interpret the Hensell as a sandy facies of the lower member of the Glen Rose Limestone. The Hensell Sand Member is an important aquifer in only the northern part of Bandera County (Reeves and Lee, 1962, p. 11). Wells having yields of from 200 to 500 gpm of fresh water have been developed in the northern part of the county. In the southern part of the county, the yields are small and the water has a much larger sulfate content. Consequently, most wells in this area are drilled to the underlying and more permeable beds of the Cow Creek Limestone Member. In Comal County, the Hensell generally yields sufficient water for domestic and livestock use.

Glen Rose Limestone

In Comal County, George (1952, p. 17-18) divided the Glen Rose Limestone into lower and upper members, the division arbitrarily being made at the top of the <u>Salenia texana</u> zone. A persistent thin limestone bed at the top of the zone is composed of a layer of shells of the fossil <u>Corbula texana</u> Whitney. Throughout south-central Texas, the bed is commonly referred to as the "Corbula." Immediately above the <u>Corbula texana</u> bed is a zone 20 to 30 feet thick composed of dolomite, anhydrite, marl, and limestone, usually described as the lower anhydrite beds of the upper member of the Glen Rose. About 200 feet higher is a similar zone--the upper anhydrite beds. The two anhydrite zones are the most productive rocks in the upper member of the Glen Rose, but the high sulfate content makes the water unfit for most uses. The outcrop of the Glen Rose includes more than one-half of the area of the Edwards Plateau in the Guadalupe and San Antonio Basins but less than one-tenth of the plateau in the Nueces Basin (Plates 1 and 2).

Lower Member.--The lower member of the Glen Rose Limestone consists chiefly of massive fossiliferous limestone in the basal part and thin beds of marl and limestone in the upper part.

The thickness of the lower member of the Glen Rose in the northern part of the report area increases downdip, mainly because the time-equivalent Hensell thins in the downdip direction. In the northern part of Hays County, the lower member is about 124 feet thick; at Wimberley it is about 250 feet, and farther southeast in the county, it probably exceeds 300 feet. In the northern part of Bandera County, the lower member is 190 feet thick and in the southern part, 380 feet; in the northern part of Edwards County, it is 50 feet thick and in the southern part, 350 feet.

In general, the lower member of the Glen Rose Limestone yields small to moderate supplies of fresh water to wells. In places in the report area, the lower member is capable of transmitting large volumes of water. In Comal and Kendall Counties, large springs issue from the cavernous limestone; however, the many wells that have penetrated the entire thickness of the lower member have not obtained large yields.

<u>Upper Member</u>.--The upper member of the Glen Rose Limestone consists of shale and nodular marl alternating with thin beds of impure limestone; it also contains two beds of anhydrite. The limestone is more resistant to erosion than the shale and marl, and the member produces a characteristic terrace or "stair-step" topography. The thickness of the upper member is about 400 feet in Hays, Bandera, and Edwards Counties. In general, the upper member of the Glen Rose yields small quantities of water to wells. The anhydrite beds, which are readily identified in electric logs because of their high resistivity, yield small quantities of saline water.

Fredericksburg Group

The Fredericksburg Group has been divided into the Walnut Clay, Comanche Peak Limestone, Edwards Limestone, and Kiamichi Formation, in ascending order. The Fredericksburg Group and the Georgetown Limestone of the Washita Group are shown in the geologic maps as a single unit (Plates 1 and 2). The Fredericksburg Group of rocks has a maximum thickness of about 900 feet.

The Comanche Peak and Edwards Limestones of the Fredericksburg Group and the Georgetown Limestone of the Washita Group were considered as a single hydrologic unit and referred to as the Edwards and associated limestones by Petitt and George (1956, p. 16). The Edwards and associated limestones supply most of the water for municipal, industrial, irrigation, and domestic uses in the Balcones fault zone area.

Walnut Clay

The Walnut Clay consists of sandy clay, mar1, and limestone ranging in thickness from 1 to 20 feet. The thinness and persistence of the formation warrant its use as a stratigraphic marker. The Walnut Clay yields small quantities of water to a few farm wells in Comal County (George, 1952, p. 21-22), but generally is non-productive.

Comanche Peak Limestone

The Comanche Peak Limestone consists generally of light-gray nodular marly limestone. Adkins (in Sellards, Adkins, and Plummer, 1932, p. 334-337) indicated that the Comanche Peak is not of the same age throughout its extent, but that it is a nodular facies of the Fredericksburg Group; it may be, in part, laterally continuous with the Walnut Clay below and the Edwards Limestone above. The Comanche Peak which, in contrast to the Edwards, contains no flint, ranges in thickness from 30 to 70 feet.

The Comanche Peak is not differentiated by well drillers from the overlying Edwards Limestone. Because the formations are similar lithologically, they probably have similar water-bearing characteristics.

Edwards Limestone

The Edwards Limestone, which forms the surface of a large part of the Edwards Plateau, consists principally of light-gray brittle thick-bedded to massive limestone, commonly dolomitic, with minor beds of argillaceous or siliceous limestone and calcareous shale. Bedded or nodular chert and flint characterize much of the formation, but do not occur in the basal or upper part of the formation. The dolomitic beds have a sugary texture and when crushed in drilling yield sand-sized particles. The "sandstone" and "sandy limestone" reported in the Edwards by many drillers actually are beds of unconsolidated fine-grained dolomite. In the outcrop, the Edwards weathers and forms a surface having a reddish calcareous clay soil containing numerous chert and flint nodules and fragments. In many places, both on the outcrop and in the subsurface, the Edwards is extensively honeycombed and cavernous. In general, the thickness of the Edwards Limestone in the report area ranges from 350 to 600 feet.

George (1952, p. 37) stated, "Some idea of the solvent action of ground water on the limestones in Comal County may be obtained from the chemical character of the water that issues at Comal Springs. The dissolved-solids content in the water at the spring averages about 285 parts per million. The average flow of the springs over a period of about 20 years has been 320 cubic feet per second. On this basis an average of more than 200 tons of rock material is carried away daily in solution by the water that issues from these springs."

The Edwards Limestone yields moderate to large quantities of fresh water and is the most prolific unit of the three limestones included in the Edwards and associated limestones. The water occurs chiefly in solution openings.

Kiamichi Formation

The Kiamichi Formation consists principally of black shale, brown and black limestone, which may be petroliferous, and anhydrite.

In the subsurface, the Kiamichi Formation is identified by the dark sulfurous and petroliferous nature of the drill cuttings and by high resistivity on electric logs. The thickness of the formation ranges from 155 feet at the outcrop in northwest Uvalde County (Welder and Reeves, 1962, p. 17) to about 210 feet in wells in Uvalde and Kinney Counties (Bennett and Sayre, 1962, p. 30). East of Uvalde County, the formation is absent in the report area. The Kiamichi Formation is not known to yield fresh water to wells in the report area.

Washita Group

The Washita Group has been divided into the Georgetown Limestone, Grayson Shale (formerly the Del Rio Clay), and Buda Limestone, in ascending order. The Georgetown Limestone has been included in the rocks that comprise the Edwards and associated limestones. The rest of the Washita Group, all the Gulf Series, and the Midway Group of Tertiary age are shown in the geologic maps as a single unit (Plates 1 and 2).

Georgetown Limestone

The Georgetown Limestone lies disconformably upon the Edwards Limestone in the report area except in the western part where it overlies the Kiamichi Formation. In much of the report area, the contact between the Georgetown and Edwards Limestones shows little evidence of the disconformity other than the absence of the Kiamichi Formation. In some places, the upper part of the Edwards and the lower part of the Georgetown also are missing.

The Georgetown Limestone consists principally of hard massive limestone containing thin beds of marl in some places. The formation contains chert nodules at least in Uvalde and Kinney Counties. From Hays County to Medina County, the thickness of the Georgetown Limestone ranges from 20 to 65 feet. In Uvalde County, the thickness ranges from 310 to 400 feet, and in Kinney County the thickness may be as much as 500 feet.

The Georgetown Limestone yields large quantities of fresh water in Bexar County, and it is the principal aquifer in Uvalde County. In Hays and Comal Counties, however, the Georgetown generally is not water bearing.

Midway Group, Gulf Series, Buda Limestone, and Grayson Shale

The geologic Formations from the Grayson Shale of Late Cretaceous age to the Wills Point Formation of Paleocene age, which include aquifers of only local importance, are shown in the geologic maps (Plates 1 and 2) and in the geologic sections (Plates 3 through 6) as a unit. Brief descriptions of the lithology and water-bearing properties of the Formations in this unit are given in Table 1. The unit crops out in a belt from 10 to 22 miles wide between the Balcones escarpment and the base of the Wilcox Group from Hays the Wilcox Group (Plates 1 and 2). The total thickness of the unit ranges from about 2,400 to 6,600 feet.

The Grayson Shale, Buda Limestone, Eagle Ford Shale, and Austin Chalk extend across the width of the report area. The Austin Chalk yields small to moderate amounts of fresh to slightly saline water to wells in the report area, and the Eagle Ford yields small quantities of water to wells west of Bexar County.

The correlation of Taylor marl and the Navarro Group in the San Antonio and Guadalupe River Basins with their equivalents in the Nueces River Basin is shown in Table 2.

The Taylor Marl, Anacacho Limestone, Upson Clay, San Miguel Formation, and Escondido Formation all yield small amounts of water to a few wells in the report area; however, the production is very localized and much of the water is saline. The Kincaid Formation and the Wills Point Formation, which extend across the width of the report area, are not known to yield water to wells.

Tertiary System

The primary aquifers in the Tertiary System are (1) the Carrizo Sand and Wilcox Group of Eocene age and (2) the Gulf Coast aquifer of Miocene to Pleistocene age, comprised of the Catahoula Tuff, Oakville Sandstone, Lagarto Clay, Goliad Sand, Lissie Formation, and Beaumont Clay. Secondary aquifers are the Sparta Sand, and the Queen City Sand Member of the Mount Selman Formation, both of Ecocene age.

Eocene Series

Wilcox Group

In southwestern Texas, the Wilcox Group is represented by only one formation, the Indio (Trowbridge, 1923, p. 90). From Bexar County northeastward,

Nueces River Basin	San Antonio and Guadalupe River Basins
Navarro Group	Navarro Group
Escondido Formation	Kemp Clay
Olmos Formation	Corsicana Marl
San Miguel Formation Anacacho	Taylor Marl
Austin Chalk	Austin Chalk
Eagle Ford Shale	Eagle Ford Shale

Table 2. -- Subdivisions of the Gulf Series

Plummer (in Sellards, Adkins, and Plummer, 1932, p. 571-606) divided the Wilcox Group into three formations: Seguin, Rockdale, and Sabinetown, in ascending order. However, for the purposes of this report, the Wilcox Group is undifferentiated.

Plummer (in Sellards, Adkins, and Plummer, 1932, p. 573) described the group as follows: "The strata of the Wilcox group comprise a heterogeneous series, several hundred feet thick, of sandy, lignitiferous littoral clays, cross-bedded river sands, compact, noncalcareous lacustrine or lagoonal clays, lignite lentils, and stratified deltaic silts. The upper layers have a larger proportion of sand, and some massive beds from 50 to 100 feet thick are made up entirely of medium-grained sand, largely of continental origin, but possibly reworked to some extent by the transgressing shoreline waters that inaugurated the Claiborne epoch."

The basal part of the Wilcox and the uppermost part are composed of sand and clay of shallow marine origin. The basal sand and clay contain gypsum and some lignite; thus, water from these beds contains a noticeable amount of sulfate. The sand and clay in the uppermost part of the Wilcox contain ferruginous concretions and some glauconite. Nonmarine sediments comprise the middle four-fifths of the group and include thick lenses of water-bearing sand, lenticular beds of lignite, some of commercial importance, and clays. The Wilcox thickens from 150 feet in the outcrop to more than 2,300 feet downdip. The Wilcox Group yields small to moderate quantities of fresh to very saline water.

Claiborne Group

In the Guadalupe and San Antonio River Basins, the Claiborne Group has been divided into the Carrizo Sand; Reklaw, Queen City Sand, and Weches Greensand Members of the Mount Selman Formation; Sparta Sand; Cook Mountain Formation; and Yegua Formation, in ascending order. In the Nueces Basin, the group has been divided into the Carrizo Sand; Mount Selman Formation, undifferentiated, except west of the Frio River where the Mount Selman has been divided into the Bigford Member and the overlying post-Bigford beds; the Sparta Sand and the Cook Mountain Formation, undifferentiated; and the Yegua Formation. The correlation of these units in and between basins is shown in Plates 5 and 6.

Carrizo Sand

The Carrizo Sand consists of coarse to fine sand, sandstone, silt, shale, and clay. In general, the sand is thickly bedded, loosely cemented, remarkably clean, and commonly crossbedded. Electric logs of a large number of wells indicate that in a large part of the area the Carrizo consists principally of beds of massive sand. Plates 3 through 6, which are based on interpretations of electric logs, show that the massive sand extends from the eastern edge of the Guadalupe Basin westward to Frio and LaSalle Counties, where it ranges from 600 to 800 feet in thickness; westward, the beds of massive sand become thinner, ranging from 200 to 300 feet in thickness.

The Carrizo Sand is about 200 feet thick in the Winter Garden district; it ranges in thickness from 600 feet near its outcrop in Wilson County to about 1,000 feet in wells near the Wilson-Karnes County line.

The Carrizo Sand is a primary aquifer in the report area. It yields moderate to large quantities of fresh to slightly saline water for irrigation, municipal, and industrial purposes.

Mount Selman Formation

<u>Reklaw Member</u>.--The Reklaw Member of the Mount Selman Formation consists mostly of clay with some glauconitic sand in the basal part. In some areas, the Reklaw is sandy at the outcrop. The thickness of the Reklaw ranges from about 200 feet in Wilson County to about 400 feet in LaSalle County. The Reklaw yields small quantities of fresh to moderately saline water to wells in and near the outcrop.

<u>Queen City Sand Member</u>.--The Queen City Sand Member consists of medium to fine sand, sandy clay, silty clay, clay, and shale, and ranges in thickness from about 500 feet in Gonzales County to about 1,000 feet in LaSalle County. The Queen City is a secondary aquifer in the report area and yields small to moderate quantities of fresh to salightly saline water. In Wilson and Gonzales Counties, the Queen City yields water to several irrigation and public-supply wells. However, moderate quantities of fresh water are obtained in places in and near the outcrop where the sands are relatively massive. Yields ranging from 200 to 600 gpm may be expected from wells in the outcrop area where the thickness of the Queen City exceeds 300 feet. Where the sands are thin and fine grained, however, only small amounts of slightly saline water can be obtained.

Weches Greensand Member.--The Weches Greensand Member of the Mount Selman Formation consists principally of fossiliferous glauconitic shale and sand. Because of the iron-bearing mineral, glauconite, the Weches weathers to a conspicuous reddish-brown ferruginous clayey soil. The thickness of the Weches ranges from about 100 to 200 feet. The Weches is not known to yield water to wells.

<u>Bigford Member</u>.--The Bigford Member of the Mount Selman Formation crops out in a belt trending northward through Dimmit County and western Zavala County, thence eastward through northern Zavala County into the north-central part of Frio County (Plate 2). The Bigford is equivalent to the Reklaw Member and the lower part of the Queen City Sand Member.

The Bigford Member consists chiefly of gypsiferous sandy clay, but contains many lenses of sandstone near the base. It also contains calcareous concretions, a few thin layers of limestone, many thin beds of lignite, and an abundance of plant remains in some thin beds of sand and shale. Iron-bearing minerals are common in the Bigford. The Bigford Member is predominantly shale and sandy shale in Zavala County and predominantly sand in Dimmit County; the thickness generally ranges from 400 feet near the outcrop to about 800 feet downdip in eastern Dimmit County (Turner and others, 1960, p. 47). In and near the outcrop in the northern part of Zavala County, the Bigford yields small quantities of fresh water. Elsewhere the water is moderately to very saline. According to Lonsdale (1935, p. 29), the Bigford Member does not yield much water to wells in Frio County, and the water generally is slightly saline.

<u>Post-Bigford Beds</u>.--The outcrop of the post-Bigford beds occupies a broad belt trending northward from northern Webb County to central Zavala County, thence eastward to central Frio County (Plate 2). The post-Bigford beds are composed chiefly of dark clays, a few thin beds of sandstone and limestone, and thin beds of coal. The clay beds contain large quantities of gypsum as lenses, stringers, and crystals. In Frio County, the post-Bigford beds are divisible into a lower clay member and an upper sandy member, but their character changes along the strike, and in Atascosa County, they consist largely of alternating sand and clay beds (Lonsdale, 1935, p. 30). The sandstones are generally lenticular and in many places are quartzitic. The maximum thickness of the post-Bigford beds in the Winter Garden district is about 700 feet. Along the outcrop in Atascosa and Frio Counties, the average thickness is also 700 feet; downdip it may be as much as 900 feet. According to Lonsdale and Day (1937, p. 35), the post-Bigford beds are 1,165 feet thick along the Rio Grande in Webb County, indicating that the beds thicken southward.

In the Winter Garden district, the sandstone lenses in the lower part of the post-Bigford beds yield small supplies of slightly to moderately saline water. In the western part of Frio County, the sandy beds in the upper part yield small to moderate quantities of fresh to slightly saline water suitable for domestic use and irrigation.

Mount Selman Formation, Undifferentiated

Where it crops out in Atascosa County and the eastern part of Frio County (Plate 2), the Mount Selman Formation has not been differentiated; however, downdip in the southern part of Atascosa County, the Mount Selman can be divided into its three members--the Reklaw, Queen City Sand, and Weches Greensand-- on the basis of electric logs (Plate 6). The Mount Selman yields small to moderate supplies of fresh to slightly saline water.

Sparta Sand

The Sparta Sand crops out in a narrow northeastward-trending belt in the San Antonio and Guadalupe River Basins (Plate 1); it has been mapped with the Cook Mountain Formation in the Nueces Basin. The Sparta consists of medium to fine sand and clay. The upper two-thirds of the formation is mostly sand; the lower one-third is mostly clay. The Sparta Sand ranges from about 100 to 110 feet in thickness, and because of its uniform thickness and lithology, the formation is relatively easy to recognize on electric logs.

The Sparta Sand yields small to moderate amounts of fresh to slightly saline water in the outcrop area; it generally yields slightly to moderately saline water downdip. In Wilson County, the Sparta is not used as a source of irrigation water, but it seems likely that enough water to irrigate small tracts could be obtained from the formation (Anders, 1957, p. 17).

Cook Mountain Formation

In the San Antonio and Guadalupe Basins, the Cook Mountain Formation consists of fossiliferous clay and shale containing a few sandstone and limestone lenses and minor amounts of glauconite and gypsum. The formation is about 450 feet thick in Wilson County. In the San Antonio and Guadalupe Basins, the Cook Mountain Formation yields small amounts of slightly to moderately saline water to a few wells.

Cook Mountain Formation and Sparta Sand, Undifferentiated

In the Nueces Basin, the Cook Mountain Formation and the Sparta Sand have not been differentiated, and they are shown in the geologic map as a single unit (Plate 2).

In the Nueces Basin, the Cook Mountain Formation and the Sparta Sand, undifferentiated, consists of sandstone, gypsiferous clay, impure limestone, and lignite; much of the sandstone is glauconitic. The formation varies considerably in lithologic character along the strike. In eastern Atascosa County, the formation consists largely of alternating beds of gypsiferous clay and glauconitic sandstone. In the western part of Atascosa County and in Frio County, the lower part consists largely of glauconitic sandstone, in many places fossiliferous, and only a minor amount of clay; the upper part is chiefly clay. Lonsdale and Day (1937, p. 43-44) described a composite columnar section 630 feet thick from outcrops of the Cook Mountain near Laredo about 20 miles south of the report area, where sandstone constitutes more than 50 percent of the formation. Near Laredo, the formation consists of alternating beds of sandstone or sand and clays or sandy clay, but farther north in Webb County, clay is more prevalent in the upper third of the formation. Similar conditions exist across the Winter Garden district. The thickness of the Cook Mountain Formation and Sparta Sand, undifferentiated, ranges from 600 to 900 feet.

The lower sandy parts of the Cook Mountain Formation and Sparta Sand, undifferentiated, yield slightly to moderately saline water, some of which is suitable for domestic use and for irrigation where soils are sandy and are well drained. Near Dilley in southern Frio County, the formation yields sufficient water for irrigation. In the upper clayey parts of the formation, water suitable for domestic use is difficult to obtain.

Yegua Formation

In Wilson and Karnes Counties, the Yegua Formation consists of medium to fine sand, silt, clay, and small amounts of gypsum; whereas, in Atascosa and Frio Counties, the formation is composed mostly of clay, but also sandy clay, lignite, gypsum, limestone, and limestone concretions. The gypsum is rather uniformly distributed through the clay, and the thickness of the lignite ranges from thin seams to that of commercial value. Farther west in Webb County, the formation becomes less sandy and more gypsiferous. The thickness of the Yegua ranges from 670 feet in the outcrop in Webb County to more than 1,000 feet in Karnes County.

In the San Antonio and Guadalupe Basins, the Yegua generally yields small amounts of slightly to moderately saline water principally for livestock use, but also in some places for doemstic purposes. Locally, the Yegua yields moderate quantities of fresh water. In the Nueces Basin, most of the water in the Yegua is so highly mineralized that it is unfit even for livestock, although a few wells locally obtain moderately saline water suitable for livestock use. In the part of the basin where the Yegua is gypsiferous, the water probably is unsatisfactory for most purposes.

Jackson Group

The Jackson Group includes a lower part consisting of clay, bentonitic clay, sandy or silty clay, silt, thin sand beds, and a small amount of lignite and an upper part consisting mainly of beds of tuffaceous sand interbedded with bentonitic clay, volcanic ash, and a small amount of lignite. The Jackson ran ranges in thickness from about 900 feet in the outcrop in Karnes County to about 1,500 feet in Webb County.

In Karnes and Live Oak Counties, the Jackson yields small to moderate amounts of fresh to moderately saline water. According to Lonsdale (1935, p. 46), "The water from the Jackson formation [in Atascosa and Frio Counties] is variable in chemical quality. The sandstone from the lower part of the formation yields considerable quantities of water, some of which is suitable for use, but the higher beds generally yield water that is highly mineralized and is frequently unsuitable for use."

Oligocene(?) Series

Frio Clay

The Frio Clay crops out only in the Nueces Basin in a belt that extends southwestward from Live Oak County beyond the boundary of the basin (Plate 2); it is overlapped by the Catahoula Tuff in the San Antonio and Guadalupe Basins. The Frio is composed of bentonitic and slightly calcareous clay and silty clay, with small amounts of sand and gypsum. It ranges in thickness from about 200 to 300 feet. The Frio is not known to yield water to wells in the report area.

Oligocene(?) and Miocene(?) Series

According to Plummer (in Sellards and others, 1932, p. 713), the Catahoula outcrop may be divided conveniently into two areas for purposes of description--the east Texas outcrop and the southwest Texas outcrop. The east Texas outcrop, which comprises the Catahoula Sandstone and interbedded ash deposits, extends only a short distance into the eastern part of the Guadalupe River Basin; the southwest Texas outcrop, which comprises the Catahoula Tuff, extends from Gonzales County southwestward across the Nueces River Basin (Plates 1 and 2).

Catahoula Tuff

The Catahoula Tuff crops out in a southwestward-trending belt that ranges in width from less than 1 mile in the eastern part of Gonzales County to as much as 14 miles in Duval County (Plates 1 and 2). It consists chiefly of tuff, tuffaceous clay, sandy clay, bentonitic clay, and lenticular sandstone. The Catahoula Tuff ranges in thickness from 500 feet at its contact with the overlying Oakville Sandstone in Live Oak County to more than 1,000 feet in the subsurface in Webb County.

The Catahoula Tuff yields small to moderate quantities of fresh to slightly saline water in Karnes and Live Oak Counties. Most of the municipal supply for Karnes City and part of the supply for Kenedy is obtained from wells that tap sands in the Catahoula Tuff. Five irrigation wells in Karnes County obtain part or all of their water from the Catahoula. In Live Oak County, most of the water pumped from the Catahoula is satisfactory for livestock; locally, the water is satisfactory for domestic use. In Webb County, small amounts of moderately saline water are obtained from wells in the outcrop of the Catahoula Tuff.

Catahoula Sandstone

The Catahoula Sandstone crops out in an area of a few square miles in eastern Gonzales County in the Guadalupe Basin (Plate 1). In this area, the sandstone locally is quartzitic and has a thickness ranging from 5 to 10 feet (Renick, 1936, p. 62-63; pl. III, columnar sections 11 and 12). The Catahoula Sandstone is not a source of water in the report area.

Miocene Series

Oakville Sandstone

The Oakville Sandstone unconformably overlies and partly overlaps the Catahoula Tuff. The Oakville consists of cross-bedded, medium- to fine-grained sand and sandstone interbedded with sandy clay, some of which is silty and bentonitic. The thickness of the Oakville ranges from 200 feet near its outcrop in Live Oak County to 800 feet in Karnes County.

The Oakville Sandstone yields small to moderate quantities of fresh to slightly saline water to wells in Karnes and Live Oak Counties. In Karnes County, where it is the principal aquifer, the Oakville yields moderate quantities of fresh to slightly saline water to some irrigation wells and to the municipal wells at Runge and Kenedy (Anders, 1960, p. 27). In Live Oak County, properly constructed wells in the Oakville yield moderate to large quantities of fresh to slightly saline water where 100 feet or more of the formation is saturated (Anders and Baker, 1961, p. 18). Locally, water from the Oakville may contain excessive amounts of fluoride.

Miocene(?) Series

Lagarto Clay

The Lagarto Clay consists of clay, sandy or silty clay, calcareous clay with calcareous nodules, and beds of sand or sandstone. The sand in the Lagarto is finer grained and more thinly bedded than the sand in either the underlying Oakville or the overlying Goliad, and generally, the clay beds in the Lagarto are thicker and more persistent than those in the Oakville or the Goliad. Locally, thick beds of sand similar to those in the Oakville and Goliad make identification of the Lagarto difficult on electric logs. In general, beds of sand are most common near the outcrop and are replaced progressively by beds of clay downdip. The thickness of the Lagarto ranges from about 500 feet in Karnes County (Anders, 1960, p. 27) to more than 1,000 feet in Live Oak County (Anders and Baker, 1961, p. 19).

The Lagarto yields small to moderate quantities of fresh to slightly saline water to many wells for domestic, livestock, irrigation, and public supply in Karnes County; it yields small quantities of slightly saline water to many wells in Live Oak County and moderate quantities of fresh to slightly saline water to a few irrigation wells.

Pliocene Series

Goliad Sand

The Goliad Sand overlies the Lagarto Clay uncomformably and the outcrop forms a prominent cuesta. The Goliad Sand consists of sand and sandstone interbedded with clay and gravel. Where it crops out in the report area, the Goliad is cemented with caliche, and the white color of the caliche is characteristic of the formation in the outcrop. The thickness of the Goliad ranges from 100 feet in Karnes County to 500 feet in Goliad County.

The Goliad Sand supplies small to moderate quantities of fresh to slightly saline water to wells in Goliad County and large quantities of fresh water for municipal, industrial, and agricultural use in Victoria County.

Tertiary(?) System

Pliocene(?) Series

Uvalde Gravel

The Uvalde Gravel, the oldest and highest terrace deposit, is found in remnants capping hills and interstream divides. Because the deposits are thin and difficult to distinguish in the field, they are not shown on the geologic map (Plates 1 and 2). Plummer (in Sellards, Adkins, and Plummer, 1932, p. 777-779) described the Uvalde as consisting of gravel composed almost entirely of rounded flint cobbles with pieces of limestone, quartz, and flint pebbles in a matrix of chalky marl and caliche and having a maximum thickness of 30 feet. The Uvalde Gravel does not contain appreciable quantities of water becuase of its topographic position and thickness.

Quaternary System

Pleistocene Series

Lissie Formation

The Lissie Formation, which crops out in a belt of irregular width in the southern end of the report area (Plates 1 and 2), consists of thick beds of sand containing lenses of gravel interbedded with clay and silt. In the outcrop, the formation is cemented with caliche and in some places caliche is encountered downdip in shallow wells. The thickness of the Lissie ranges from 500 feet in Goliad County to 600 feet in Victoria County.

The Lissie yields small supplies of fresh water for domestic and livestock use in Goliad County; it yields large supplies of fresh water for municipal, industrial, and agricultural use in Victoria County.

Beaumont Clay

The Beaumont Clay consists of clay and beds of sand. The thickness of the Beaumont ranges from 50 feet in Goliad County to 600 feet in Victoria County. The Beaumont yields small to moderate quantities of fresh to slightly saline water in Victoria and Calhoun Counties.

Pleistocene and Recent Series

Leona Formation and Alluvium

The Leona Formation of Pleistocene age, consisting of silt, sand, and gravel, includes the stream terraces between the Recent flood plains and the high-level Uvalde Gravel. The thickness of the Leona ranges from 0 to about

80 feet. The Leona yields small to moderate amounts of fresh water; locally, it yields sufficient quantities of water for irrigation.

The Recent alluvium, consisting of clay, silt, sand, and gravel, includes the flood plain and channel deposits of the present streams. The thickness of the Recent alluvium ranges from 0 to about 30 feet. The Recent alluvium retards to some extent the runoff of storm water by absorbing water during the higher stream stages and releasing it slowly as springflow as the stream flow decreases. The Recent alluvium yields small to moderate quantities of fresh water.

The Leona Formation and the Recent alluvium are considered in this report as one aquifer because they have similar hydrologic characteristics. Consequently, they are shown as a unit on the geologic maps (Plates 1 and 2).

GROUND WATER IN THE EDWARDS PLATEAU

The Edwards Plateau hydrologic subdivision, about one-fourth of the report area, contains approximately 7,300 square miles and includes all or parts of 13 counties. It extends from the northern boundary of the report area southward and southeastward to the Balcones escarpment. Because most of the land is devoted to ranching, it is the least populated section. The principal towns and populations, according to the 1960 census, include Bandera, 1,036; Blanco, 789; Boerne, 2,169; Comfort, 1,650; Kerrville, 8,901; and Leakey, 587. Ground water is the chief source of water for the public supplies in the area.

The climate is classified as semiarid (Thornthwaite, 1952, p. 32). The average annual precipitation ranges from about 20 inches in the west to 25 inches in the east. The mean annual temperature ranges from 64°F to 69°F.

The chief uses of ground water in the Edwards Plateau are for public supply, domestic, and livestock needs. Only a small amount of ground water is used for irrigation.

Primary Aquifer

Edwards and Associated Limestones

The only primary aquifer in the Edwards Plateau is in the Edwards and associated limestones; the geographic distribution of the aquifer is shown in Plates 1 and 2.

Physical Description

The Edwards and associated limestones, which include the Comanche Peak, and Georgetown Limestones, are exposed throughout a large part of the Guadalupe, San Antonio, and Nueces River Basins, except on the high divides where they are capped by younger formations and in the stream valleys where erosion has exposed the underlying Glen Rose Limestone. The unit consists of hard, massive, cherty, marly, and dolomitic limestone and dolomite. The thickness of the Edwards and associated limestones in the Edwards Plateau ranges from 400 to 550 feet. In many places, both on the outcrop and in the subsurface, the unit is extensively honeycombed and cavernous, and the water is contained in and transmitted through the porous fossiliferous beds, dolomitic beds, and fracture and solution channels.

Although the Edwards and associated limestones do not yield large quantities of water to wells in the Edwards Plateau part of the Guadalupe, San Antonio, and Nueces Basins, they contain a primary aquifer because of the large supply of water obtained from the unit in other basins of the Edwards Plateau.

Recharge, Movement, and Discharge of Ground Water

The Edwards and associated limestones are recharged primarily by precipitation on the outcrop. The water moves rapidly downward from the surface to the water table, thence south and southeastward to discharge areas along stream valleys or southward into the Balcones aquifer. The water is discharged chiefly through seeps and springs at the contact between the Edwards and associated limestones and the underlying Glen Rose Limestone. The water occurs under water-table conditions except locally where artesian conditions have been reported by drillers.

Chemical Quality of Ground Water

The chemical analyses of water from six wells in the Edwards and associated limestones are shown in Table 3. The locations of the wells are shown by means of bars over the well symbols on the well maps (Plates 1 and 2). The analyses shown are only a few of the total number on record, but they may be considered representative of the quality of ground water in the Edwards and associated limestones in the Edwards Plateau. The analyses show that the water is characteristically hard, averaging about 220 ppm, and low in dissolvedsolids content, ranging from about 200 to 300 ppm. The water is suitable for most industrial uses and for irrigation and public supply.

Utilization and Present Development

The Edwards and associated limestones in the Edwards Plateau supply water only for domestic and livestock uses. The wells, which range in depth from 200 to 300 feet, generally yield less than 10 gpm (gallons per minute), and most are pumped by windmills. The wells are designed to produce only enough water for domestic or livestock use, but larger yields probably could be obtained in many places, if necessary. In 1961, an estimated 2,000 acre-feet of ground water was pumped for domestic and livestock uses.

Changes in Water Levels

Records of fluctuations of water levels in wells are scarce in the Edwards Plateau. The only records covering a period of several years are for wells in Edwards County (Long, 1962, p. 114-115), and Real County (Long, 1958, p. 25) where the water levels showed no significant changes during the period of record. Table 3. -- Chemical analyses of water from selected wells in the Edwards Plateau, Guadalupe, San Antonio, and Nueces River Basins

(SAR)]	
ratio	
adsorption	
sodium	
and	
nibos	
percent i	
pH,	
ecific conductance,	
cept sp	
million except	
per	
in parts	
are	
given	
lyses	
[Ana	

Hd		7.7	7.2		7.7	7.6		7.6		7.9	8.0	7.0	[7.5	8.0	7.4		7.2	7.7	7.4		7.8	7.9	7.3	7.3	7.6	7.9		6.8	7.5
Specific conductance (micromhos at 25°C)		676	808		824	858		1,400		645	998	1,300		898	749	647		2,330	4,220	1,520		381	977	513	497	419	406		607	567
Sodium adsorp- tion ratio (SAR)		4.4	3.4		3.3	4.5		1.6		0.2	8.	2.0		1.1	.5	.2		0.2	1.0	.7		0.2	e.	۳.	.2	.2	.3		0.2	.2
Per- cent so- dium		60	53		54	64		23		9	15	31		21	12	5		3	80	10		œ	80	00	5	00	11		5	2
Hard- ness as CaCO3		180	186		198	166		644		332	470	460		410	401	526		1,610	3,020	870		193	226	270	264	203	188		334	294
Dis- solved solids		561	476		464	504		966	(uoi:	380	654	828		569	504	601		2,120	4.140	1,130		219	252	298	284	238	226		415	326
Boron (B)		0.8	.50		;	K		;	Formation)	;	Ţ	1		1	1	;		;	1	:		ŧ	1	1	ţ	.21	.03		1	0.04
Phos- phate (PO4)		;	0.00		:	:		1	Pearsall	:	;	£		£	3	;		:	£	1		:	1	;	;	ł	1		1	0.01
Ni- trate (NO3)		0.0	0.		0.0	0.	u	0.2	of the P	0.2	0.	0.		0.2	2.5	1.0		0.1	0.	0.		1.5	6.	5.6	5.5	8.7	4.5		10	4.5
Fluo- ride (F)		3.0	2.0	tiated	:	2.8	Formation	3.6	Member o	0.8	;	1.9		2.6	;	1	8	1.8	;	4.4		0.2	.4	:	:	е.	.6		0.4	1.
Chlo- ride (Cl)		85	58	undifferent	50	73	Pearsall F	41	Shale N	19	30	156	Limestone	33	13	14	Limestone	15	25	36	limestones	12	15	12	12	15	15		20	14
Sul- fate (SO4)	nation	70	42		95	51	the	482	(Hensell	26	222	164	Rose	156	131	198	Rose	370	,910	577		7.4	6.3	3.4	4.0	6,1	5.8	E	69	14
Bicar- bonate (HCO3)	Hosston Formation	364	364	Formations	378	360	Member of	331	Formation (370	342	358	of Glen	372	363	397	of Glen	243 1	274 2	375	associated	224	265	326	311	225	218	Alluvium	300	336
Potas- sium (K)	Hoss	15	14	Sligo F					Peak Form	6.3		14	member				Upper member				ds and	9.0	.4	-	1	80.			2.6	1.0
Sodium P (Na)		137	107	and	*106	+134	ek Limestone	*91	Travis Pe	9.0	-*-	66	Lower	*51	*25	*12	Upper	*20	*124	446	Edwards	7.4	8.7	*10	6.0	8.1	*11	e s	8.3	7.1
Magne- S sium (Mg)	s :	20	22	Hosston	25	21	Cow Creek	83	of the T	43	62	56 9		55	38	69		92	421	121		16	21	22	21	13	13		18	17
cium cium (Ca)		39	38		38	32		121		62	86	92		74	98	97		492	516	149		51	56	72	71	60	54		104	06
Manga- nese (Mn)		1	0.00		3	;		:	Hensell Sand Member	:	1	;		;	1	1		:	;	1		;	;	:	;	;	ł		I.	3
(Fe) M		1	0.25		;	;		:	Hensel	2.1	;	1.7		:	E	10.0		1	;	£		1	:	1	;	;	;		0.04	00
Silica (SiO2)		13	13		13	13		II		14	14	12		12	12	15		13	9.2	11		13	13	13	12	12	14		12	13
Date of S collection (Jan. 17, 1957	May 2, 1962		May 20, 1954	Jan, 1957		Feb. 12, 1957		Nov. 16, 1945	July, 1954	Oct. 18, 1961		Jan. 17, 1957	Feb. 7, 1957	Aug. 24, 1955		Feb. 7, 1957	May 6, 1954	Jan. 16, 1957		Mar. 26, 1956	do	Feb. 12, 1957	Feb. 8, 1957	Mar. 11, 1954	June 8, 1954		Nov. 2, 1945	Apr. 3. 1956
Depth of well (ft.)		1,137 J	842 M		780 M	1,085 J		872 F		605 N	450 J	300 0		F 007	143 F	165 A		275 F	445 P	135 3		400	433	301 1	232	231 N	500		40	37
L Mell		AS-69-23-801 1,	69-24-202		AS-69-16-901	69-23-601 1,		AS-69-20-201		RJ-56-63-604	69-06-801	RB-68-01-302		AS-69-16-701	69-23-201	69-24-501		AS-68-25-401	69-14-101	69-16-601		WA-69-02-401	69-03-501	AS-69-12-101	69-13-501	11-70-05-301	70-07-401	-	RB-68-11-405	WA-69-18-301

4 Includes the equivalent of any carbonate (CO3) present. * Sodium and potassium calculated as sodium (Na). -

- 52 -

Availability and Potential Development

The quantity of fresh water in storage in the Edwards and associated limestones in the Edwards Plateau is not known but probably is large. The amount of water available for perennial development also is not known but Long (1962, p. 27) estimated from base-flow records of the South Llano and Nueces Rivers that about 150,000 acre-feet of water is annually recharged to the aquifer in Edwards County. This volume was more than 150 times the withdrawals in the county. Similar quantities are probably available in areas of similar size elsewhere on the plateau.

Problems

The base flow of the streams leaving the Edwards Plateau is sustained by the natural ground-water discharge. Thus, large developments of ground water from the Edwards and associated limestones would result in a reduction in base flow of the streams draining the plateau.

Secondary Aquifers

The Hosston Formation, Sligo Formation, Travis Peak Formation (Pearsall Formation in subsurface), the Glen Rose Limestone, all of Cretaceous age, and the Recent alluvium are classed as secondary aquifers in the Edwards Plateau; they furnish water to all the public supply and irrigation wells. About 3,000 acre-feet was pumped for domestic and livestock uses in 1961 from the secondary aquifers.

Hosston and Sligo Formations

The Hosston Formation ranges in thickness from 0 to 900 feet and is composed of conglomerate, sandstone, red and green clay, shale, dolomite, and limestone. The overlying Sligo Formation ranges in thickness from 0 to 200 feet and is composed of limestone, in places dolomitic, sandy dolomite, shale, and sandstone. The Hosston and Sligo form a wedge, 0 to 1,100 feet thick, between the underlying Paleozoic rocks and the overlying Pearsall Formation, the wedge thinning generally northward.

The Hosston and Sligo are overlapped by younger rocks and do not crop out in Texas. Consequently, recharge in the report area is from other rocks, presumably younger. The water is under artesian pressure and movement probably is downdip toward the south or southeast. Some natural discharge occurs probably by seepage into overlying formations, and only small quantities of water are discharged by wells.

Small to moderate supplies of fresh water are obtained from the Hosston and Sligo. Chemical analyses of water from two wells in the Hosston Formation and two wells in the Hosston and Sligo Formations, undifferentiated (Table 3) show that the water contains less than 1,000 ppm dissolved solids and ranges from hard to very hard.

The principal pumpage from the Hosston and Sligo Formations during 1961 was about 110 acre-feet (0.1 mgd) for the public supply of the city of Bandera.

Inadequacy of data precludes a determination of the quantity of water available from the Hosston and Sligo Formations. Reeves and Lee (1962, p. 10) reported two public supply and two irrigation wells tapping the Hosston and Sligo in Bandera County. Similar supplies might be expected in parts of Comal, Hays, Blanco, Kendall, and Kerr Counties.

Travis Peak Formation (Pearsall Formation in Subsurface)

The members of the Travis Peak or Pearsall Formation are the Pine Island Shale of the Pearsall, Cow Creek Limestone of both Travis Peak and Pearsall, and Hensell Sand of Travis Peak of Hensell Shale of Pearsall Formation. The Pine Island Shale Member ranges in thickness from 45 to 70 feet and is not known to yield water to wells. The Cow Creek Limestone Member ranges in thickness from 50 to 75 feet and is composed of massive detrital limestone and dolomite. The Hensell Sand Member ranges in thickness from 20 to 150 feet and is composed of sandstone, conglomerate, shale, limestone, and dolomite. The Travis Peak Formation crops out along streams in northern Comal County, eastern Kendall County, and western Hays County.

The Travis Peak Formation is recharged in part by direct infiltration of precipitation on the outcrop but also by seepage from streams that cross the outcrop. The water is under artesian pressure and the general direction of movement probably is down the dip of the formation toward the south or southeast. Some natural discharge occurs probably by seepage into the overlying formations, and a small quantity is discharged from wells.

Chemical analyses of water from one well in the Cow Creek Limestone Member and three wells in the Hensell Sand Member (Table 3) show that the water contains less than 1,000 ppm dissolved solids and is very hard.

The Cow Creek yields small quantities of fresh water for domestic and livestock uses in a large area, but the Hensell is the most heavily developed secondary aquifer in the Edwards Plateau.

The Hensell Sand Member supplies most of the water used by the cities of Kerrville and Comfort and the irrigation wells in Kerr County and part of the supply for the city of Boerne. The estimated pumpage from the Hensell in 1961 was 2,300 acre-feet (2.1 mgd) for public supply and 200 acre-feet for irrigation, a total of 2,500 acre-feet.

The inadequacy of the data precludes a determination of the quantity of water available from the Travis Peak Formation, but it probably is many times the amount of ground water pumped in 1961.

Glen Rose Limestone

The Glen Rose Limestone is divided into two members. The lower member ranges in thickness from 50 to 380 feet in the Edwards Plateau and is composed of massive limestones in the basal part and thin beds of marl and limestone in the upper part. The upper member is approximately 400 feet thick and is composed of shale and marl alternating with thin layers of impure limestone; it also contains two thin beds of anhydrite. The outcrop of the Glen Rose Limestone includes more than 50 percent of the area of the Edwards Plateau in the Guadalupe and San Antonio Basins, but less than 10 percent in the Nueces Basin (Plates 1 and 2).

The Glen Rose Limestone is recharged in part by direct infiltration of precipitation on the outcrop but also by seepage from streams that cross the outcrop. The water is generally under artesian pressure and the general direction of movement probably is down the dip of the formation toward the south or southeast. Natural discharge is by springs, although some discharge occurs probably by seepage into the overlying formations. A small quantity is discharged from wells.

The lower member of the Glen Rose yields small to moderate supplies of fresh water. Chemical analyses of water from three wells in the lower member (Table 3) show that the water contains less than 1,000 ppm dissolved solids and is very hard. The upper member generally yields small quantities of water, mostly saline. Chemical analyses of water from three wells in the upper member (Table 3) show the characteristic high sulfate content of water from the section containing the anhydrite beds.

The estimated pumpage in 1961 from major wells in the Glen Rose Limestone was 580 acre-feet, all for irrigation use. The potential development of ground water from the Glen Rose Limestone is unknown, but probably is small. Petitt and George (1956, p. 17) wrote that in some places the lower member of the Glen Rose is capable of transmitting large quantities of water; however, the many wells that penetrated the entire thickness of the member generally have not obtained large yields. The high sulfate content of the water in the upper member is a potentially serious problem because the outcrop includes about one-fourth of the area of the Edwards Plateau in the Guadalupe and San Antonio Basins. Particular care is necessary when drilling wells through the Glen Rose to insure that the anhydrite beds, which are the source of the sulfate, are cased off or cemented to prevent the contamination of the water of better quality in the deeper aquifers.

Recent Alluvium

The Recent alluvium ranges in thickness from 0 to more than 30 feet and consists of clay, silt, sand, and gravel. It forms the flood plains and low terrace deposits along the streams.

The water in the alluvium is under water-table conditions and the movement generally is toward the streams. Natural discharge is mainly by springs, but some water seeps into underlying permeable rocks. A small quantity is discharged from wells.

The alluvium yields small quantities of fresh water. Chemical analyses of water from two wells in the alluvium (Table 3) show that the water contains less than 1,000 ppm dissolved solids and is very hard.

The alluvium supplies small quantities of water to a number of domestic and livestock wells. The estimated pumpage from major wells in the alluvium in 1961 was 59 acre-feet for public supply. The potential development of the ground-water resources in the alluvium is limited by the small areal extent and storage capacity of the aquifer.

GROUND WATER IN THE WEST GULF COASTAL PLAIN

The West Gulf Coastal Plain in the Guadalupe, San Antonio, and Nueces River Basins extends from the Gulf of Mexico northwestward to the Balcones escarpment (Figure 1). Characterized by low relief and a gentle gulfward slope, the West Gulf Coastal Plain comprises about 20,100 square miles or 73 percent of the report area.

The West Gulf Coastal Plain is the most populous section in the report area. The principal cities and population according to the 1960 Census include San Antonio, 606,871; Victoria, 33,047; New Braunfels, 15,631; Seguin, 14,299; San Marcos, 12,713; and Uvalde, 10,293. Ground water is the source of water for the public supplies in the area except Seguin, Gonzales, and Three Rivers, which are supplied from surface water.

The chief uses of ground water in the West Gulf Coastal Plain are for public supply and irrigation. A large part of the irrigation is in the Winter Garden district, although irrigation is practiced also in the area west of San Antonio.

The climate ranges from semiarid in the western part of the Nueces River Basin to dry subhumid in the Guadalupe River Basin (Thornthwaite, 1952, p. 32). The mean annual precipitation ranges from 24.07 inches at Uvalde (Figure 5) to 35.66 inches at Victoria (Marvin and others, 1962, p. 8). The mean annual temperature ranges from 67.8°F at San Marcos to 71.7°F at Winter Haven (Figure 6). The average annual evaporation ranges from 60.57 inches at Beeville, near the report area, to 78.84 inches at Dilley (Figure 6).

Primary Aquifers

The primary aquifers in the West Gulf Coastal Plain are the Balcones aquifer, the Carrizo Sand and Wilcox Group, undifferentiated, and the Gulf Coast aquifer.

Balcones Aquifer

Physical Description

The Balcones aquifer of this report refers to that part of the Edwards and associated limestones in which the water is fresh and is under artesian pressure. The aquifer extends from the Balcones escarpment southward and southeastward to the downdip limit of fresh water (Plate 7) and includes an area of about 2,100 square miles. The Balcones aquifer is composed of hard massive limestone, dolomitic limestone, and marly limestone, and has a thickness ranging from 450 to 900 feet.

Occurrence of Ground Water

Ground water occurs under artesian conditions in the Balcones aquifer. The water occurs in a network of channels that have been enlarged by the solvent action of the water on the limestones. Interconnected solutional cavities of all shapes and size, some as large as caves, form more or less linear channels, which generally follow fractures that are associated with and parallel to faults. Other channels were developed in porous limestone beds that contain large numbers of fossils.

Recharge of Ground Water

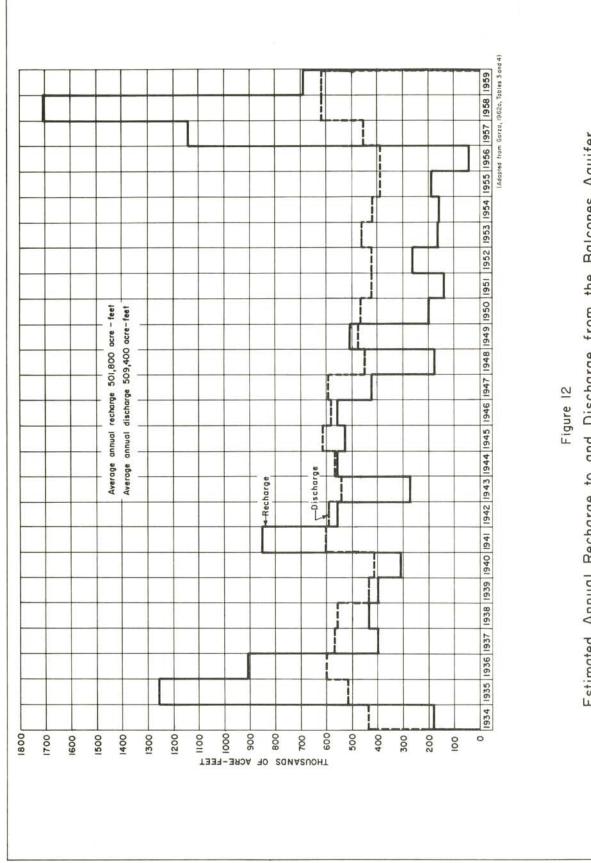
A large part of the recharge to the Balcones aquifer is seepage from streams that cross the outcrop of the aquifer in the Balcones fault zone. The flow of the spring-fed streams from the Edwards Plateau furnishes more or less continuous recharge to the Balcones aquifer, but the quantity is small; most of the recharge occurs during periods of flood runoff. A small amount of recharge results from the infiltration of precipitation on the outcrop of the aquifer in the Balcones fault zone.

The estimated annual recharge from streamflow from 1934 to 1959 is shown in Table 4 and Figure 12 (Garza, 1962a, Table 3). In 1946, the estimated recharge from streamflow was 556,100 acre-feet; in 1947, which was the beginning of a period of drought, is was 422,600 acre-feet; and in 1956, the last year of the drought, it was only 43,700 acre-feet. During the period 1957-59, when precipitation was above normal, recharge totaled 3,544,400 acre-feet, ranging from 690,000 acre-feet in 1959 to 1,711,000 acre-feet in 1958. During the 26-year period, 1934-59, the annual recharge averaged about 502,000 acre-feet.

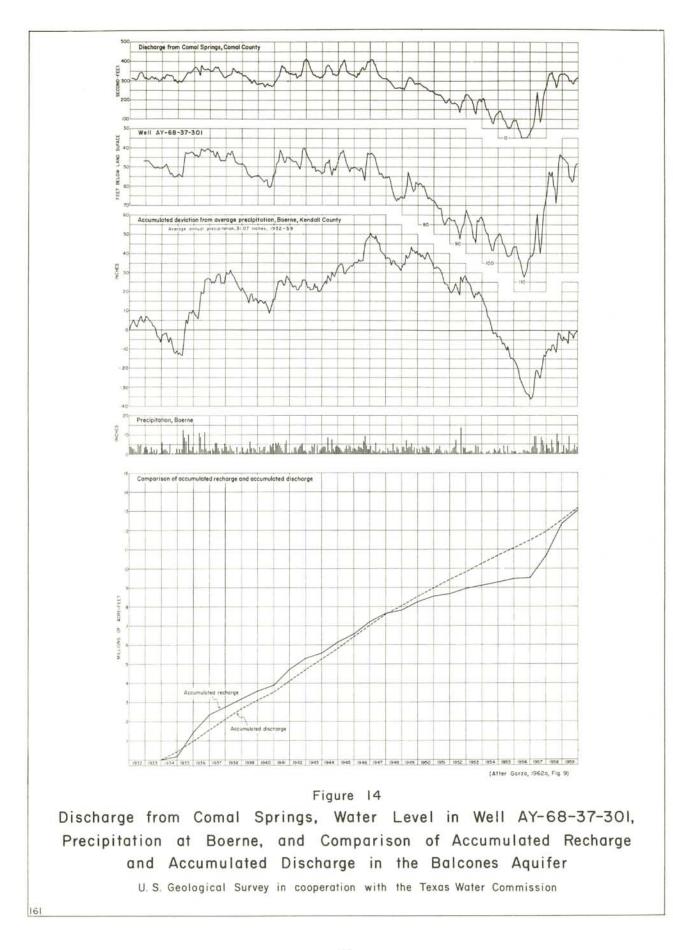
Movement of Ground Water

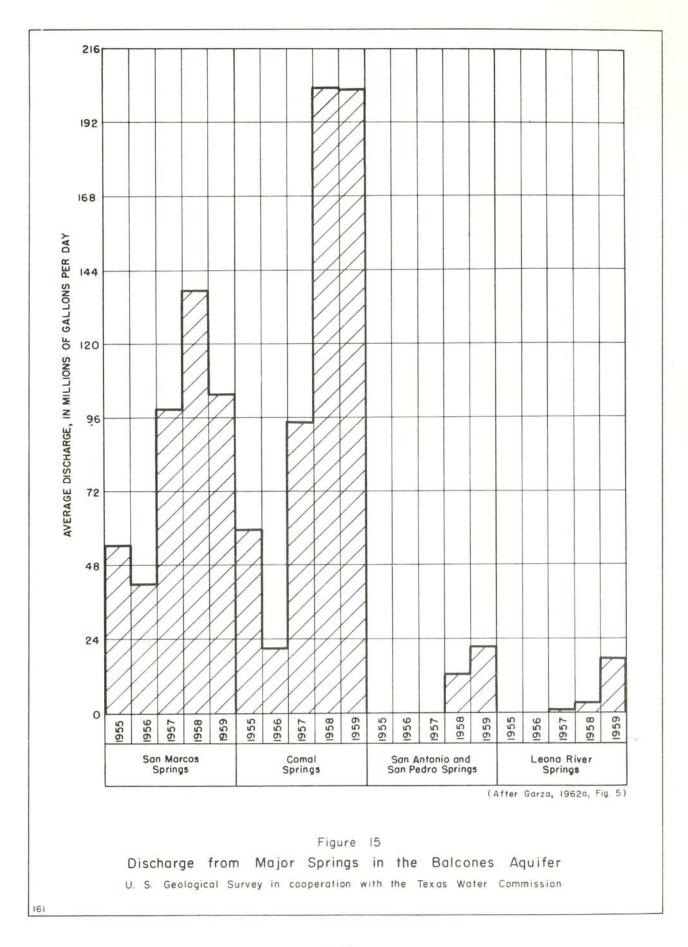
The approximate altitude of water levels in wells in the Balcones aquifer in March 1958 is shown in Plate 7. According to Garza (1962a, p. 24), "In the area of outcrop of the Edwards and associated limestones, water-table conditions prevail and the hydraulic gradients are steep, the water moving generally southward and southeastward toward the artesian part of the aquifer. In the artesian zone [Balcones aquifer], however, the hydraulic gradients are relatively low and the ground water moves eastward and northeastward, roughly parallel with the main system of faults. This relatively low hydraulic gradient indicates that movement is through large openings, whereas the steep gradients indicate movement through smaller openings in which losses in hydrostatic head are large."

Discharge of Ground Water


Ground water is discharged from the Balcones aquifer through springs and wells. Prior to 1954, most of the discharge was from springs; however, in 1954, the discharge from wells exceeded the discharge from springs, and by 1956, the last year of the long drought, approximately 80 percent of the total discharge was from wells (Figure 13). In 1957, when precipitation was above normal, the discharge from wells approximately equalled the flow from springs, but in 1958 and 1959, when precipitation continued above normal, the discharge from wells was only about 35 percent of the total discharge.

Year	Recharge	Discharge	Year	Recharge	Discharge	Year	Recharge	Discharge
1934	179.6	437.9	1943	273.1	539.3	1952	275.5	424.9
1935	1,258.0	518.6	1944	560.9	567.4	1953	167.6	468.3
1936	909.6	598.2	1945	527.8	614.8	1954	160.9	424.3
1937	400.7	571.2	1946	556.1	583.9	1955	192.0	388.8
1938	432.7	557.8	1947	422.6	593.5	1956	43.7	392.0
1939	399.0	432.8	1948	178.3	450.6	1957	1,143	456.5
1940	308.8	416.6	1949	508.1	479.8	1958	1,711	617.7
1941	850.7	601.2	1950	200.2	466.7	1959	690.4	621.2
1942	557.8	594.7	1951	139.9	425.6			
						Total	13,050	13,244
						Average	501.9	509.4


Table 4.--Estimated recharge to and discharge from the Balcones aquifer, 1934-59, in thousands of acre-feet


Estimated Annual Recharge to and Discharge from the Balcones Aquifer U.S. Geological Survey in cooperation with the Texas Water Commission

161

- 59 -

- 63 -

					We1	1 discharge				
Major subdivision	S	pring flow	Pub	lic supply	I	ndustrial	I	rrigation	1	Total*
54541715101	mgd	acre-ft./yr.	mgd	acre-ft./yr.	mgd	acre-ft./yr.	mgd	acre-ft./yr.	mgd	acre-ft./yr
GU- 4	218	244,160	3.6	4,032	0.6	672	0.1	112	220.0	250,000
GU- 6	0	0	.1	112	0	0	.1	112	.2	220
GU- 7	124.0	138,320	1.8	2,016	0	. 0	.1	112	130.0	140,000
Subtotal	340	380,000	5.5	6,200	.6	670	.3	340	350	390,000
SA - 1	0	0	.3	336	0	0	11.9	13,328	12.0	14,000
SA - 3	37.4	41,888	100.5	112,560	23.4	26,208	14.0	15,680	180.0	200,000
SA - 4	0	0	2.3	2,576	0	0	.2	224	2.5	2,800
Subtotal	37	42,000	100	120,000	23	26,000	26	29,000	195	220,000
NU - 3	0	0	0	0	0	0	8.0	8,960	8.0	9,000
NU- 4	0	0	0	0	0	0	.1	112	.1	110
NU-15	0	0	.2	224	0	0	4.6	5,152	4.8	5,400
NU-17	0	0	.5	560	0	0	1.3	1,456	1.8	2,000
NU-19	27.6	30,912	2.8	3,136	1.4	1,568	12.8	13,776	44.0	49,000
NU-21	0	0	0	0	0	0	1.2	1,316	1.2	1,300
NU-25	0	0	.1	112	0	0	1.0	1,120	1.1	1,200
Subtotal	28	31,000	3.6	4,000	1.4	1,600	29	32,000	61	68,000
Total*	410	460,000	110.0	130,000	25.0	28,000	55	61,000	600.0	680,000

Table 5.--Discharge of ground water by major wells and springs in the Balcones aquifer, 1961

* Figures are approximate because some of the pumpage is estimated. Figures are shown to the nearest 0.1 mgd and to the nearest acre-foot. Totals are rounded to two significant figures.

8

.

5 2

٤.

2

2800 (After Gorzo, 1962a, Fig. 16) 0 2600 . 0 0 . 2400 × 0 00 ××× 0 2200 Temperature, Depth, and Quality of Water in the Balcones Aquifer U.S. Geological Survey in cooperation with the Texas Water Commission 0 × 2000 . o× **.**× 1000 1200 1400 1600 1800 DEPTH OF WELL, IN FEET BELOW LAND-SURFACE DATUM 0 * 0 0 × c ð 0 ō 0 0 000 . 00 0 0 8° 00 × d'o Figure 16 0 0 00 × 8 0 0 ex o 0 0 0 888 00 08 000 8 0 00 0 0 0. 800 0 °888 0 в 88° 600 08 400 08° 80000 0 200 °08 0 600

19

Dissolved solids, in parts per million • More than 1,000 × 500 to 1,000 o Less than 500 EXPLANATION темрекатияс, ии рескеез ранкеинегт 5 8 8 8 8 20 80 120

×

•

.

.

٠

130

140

•

Table 6.--Chemical analyses of water from selected wells in the Balcones aquifer, Guadalupe, San Antonio, and Nueces River Basins

	pi
	Hard- Per- Sodium Hard- Per- adsorp- Specific ness cent tion conductance as so- ratio (micromos
	odium dsorp- tion ratio
151D5	Per- cent so-
ductance, pH, percent sodium, and sodium adsorption ratio (SAR)]	n Dis- Hard- Per- a solved ness cent solids as so-
ption ra	Dis- solved solids
m adsor	Boron (B)
niboa bi	Chio- Fluo- Ni- Phos- ride trate phate (C1) (F) (NO3) (PO4)
lium, an	Ni- trate (NO3)
ent sod	Fluo- ride (F)
H, perc	Chlo- ride (Cl)
ance, p	Sul- fate (SO4)
. conduct	Bicar- Sul- Chlo- bonate fate ride (HC03) (SO4) (Cl)
n parts per million except specific conductance, pH, percent sodium, and sodium adsorption ratio (SAR)]	 War- Cal- Magne- Sodium Potas- Bicar- Sul- Chio- Fluo- Ni- Phos- Boron Dis- Hard. Per- 85 (30, (20) (30) (30) (70) (70) (70) (70) (70) (70) (70) (7
n except	Sodium (Na)
r millio	Magne- sium (Mg)
irts pe	Cal- cium (Ca)
ce in pa	Manga- nese (Mn)
iven al	Iron (Fe)
[Analyses given are in p	Silica (SiO2)
[An	Date of collection
	Depth of well (ft.)
	Well

Hq	1	1.1	5 7		9.9	6.7	7.1	6.9	7.5	6.9	7.5	5 1		t.	1.1	1.	9.	8.	89,	7.2	4	7 4		0			1.7	7.6
Specific conductance (micromhos at 25° C)		1.020				202	1,610	3,190	684	421 (438	444			0/010	551 7	482 7	8,190 6.	473 7.	5,780 7	4.820 7	-		000	:			3,300 7.
adsorp- tion ratio ((SAR)		5.7	5	0	o,	Ŝ,	;	6.1	1	ņ	.2	7.	6		1.0	ņ	;	9.5	I	1	4.1	8	0 8		:	1	đ. 1	0.0
Per- cent so- dium	1	69	6	0		12	r	50	3	80	9	11	~	10		14	;	67	1	4	30	18	24			1 3	1 1	0
Hard- ness as CaCO3		168	1,430	318	010	336	756	858	312	205	226	214	380	1 740		047	230	2,490	216	2,560	2,180	300	1.360	198	868	356	_	_
Dis- solved solids		585	2,020	463	0.00	005		2,200	;	249	252	255	550	076 2		C 7 C	274	5,890	1	4,510	3,870	422	370		150	306	000	000.1
Boron (B)		I.	;	;		1	1	0.47	:	.10	60°*	ł	;	1			ł	1	;	1	1.3 3	.32	6.2 3	;	;			_
Phos- phate (PO4)		3	3	;			1	;	1	;	0.03	;	;	1			;	1	;	;	F	;	;	;	;	;		
NI- trate (NO3)		1.0	.2	2.2	22	3.4	1	ç	1	1.2	4.8	00°.	0.	0.	5		15	4.4	;	i.	2.0	0.	.0	;	;	5	0	
Fluo- ride (F)		4.0	;	9	0	1	:	:	;	4	.2	e,	3.2	2.8	r		:	;	:	;	:	1.6	4.6	;	1	;	2.8	
chio- ride (C1)	limestones	118	29	67	20	ott	0.11	674	33	14	11	19	22	600	78	16	2	1,800	100	066	770	57	.470	28	630	14	642	_
Sul- fate (SO4)		20	1,260	20	13	553	2000	0/0	611	37	16	17	183	1,370	47	30	_	2,010	t.	,950	1,750	89	220	32	500	47	513	277
Bicar- bonate (HCO3) g/	associated	412	258	364	394	264	161	300	232	209	246	236	226	139	242	240			C+7	291	276 1	243	950	195	348	267	260	354
Potas- sium (K)	rds and					_	66	1		σ.	6.		2.0		1.8					_		2.7	41				225	
(nN)	Edwards	*170	19#	*34	+21	1	414		C	8.4	6.4	*12	13	*299	19	;	1 000	non' 1	1	:	#473	31	751	*16	*380	*15	*426	*145
sium (Mg)		20	69	8.3	3.5	;	75			19	15	15	34	169	19	;	300	0		;	94	36	222 7	28	110	33	94	68
cium (Ca)	1.14	45	460	114	129	1	220			15	99	19	96	420 1	68	;	6 709			1	556 19	19	178 22	33	166 11	48 3	139 9	149 6
nese (Mn)		:	:	ł	9	:	;	;		:	0.00	t	;	;	;	;	1			:	:	ł	;	÷	;	;	ł	;
(Fe)			;	÷	3	ł	1	:			0.04	86.	1	;	.37	;	;	;		:	;	1	Ţ	:	1	2,1	;	3
(Si02)	15	2	13	25	17	:	18	;	74		-	14	22	15	12	3	19	:				11	14	;	1	11 2	15	;
	13. 1962		28, 1959	8, 1961		21, 1959	3, 1961	. 1960	1050	Cres 6	6061 ·/T	Sept. 18, 1959	22, 1957	10, 1961	6, 1956	, 1956	1956	1958	1056		1955	7, 1958	1959	1936	26, 1936	1953	26, 1952	1, 1937
collection	Mar. 13		Aug. 28	Aug. 8	db			Sept. 22.			11 au	ot. 18				1,	6				-		t. 9,	, З,		t. 3,		
	435 Ma	_		300 Au	593	562 Dec.	1,410 May						(10 July	56 Oct.	576 Dec.	82 May	854 Mar.		79 Oct-	_		370 Aug.	545 Sept.	300 Dec.	450 Oct.	336 Sept.	600 Aug.	200 Oct.
of well (ft.)			211.0	80	79.8		-	11 2,575				_		1 2,656		1 1,582		1,909			Ŷ				129.7	202		_
Well	RP-70-46-401		106-94-07	70-48-701	YP-69-41-701	69-50-601	69-52-401	69-53-701	TD-68-42-701	INE CY 09		100-24-201	AL-68-50-201	68-51-101	AY-68-30-501	68-37-701	68-38-301	AY-68-43-601	68-45-301	100 12 07	07-16-00	KX-68-30-302	68-31-103	DX-68-23-701	68-23-901	LR-67-01-301	67-02-101	67-09-401

Sodium and potassium calculated as sodium (Na).

-

- 66 -

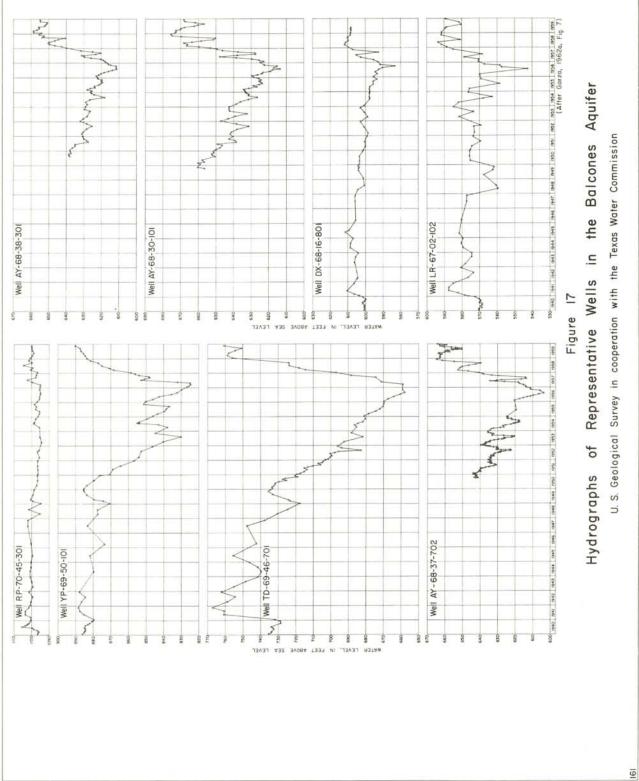
In 1961, most of the spring flow was from Comal and San Marcos Springs in the Guadalupe River Basin; the greater part of the pumpage for public supply and industrial use was in San Antonio, and almost all the pumpage for irrigation was in the San Antonio and Nueces River Basins.

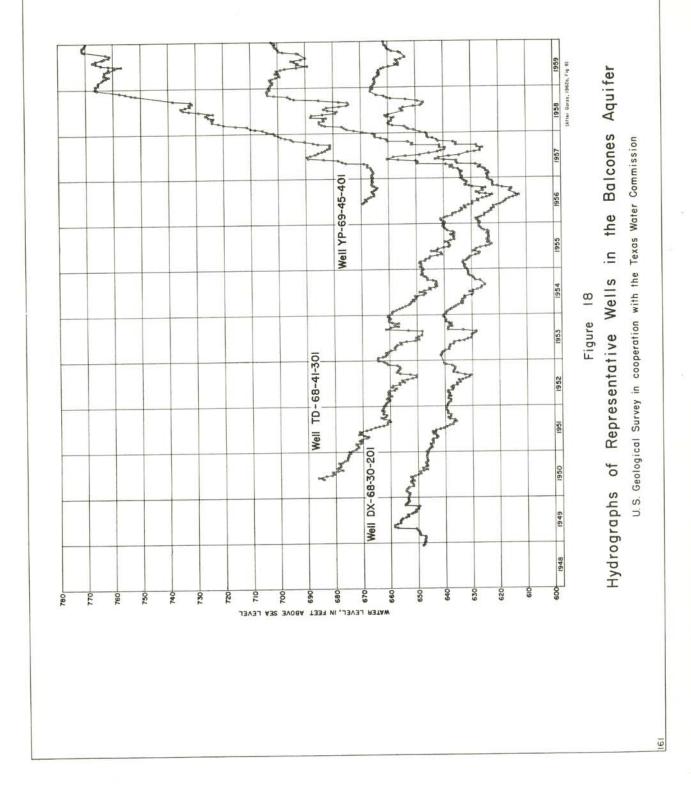
Changes in Water Levels

Water levels in about 150 observation wells that tap the Balcones aquifer are measured periodically. In most of these wells, the water levels fluctuate seasonally in response to changes in ground-water withdrawals; the annual fluctuations reflect the shifting imbalance between recharge to and discharge from the aquifer. In general, water levels fluctuate more rapidly during periods of recharge than during periods of discharge, the magnitude of the fluctuation depending on the proximity of the well to the centers of pumping or recharge.

The changes in water levels in representative wells that draw from the Balcones aquifer are shown in Figures 17 and 18. From 1947 to 1956, the trend of the water levels was downward, reflecting the drought throughout the area and the accompanying increase in ground-water withdrawals. Water levels rose somewhat during 1952 and 1953 after heavy rains in parts of the area; however, the recharge was insufficient to stop the general downward trend. In most of the wells, water levels declined to record lows in 1956, although in eastern Kinney County and Uvalde County, water levels were lowest in 1957. They rose rapidly as a result of the above-normal rainfall during 1957-59, nearly reaching the levels of 1947. Figure 14 shows a close correlation of water-level fluctuations in well AY-68-37-301, in central Bexar County, discharge of Comal Springs, and precipitation at Boerne. The fluctuations in the flow of Comal Springs reflect chiefly the changes in pumping rates in the area of heavy pumping in Bexar County.

Availability and Potential Development


The Balcones aquifer has a large volume of ground water in storage in the interconnected solution channels, fractures, and porous limestone strata. Petitt and George (1956, p. 64) stated:


"Knowledge of the storage characteristics and capacity of the ground-water reservoir are helpful in planning watersupply development for the future.

"According to Livingston, Sayre, and White (1936, p. 102), the area in Bexar County in which the Edwards and associated limestones [Balcones aquifer] contain water suitable for most purposes covers about 500 square miles. If the aquifer has an average thickness of 500 feet and a specific yield of only 2 percent, the total storage amounts to about 3,000,000 acre-feet. Bexar County, however, constitutes only about one-fifth of the...area... This would suggest that the total storage...under the foregoing assumptions would be about 15,000,000 acre-feet."

Garza (1962a, p. 37) correlated the changes of water levels in selected wells with changes in the amount of water in storage in each of four segments of the aquifer. For the period 1947-56, the declines of 55 to 100 feet in the

- 67 -

- 69 -

selected wells represented a decrease in storage of 2,045,000 acre-feet. For the period 1957-58, the rises of 50 to 100 feet in the selected wells represented a storage increase of 1,865,000 acre-feet. The decrease in storage during the 10-year period was almost completely replaced by the increase in the 2-year period.

Studies of recharge to and discharge from the Balcones aquifer (Figure 12) indicate that the long-term average yield of the aquifer might be about 500,000 acre-feet per year. This, however, does not take into consideration the un-known but large quantity of water in storage. Thus, the rate of withdrawal might be considerably greater than 500,000 acre-feet per year for short periods, and the aquifer could be recharged almost completely in a very short period of above-normal rainfall.

Problems

The principal problem regarding the Balcones aquifer is that the aquifer is heavily pumped, and it is conceivable that in the near future, the rate of withdrawal might reach the long-term rate of recharge. Such agencies as the city of San Antonio and the Edwards Underground Water District are vitally concerned with the problem and are attempting to solve it by seeking additional sources of water for the area or by determining means to increase effectively the rate of recharge to the aquifer.

The increase in the mineral content of the water as the artesian pressure decreases along the southern and southeastern boundary of the aquifer is a potentially serious problem. Additional development of water from the Balcones aquifer may result in declines in water levels greater than those during the drought that ended in 1956, and as a consequence, the line separating the fresh and the slightly to moderately saline water may shift toward the heavily pumped parts of the aquifer.

Carrizo Sand and Wilcox Group, Undifferentiated

Physical Description

The Carrizo Sand and the sands in the Wilcox Group are interconnected hydrologically; therefore, they are treated in this report as a single primary aquifer. The Carrizo Sand is composed of coarse to fine sand, sandstone, silt, and clay. The Wilcox is generally finer grained, consisting of clay, silt, medium- to fine-grained sandstone, sandy shale, and thin beds of lignite.

The thickness of the Carrizo ranges from about 200 feet in the western part of the Nueces Basin to about 1,000 feet in the eastern part and from 600 to 1,000 feet in the San Antonio and Guadalupe Basins. The thickness of the Wilcox ranges from less than 600 feet in the western part of the Nueces Basin to more than 2,000 feet in the eastern part; it ranges from 150 to 2,300 feet in the San Antonio and Guadalupe Basins.

The Carrizo Sand and Wilcox Group, undifferentiated, crops out in a belt ranging from 5 to 15 miles wide that trends northward from western Dimmit County to northwestern Zavala County, thence eastward to northern Atascosa County. The belt is about 14 miles wide where it trends northeastward across southern Bexar, northern Wilson, southern Guadalupe, northwestern Gonzales, and eastern Caldwell Counties (Plates 1 and 2).

The dip of the Carrizo Sand and Wilcox Group, undifferentiated, based on the dip of the top of the Carrizo Sand (Plates 8 and 9), is southeastward except in the central part of Dimmit County where structural irregularities affect the direction of dip. In the western part of the Nueces Basin, the dip of the Carrizo averages 80 feet per mile; in the eastern part of the Nueces Basin and in the Guadalupe Basin, the dip is about 150 feet per mile. The dip in the San Antonio Basin averages about 130 feet per mile from the outcrop to 1,200 feet below sea level and increases to nearly 160 feet per mile between an elevation of 1,200 and 6,400 feet below sea level (Plate 9).

Recharge, Movement, and Discharge of Ground Water

Ground water in the outcrop of the Carrizo Sand and Wilcox Group, undifferentiated, occurs under water-table conditions. Downdip from the outcrop, the Carrizo is overlain by the Mount Selman Formation, and the water is under artesian conditions, where it is confined by the relatively impermeable overlying strata.

The principal source of recharge to the Carrizo Sand and Wilcox Group, undifferentiated, is precipitation on the outcrop. In many places, the outcrop is loose porous sand which offers ideal conditions for the infiltration of precipitation. Only a small percentage of the annual precipitation, however, is added to the ground water in storage. Seepage from streams that cross the outcrop contributes small quantities of recharge.

Estimates of annual recharge to the Carrizo Sand in the Winter Garden district (Dimmit and Zavala Counties and the adjacent part of Maverick County) range from 22,000 acre-feet during 1937-38 (Turner and others, 1960, p. 65) to 27,000 acre-feet during 1929-30 (White and Meinzer, 1931, p. 11). Mason (1960, p. 44) estimated the average annual recharge to the Carrizo Sand in Dimmit County during 1929-57 as 9,300 acre-feet, or about 26,600 acre-feet for the Winter Garden district. It is likely that recharge to the Carrizo in other parts of the Guadalupe, San Antonio, and Nueces Basins is of a similar magnitude. No quantitative data are available on recharge to the Wilcox Group.

In general, the water in the Carrizo Sand and Wilcox Group, undifferentiated, in the San Antonio and Guadalupe Basins moves southeastward parallel to the dip of the aquifer (Plate 9). The general direction of movement in the Nueces Basin is shown by the contour map of the piezometric surface for the Winter of 1960-61 (Plate 10). The movement is at right angles to the contours, generally southerly and southeasterly and parallel to the dip of the aquifer (Plate 8) in the eastern part of the Nueces Basin, except in the heavily pumped areas in northern Atascosa and northeastern Frio Counties. In the western part of the Nueces Basin in northwestern Frio, northern and western Zavala, and western Dimmit Counties, the movement of the water is also in the general direction of the dip of the Carrizo (Plate 8), except in the heavily pumped areas in northwestern Frio and northern Zavala Counties. The piezometric contours are closed around the heavily pumped area extending from Crystal City to central Dimmit County, indicating that the water is moving toward the area from all directions. Ground water is discharged from the Carrizo Sand and Wilcox Group, undifferentiated, naturally by evapotranspiration, spring flow where the Guadalupe and San Antonio Rivers and Cibolo Creek cross the outcrop, interformational leakage, and artificially through wells, most of the discharge being through pumped wells. The several springs southwest of the city of Carrizo Springs had ceased to flow by 1929 owing to the decline of artesian head.

Chemical Quality of Ground Water

The chemical analyses of water from 23 wells in the Carrizo Sand and Wilcox Group, undifferentiated, in the Nueces Basin are given in Table 7; analyses of water from 20 wells in the San Antonio and Guadalupe Basins are given in Table 8.

The Carrizo Sand yields moderate to large quantities of fresh to slightly saline water. The water in and near the outcrop generally is low in dissolvedsolids content, but is hard; the water obtained downdip contains more dissolved solids, but is softer. The Carrizo Sand contains fresh to slightly saline water to a depth of about 5,400 feet below sea level in the Nueces Basin; to about 4,800 feet in the San Antonio Basin; and to about 3,400 feet in the Guadalupe Basin.

The Wilcox Group yields water that is generally more mineralized than that from the Carrizo.

The water in the Carrizo Sand and Wilcox Group generally is suitable for public supply and for most industrial uses. The water in the deeper part of the aquifer is hot, measured temperatures ranging as high as about 140°F and this water, of course, would not be suitable for cooling. Much of the deep water also is unsuitable for continuous irrigation because of high SAR (sodium adsorption ratio). This water probably could be used, however, on well-drained soils on a supplementary basis.

Utilization and Present Development

Nueces River Basin

In 1961, about 180,000 acre-feet (160 mgd) of water was pumped from the Carrizo Sand and Wilcox Group, undifferentiated, in the Nueces River Basin, of which 95 percent or slightly more than 170,000 acre-feet (150 mgd) was used for irrigation (Table 9). Public-supply systems accounted for 5,700 acre-feet (5.1 mgd), and industries pumped an estimated 1,300 acre-feet (1.2 mgd).

Most of the irrigation is in Dimmit, Zavala, Frio, and Atascosa Counties. Table 9 shows that a substantial part of the pumpage is from wells in the Winter Garden district in Dimmit and Zavala Counties, which includes all or parts of subdivisions 4, 6, 19, and 20. The public water supplies for Asherton, Big Wells, Carrizo Springs, Cotulla, Crystal City, Devine, Dilly, Jourdanton, Pearsall, Poteet, and Tilden are obtained from wells in the Carrizo Sand. The canning industry in the Winter Garden district is the largest user of water pumped for industrial purposes. Table 7 .-- Chemical analyses of water from selected wells in the West Culf Constal Plain, Nueces River Basin

[Analyses given are in parts per million except specific conductance, pH, percent sodium, and sodium adsorption ratio (SAR)]

Hd		:	7.7
Specific conductance (micromhos at 25°C)		1	1,680
Sodium adsorp- tion ratio (SAR)		6.4	2.0
Per- cent so- dium		62	29
Hardness as CaCO3		392	628
Dis- solved solids		1,280	1,050
Boron (B)		£	3
Ni- trate (NO3)		0.12	0.
Fluo- ride (F)		Ł	1
Chlo- ride (C1)		169	220
	dni	385	302
Bicar- Sul- bonate fate (HCO3) (SO4)	Wilcox Group	502	310
Potas- sium (K)	M	9.5	*115
- Sodium (Na)		291	- 4 -
Magne- sium (Mg)		25	41
Cal- cium (Ca)		116	184
		0.10	1
Silica Iron (SiO2) (Fe)		33	34
Date of collection		475 May 20, 1930	77-25-701 247 July 18, 1949
Depth of well (ft.)		475 1	247
Well		HZ-76-40-901	77-25-701

77-25-701	247		July 18,	1949	34	1	184	41	4	115	310	302	220	1	0,	ł	1,050	628	29	2.0	1,680	1.7
TD-68-49-401	200	Oct.	5,	1951	25	;	82	25		*43	333	40	19	ł	.2	1	077	308	23	1.1	833	7.9
69-55-601	44		Feb. 28,	1951	62	1	1,560	278	+2,	*2,080	127	1,630	5,500	Î	ł	ł	11,200	5,040	47	13	16,400	6.8
YP-69-60-601	150	Apr.		7, 1930	18	2.0	113	31	81	8.6	387	110	115	;	.2	1	680	410	30	1.7	1	1
ZX-69-57-501	100	May	20,	1930	;	3.1	140	47	K	203	483	313	185	1	9.	;	1,130	543	45	3.8	:	;
69-58-601		120 Apr.	9,	1930	12	15	401	265	431	25	666	1,540	642	:	1.1	1	3,740	2,090	32	4.1	:	;
										0	Carrizo S	Sand										
AL-68-59-401	380	Feb.	22,	1928	18	1.1	31	6.2	28	5.1	52	50	51	ł	0.10	1	227	103	36	1.2	;	:
78-06-901	3,200 July 17, 1956	July	17,	1956	22	ł	19	7.9	128	7.8	349	95	25	l	0.	0.20	432	80	16	6.2	677	7.6
78-22-201 4,100 July 16, 1956	4,100	July	16,	1956	30	1	2.8	Е.	270	3.4	569	59	95	1.0	0.	.35	711	80	98	42	1,070	8.1
HZ-77-26-401	504	Jan.	4,	1949	18	ł	40	15		+70	276	41	32	;	.2	1.0	353	162	85	2.4	590	;
77-37-501 1,710 Apr. 4,	1,710	Apr.	4,	1930	23	.54	п	5.8	153	4.6	282	72	60	1	.73	;	474	51	87	9.3	1	1
KB-77-15-301 1,350	1,350	June 17,	17,	1932	22	4.0	66	18	22	6.2	331	59	25	ł	• 05	ł	414	321	13	5.	1	ł.
78-09-801 1,700 May	1,700	May	26,	1932	17	.17	99	14	25	7.8	270	38	15	1	0.	1	308	222	19	L.	;	1
RX-77-39-401	2,345		July 10,	1956	20	1	1.8	.6	251	2.0	341	100	121	.6	0.	.49	665	2	98	41	1,080	8.4
77-40-304	2,851		op		23	ł	2.8	ις.	336	2.9	618	98	92	1.4	٥.	.46	861	6	98	49	1,350	8.3
SJ-78-23-501	4,842	Aug.	8,	1956	39	.13	2.8	.3	422	4.5	918	11	110	1.3	0.	.39	1,040	00	98	65	1,680	8.2
SU-78-36-201 4,250 July 12, 1956	4,250	July	12,	1956	32	;	1.6	.2	296	3.0	604	65	11	1.0	0.	.44	751	ŝ	66	58	1,190	8.3
78-36-902	4,700		Mar. 16,	1959	37	:	2.1	.4	4	*379	776	68	87	Ĩ	0.	ł	956	9	66	65	1,520	8.3
TD-68-49-901	141	June	2	1952	42	ł	42	8.6		#67	110	34	112	4.	1.5	.21	382	140	51	2.5	643	7.0
69-64-301	176	Oct.	4,	1951	36	1	67	8.1		543	193	33	69	ł	5.0	t	362	200	32	1.3	598	7.5
ZX-77-02-101		240 Dec. 27, 1948	27,	1948	16	1	105	24		*15	356	17	0.4	1	1.8	ł	418	360	80	e.	751	1
77-11-701 1,163	1,163		op		16	:	98	25		+24	320	83	36	:	0.	1	448	348	13	.6	754	1
					1			B	Bigford Member	Member of	the Mo	the Mount Selman Formation	an Form	ation								
HZ-77-26-501	435	May	6,	1930	12	1.1	385	218	3,390	50	278	4,070	3,420	:	2.1	1	11,800	1,860	80	34	1	1
77-29-401	140	Dec.		7, 1949	16	1	418	294	*1,	,310	234	3,100	1,190	1	0.	ł	6,440	2,250	56	12	7.880	7.7

See footnotes at end of table.

Table 7 .-- Chemical analyses of water from selected wells in the West Gulf Coastal Plain, Nueces River Basin -- Continued

Ηd	1	;		7.8	8.6		;	;	1	1	8.0	8.0		7.4	7.6		7.7	8.5		;	7.4	1	;	;	:		2.5		7.8	8.0
Specific conductance (micromhos at 25°C)	;	÷		1,400	3,130		;	£	:	1	366	1,510		3,400	1,950		2,700	8,760		:	661	;	;	ł	;		7,740		7,000	5,640
Sodium adsorp- tion ratio (SAR)	2.1	35		47	151		2.3	19	8.1	4.4	128	62		14	6.1		8.8	78		53	v.	4.8	5.1	63	11		80		43	55
Per- cent so- dium	45	87		66	100		35	97	62	21	66	66		78	59		68	26		98	15	54	87	66	98		98		94	96
Hardness as CaCO ₃	186	629		10	9		452	21	551	389	10	2		380	413		450	132		28	274	403	682	17	66		91		220	103
Dis- solved solids	376	:		889	1,990		767	1,718	1,890	987	2,360	972		2,220	1,290		1,720	5,820		1,700	406	1,070	1,700	1,620	3,670		4,820		4,020	3,600
Boron (B)	4	£		1	:		:	£	1	3	;	5		1.6	:		2.0	:		:	Ŕ	ł	;	t	£		:		1	1
Ni- trate (NO3)	0.05	4.8	uo	0.5	۲.		0.0	2,5	2.6	0.	1.0	0.		2.5	.2		0.0	.5	fated	2.7	1.2	.4	4.	.2	.5		3.5		;	1,0
Fluo- ride (F)	;	1	Formation	0.9	3.1	ted	:	Ð	+	3	4.4	6.		E	0.4		:	1.4	undifferentiated	:	£	1	;	0.1	0.		:		4	X
Chlo- ride (Cl)	16	2,900	Selman	82	298	undifferentiated	235	460	408	258	422	80		510	212	uo	385	1,650		412	41	248	325	432	1,150		1,740		2,350	1,070
Sul- fate (SO4)	38	805	Mount	98	128		120	152	676	172	192	104	Sand	788	496	Formation	589	,830	Sparta Sand	547	41	254	650	410	956	ation	H	Group	10	925
Bicar- bonate (HCO3)	338	139	er of the	656	1,480	Formation,	286	769	301	374	1,530	744	Sparta S		270	Mountain	299	456 1	and	324	271	341	292	344	383	egua Formation	332 1	Jackson G	134	497
Potas- sium (K)	5.1	030	Sand Member	344	813	Selman Fo	110	14	20	21	13	*380		7.4	8,8	Cook 1	;	090	Formation	639	23	9.6	18	*598	,330	Y			180	80
Sodium (Na)	66	*2,0	City		*	Mount S	*	643	438	199	933	*		635	286		430	*2,060	Mountain F	4		221	305	4	*1,		*1,750		*1,480	*1,280
Magne- sium (Mg)	16	65	Queen	0.7	۲.		31	2.3	25	40	27	.3		34	14		45	11	Cook Mo	1	17	36	65	1.3	3.9		6.3		9.8	3.2
cium (Ca)	48	145		3.0	2.1		130	4.8	127	90	3.1	2.5		96	88		106	35		6	82	102	166	4.6	20		26		72	36
Iron (Fe)	2.0	.25		;	ł		1.1	.10	.55	3.4	. 63	.06		0.90	1.0		1.8	;		;	ł.	0.31	2.4	ł	.75		1.0		Ţ	ł
Silica (SiO2)	29	38		21	22		1	21	14	20	37	20		15	20		21	11		1	39	27	22	;	1		13		32	39
Date of collection	Feb. 8, 1928	June 28, 1919		Dec. 27, 1962	Mar. 17, 1959		June 19, 1932	op	June 18, 1932	May 26, 1932	May 11, 1945	Nov. 26, 1962		May 25, 1959	Nov. 20, 1962		Oct. 4, 1950	July, 1952		June 19, 1932	Dec. 7, 1949	June 17, 1932	Jan. 20, 1928	Nov. 23, 1934	qo		Feb. 9, 1963		Apr. 4, 1957	Feb, 1951
Depth of well (ft.)	230	270		2,105	2,765		120	956	242	860	1,700 1	2,300		600	500		22	250		450	48	305	307	1,630	1,440		005		630	430
Well	ZX-77-01-701	77+10-901		SU-78-26-501	78-28-601		AL-68-61-401	78-13-701	KB-77-16-102	78-09-302	RX-78-34-202	sU-78-20-801		RX-77-46-802	77-62-402		RX-77-39-602	77-47-601		AL-78-18-301	HZ-77-12-701	KB-77-23-502	77-23-805	YZ-85-07-601	85-23-201		RX-78-34-101		SJ-78-24-101	78-31-201

1

-

- 74 -

Table 7 .--- Chemical analyses of water from selected wells in the West Gulf Coastal Plain, Nucces River Basin -- Continued

μd	7.0	7.4		1	ł	7.6	7.9	7.4	7.0		7.2	7.9		7.4	7.1	6.7
Specific conductance (micromhos at 25°C)	2,010	2,120		:	:	4,170	2,930	1,600	7,520		2,550	822		2,540	2,410	6,180
Sodium adsorp- tion ratio (SAR)	5.6	11		20	15	24	19	18	15		0.9	6.9.		6.1	5.0	8.7
Per- cent so- dium	56	78		85	78	87	88	16	66		56	87		57	51	53
Hardness as CaCO3	473	261		306	488	210	174	73	1,430		510	55		200	546	1,520
Dis- solved solids	1,350	1,510		2,410	2,580	2,480	1,760	1,030	5,180		1,500	482		1,400	1,330	3,730
Boron (B)	1	;		;	1	3.3	4.3	ł	ł		1.0	.77		0.55	.41	;
Ni- trate (NO3)	0.0	50		26	112	1.0	16	3.8	.2		129	.0		0.2	2.5	64
Fluo- ride (F)	:	0.5		1	;	0.3	:	3.3	1		6.0	1		0.5	;	;
Chlo- ride (Cl)	234	142		1,210	1,080	1,050	500	187	1,900		530	96		640	632	1,900
Sul- fate (S04)	454	546	Tuff	204	336	201	246	114	1,300	dstone	68	0.	lay	64	58	226
Bicar- bonate (HCO3)	338	432	Catahoula Tuff	181	263	421	552	532	222	Oakville Sandstone	367	352	Lagarto Clay	237	246	252
Potas- sium (K)	*279	*416	Ca	1	;	38	1	*348	80	Oakv	14	*170	I	9.2	9.2	81
Sodium (Na)	- * -	44		821	677	808	586	-*-	*1,280		313	*		313	268	*781
Magne- sium (Mg)	7.6	6.4		1	:	9.0	7.7	5.6	111		24	4.2		32	37	129
Cal- cium (Ca)	177	94		104	100	69	57	20	392		165	15		148	158	395
Iron (Fe)	;	1		;	;	;	;	;	;		:	;		1	;	;
Silica (SiO2)	36	44		;	:	96	27	84	83		77	19		95	39	75
Date of collection	July 15, 1959	do		June 12, 1931	June 9, 1931	Apr. 4, 1957	300 Oct. 10, 1957	120 July 15, 1959	485 July 16, 1959		Apr. 5, 1957	Apr. 24, 1957		149 Apr. 5, 1957	Apr. 19, 1957	90 June 21, 1959
Depth of well (ft.)	108	97		124 J	105 J	180 A	300 0	120 3	485		69 A	555 A		149 4	269 A	90
Well ^b	SU-78-44-402	78-44-501		JB-84-04-704	84-11-801	SJ-78-24-201	78-46-501	su-78-52-903	78-60-601		SJ-78-32-801	78-54-901		SJ-78-40-601	79-41-401	SU-78-53-906

SU-78-53-906		90 June 21, 1959	21, 1	959	75	;	395	129	*	*781	707	226	1,900	ł	64	;	3,730	1,520	53	8.7	6,180	6.7
78-62-102	73	73 June 23, 1959	23, 1	959	48	1	96	16		*85	366	36	105	.4	4.5	1	576	306	38	2.1	953	6.6
							Go	Liad Sand	, Lissi	Goliad Sand, Lissie Formation, and Beaumont Clay, undifferentiated	on, and	Beaumo	nt Clay	, undit	ferenti	ated						
SJ-79-41-802		400 Apr. 18, 1957	18, 1	957	30	:	30	9.1	260	5.1	314	36	285	0.5	0.2	0.61	811	112	83	11	1,430	1.6
79-49-102	75	75 Apr. 16, 1940	16, 1	940	;	0.73	148	40	*	*150	276	86	385	.7	ł	3	1,050	534	38	2.8	1	1
79-49-501		600 Sept.20, 1951	20, 1	951	26	:	13	10	*	*313	318	88	285	;	.5	ł	892	74	66	16	1,650	8.4
79-49-502	425		op	-	51	ł	20	15	*	*153	175	28	190	ł	5.8	:	549	112	75	6.3	966	8.2
79-49-801		450 Nov. 7, 1957	7.	957	24	1	33	11	186	6.5	366	49	129	2.0	4.5	1.1	626	128	75	7.2	1,060	7.7
79-57-501		350 July 16, 1948	16, 1	948	26	:	51	23	4	*258	422	87	240	1	10	1	903	222	72	7.5	1,550	1
										Le	Leona Formation	mation										
TD-69-46-601		41 May 16, 1930	16, 1	930	;	1	60	17	*	*2.6	233	13	13	1	3.0	1	223	220	2	0.1	:	:
69-48-101	99	60 June 26, 1951	26, 1	951	31	1	172	21	*	*248	356	44	288	;	387	1	1,370	516	51	4.7	2,180	7.4
ZX-77-02-601	90	60 Dec. 27, 1948	27,	948	13	;	26	21	*	*9.7	372	19	12	ł	9.2	ł	368	328	9	.2	631	:
77-04-401		45 Feb. 9, 1928	9, 1	928	25	0.06	125	18	30	2.9	364	06	33	1	7.3	4	520	386	15	.7	:	;
										Leona Formation and alluvium	mation	and all	uvium									+
YP-69-49-301		Apr. 10, 1930	10,	930	16	0.02	89	11	7.6	1.6	299	17	12	;	10	1	305	268	9	0.2	1	:

9

Table 7 .-- Chemical analyses of water from selected wells in the West Gulf Coastal Plain, Nueces River Basin-- Continued

	-	1		-
Hd	7.3		7.4	:
Specific conductance (micromhos at 25°C)	486		1,030	1
Sodium adsorp- tion ratio (SAR)	0.3		2.3	1.8
Per- cent so- díum	8		39	42
Hardness as CaCO3	231		320	168
Dis- solved solids	290		679	312
Boron (B)	ł		ł	:
N1- trate (NO ₃)	0.0		0.0	.10
Fluo- ride (F)	;		0.3	.7
Chlo- ride (Cl)	16		138	56
Sul- fate (SO4)	28	E	62	29
Bicar- Sul- C bonate fate r (HCO3) (SO4) (244	Alluvi	326	216
Potas- sium (K)	2.8		r95	*55
Sodium (Na)	9.5			
Magne- sium (Mg)	15		11	1
Cal- cium (Ca)	68		110	1
Iron (Fe)	ţ		0.09	.36
Silica Iron (SiO2) (Fe)	21		34	1
of	1957		1962	1934
Date of collection	40 July 17, 1957		24 Nov. 28, 1962	18 Dec. 2, 1934
	Inf		Nov	Dec
Depth of well (ft.)	_		_	
Well	YP-69-57-301		SU-78-51-302	YZ-78-58-701

.

 $\frac{3l}{2}$ Includes the equivalent of any carbonate (CO3) present. \star Sodium and potassium calculated as sodium (Na).

- 76 -

Hq		:	7.3	7.7	8.4	7.4	8.1	6.9	6.5	8.4	1	7.4		1	3.1	1	7.1	8.0	1	1	7.5	7.7		:	1	6.1	7.3
Specific conduct- ance (micromhos at 25°C)		1	3,390	878	;	1,420	2,940	772	3,710	1,350	Ţ	1,170		1	t	ł	883	477	ľ	1	463	857		1	:	255	3.830
Sodium adsorp- tion ratio (SAR)		1	K	;	65	1.3	151	1.6	2.6	16	I	1.9		;	:	1	1.3	28	:	1	1.1	22		1	;	1.2	3.3
Per- cent so- dium		;	1	;	98	21	66	32	25	90	ŧ.	32		ł	61	$\mathbf{I}_{\mathbf{c}}$	25	98	ß	1	30	96		1	1	45	29
Hard- ness as CaCO3		262	1,730	294	14	602	4	274	1,600	56	ł	426		285	98	30	325	^m	9+	51	150	16		154	1,660	56	1,620
Dis- solved solids		;	ł	494	1,080	988	1,770	478	2,570	820	1,990	778		;	324	1	520	298	199	109	261	538		565	3,230	146	2,760
Boron (B)		;	1	0.13	;	;	1.6	.42	;	.66	ŧ	.17		1	£	3	3	.26	ł	1	.07	.30		1	;	;	;
Phos- E phate (PO4)		;	F	1	3	;	0.13	ŧ	1	;	1	•04		1	į.	ł	1	60.0	;	ł	1	60.		1	:	Ĩ	;
NL- P trate p (NO3) (0.2	:	0.	0.	1.0	2.2	0.	73	0.	:	1.0		4.0	16	0.	5.	0.	ł	÷.	.2	0.		1	1	27	1.5
Fluo- ride (F)		1	;	0.2	2.	.4	1.6	.2	<i>∞</i> .	5.	1	.1		1	ŧ	ł	0.2	4.	ł	;	۲.	٠,	uo	1	ł	0.0	.00
Chio- H ride r (C1)		90	585	71	163	200	470	64	635	130	820	16		106	116	57	88	18	92	32	37	37	Formation	30	650	40	600
Sul- 0 fate 1 (So4)		24	;	28	178	206	52	48	828	207	329	218		260	55	14	113	14	22	<10	35	38	Selman F	420	1,550	4.0	1,030
Bicar- bonate (HCO ₃)	c Group	354	318	367	534	326	972	333	382	322	281	331	Carrizo Sand	232	20	29	258	257	24	73	172	197	Mount	ł	98	22	453
Potas- I sium b (K) (Wilcox			1.2	24	* 75	2.6	4.3	43	4.8		7.0	Carri		70		9.6	1.3	58	25	6.8	3.6	of the	*63	*437	*21	*309
Sodium 1 (Na)	1	-!-	-1-	61	+424		695	60	*243	273	-1-	94		-1-		-!-	53	EII	-*-	-*-	31	205	/ Member of	-4-		- 4	*
Magne- sium (Mg)	1	1	ł	12	1.7	50	ŝ	14	114	6.0	ł	38		4	10	ł	33	0.	10	20	7.3	1.4	Reklaw	22	201	5.0	128
cium cium (Ca)		1	;	98	2.7	159	1.0	87	455	14	;	108		;	23	;	76	1.2	10	-00	48	4.2		26	334	14	438
Manga- nese (Mn)		1	ł	ł	ł	1	0.01	ł	ł	3	1	00.		1	1	ł	ł	0.02	1	ł	ł	.01		£.	1	;	;
	1	1	37	1.88	.02	3.3	.06	1.1	1.1	.21	}	.01		;	;	;	;	0.07	;	1	;	.10		t	ł	ł	16
Silica Iron (SiO2) (Fe)	1	1	1	38	6.0	74	17	36	35	17	ł	23		1	1	1	20	20	ł	;	15	21		1	1	24	26
		1946	8, 1953	1952	1943	26, 1962	25, 1962	13, 1962	4, 1962	29, 1954	18, 1936	1955		25, 1946	4, 1947	3, 1946	1, 1959	30, 1962	20, 1936	9, 1936	1955	1955		9, 1936	1936	16, 1955	1954
Date of collection		, 24,		11,	Î							20,									e 22,	. 22,			. 12,		. 28.
		July	Sept.	Aug.	Feb.	Apr.	Apr.	Apr.	May	Oct.	Aug.	June		July	Apr.	May	June	Mar.	Feb.	Mar.	June	Nov.		Apr	Mar.	July	Oct.
Depth of well (ft.)		70	223	240	320	230	1,601	156	71	720	100	361		155	70	92	328	2,190	153	150	983	2,010		15	56	68	110
Well		AY-68-52-101	68-45-601	BU-67-12-101	67-19-601	KR-67-19-901	67-28-203	KX-67-18-801	68-40-701	ZL-58-54-501	68-39-901	68-48-101		AY-68-54-201	BU-67-20-601	67-20-801	KR-67-21-701	67-44-201	KX-67-33-902	67-34-101	ZL-68-54-901	68-64-401		KX-67-34-501	67-34-801	ZL-67-41-201	68-56-801

Table 8 .-- Chemical analyses of water from scheeted wells in the Just Guil Constal Plain in the Guadalupe and San Antonio River Basins

cption ratio (SAR)] adst and sodium scool am. THOUTH Hu Muctan if fic millio 4 0.10 Analys

- 77 -

See footnotes at end of table.

7.0 7.9 7.5 6.5 6.7 6.9 7.6 7.7 ph 6.9 7.8 7.6 ł 1 1 1 Ľ : 1 ; ance (micromhos at 25°C) Specific conduct-14,200 3,310 3,380 3,620 5,850 3,620 1,350 1,250 533 553 934 899 i 1 ; 1 ; ł : Table 8 .-- Chemical analyses of water from selected wells in the West Gulf Constal Plain in the Guavalupe and San Antonio River Basin--Continued adsorption ratio (SAR) 5.5 6.4 8.5 Sodium 3.4 2.6 1.8 1. 3.1 1.7 1 ł 1 ł ł : : 142 1 23 Per- ; cent so-dium 47 1 : 20 18 68 66 89 41 1 Ŧ 39 65 34 1 98 ł 39 1 1,200 1,700 Hard-ness 240 172 922 431 614 as CaCO₃ 14 230 276 402 318 114 124 195 224 96 ł ł Dis-solved solids 2,570 2,500 4,490 4,660 2,290 2,140 3,230 5,230 1961 1,720 8,860 296 812 358 808 583 564 1 ł Boron (B) 0.29 2.2 1.3 1 1 ł 1 1 ; ł ; ŀ 1 ; ł 1 1 : 1 Ni- Phos- E trate phate (NO₃) (PO₄) 0.13 ł ł ł ł ł 1 ł ł E. 1 ł ; 1 ł 1 ; ł ł 2.2 0 3.5 3.0 0.5 0. 1.5 1.8 00 0.0 ţ ÷ P 1 1 : 66 110 16 Mount Selman Formation Fluo-ride (F) 0.4 54 0. 5 0.2 0.0 0.3 ٣. 1 £ 1 1 ł 1 : 1 ł ł 0 4,560 2,170 2,570 162 006 38 420 Chlo-ride (C1) 02 44 280 72 290 730 640 635 96 178 87 125 1.0 Sul-fate (SO4) 1,010 1,020 Cook Mountain Formation 1,570 610 1,920 187 600 28 39 210 217 28 884 264 90 35 163 719 Yegua Formation Bicar-bonate (HCO₃) Sparta Sand 1,540 1,220 420 220 212 220 268 222 400 168 266 12 415 60% 211 231 72 238 314 the of Potassium (K) 2.3 Member IE 25 13 108 10 *3,490 *1,820 *188 *289 *500 *120 *734 *386 #52 *74 Sodium (Na) 635 388 23 804 Sand City Magne-sium (Mg) 6.8 1.4 ł : 1 1 18 36 110 89 05 182 22 26 15 30 16 30 34 Queen 3.5 cium cium (Ca) 1 382 60 187 ł 58 56 67 78 19 ł 188 1 106 1 76 22 335 Manga-nese (Mn) 0.04 ł ł ł 1 1 ł 1 1 ł ł ; 1 ł 1 ţ 1 ; 1 0.06 .32 .30 (Fe) ; ţ ł : ; ; ł ł 1 ÷ ł ł ł Ľ 1 5 Silica (Si0₂) 8.8 ł 1 ł 1 ł ł ł 20 38 13 5 27 34 63 12 27 1 28 1963 1959 4, 1959 28, 1962 1963 1936 1949 1962 25, 1936 1936 1936 1946 1946 1963 1954 1936 25, 1957 1954 1963 Date of collection 15, 22, 13, 3, 2, 21, 26, 25, 12, 5. 19, 'n 30, 18, 30, Sept. June July June Mar. June June Oct. Apr. Jan. Apr. Nov. Mar. Mar. Apr. Jan. Mar. Apr. May 145 30 430 200 500 315 800 347 283 132 205 39 16 24 152 470 744 436 Depth of well (ft.) 56 KR-67-36-502 67-43-807 68-63-602 68-64-301 KR-67-29-801 PZ-67-57-501 68-54-902 68-64-101 ZL-67-49-901 67-37-301 KR-67-22-201 67-51-201 ZL-68-63-601 BU-67-13-601 67-13-901 KR-67-34-801 67-43-406 ZL-67-49-101 67-50-201 Well

table. end of See footnotes at

7.7 1.7

+, 920 1,400 2,610

69

67 22

51 526 330 800

3,220 808

1.7

2.3 0.11 0.7 .07

4 2.

830 218 270 625

1,040

285 259 257 261

11 17 13

1,130

1.5

18

0.02

0.27 .02 00.

95

21, 1955

Nov.

019 140 00 650

78-08-302 ZL-67-57-201 67-57-401 78-07-602

169 632

69 117

40

145

22

14, 1955

July

56 27

05 276

.10 .20

4.2

18, 1955

July

ł

1

36

July 11, 1955

1.3

8.1 8.1

10

72

1,560 3,100

2. ł

.50 .78

2 5 3.0

4,360

11

67

ł

ł

1,260

#741

ЪĦ		7.2	6.7	7.7	7.7	3	1	7.7		6.7	7.2	6.8	6.7	7.3	8.0	7.3		6.5	6*9	7.1	7.1	7.6	7.7	È.	7.0	6.9	7.6	7.7
Specific conduct- ance (micromhos at 25°C)		840	3,170	5,170	3,210	1	1	3,670		534	2,370	781	1,320	1,440	2,230	3,920		855	2,140	577	1,120	1,670	3,690		1,020	1,740	2,430	1.230
Sodium adsorp- tion ratio (SAR)		3.5	6.3	21	5.0	1	1	14		1.1	19	2.0	3.4	4.0	52	14		1.7	2.4	.4	0*9	2.8	15		8.1	2.7	1.9	2.6
Per- cent so- dium		55	53	84	45	;	;	78		27	89	39 -	14	52	96	75		33	31	11	70	38	77		80	37	24	40
Hard- ness as CaCO ₃		198	778	424	830	1	1	416		206	126	254	368	338	16	445		297	710	270	165	492	378		106	543	936	364
Dis- solved solids		522	2,060	3,260	1,930	2,800	2,830	2,370		358	1,420	517	874	932	1,320	2,380		531	1,150	436	656	924	2,270		580	066	1,420	697
Boron (B)		1	1	;	ł,	ł	ţ	;		1	ł	;	ł	;	2.7	1.8		9	ł	ł	ł	0.30	1.9		E	3	1	0.25
Phos- phate (PO4)		:	1	Ŧ	£	+	3	;		ł.	3	ţ	ţ	1	0.02	.01		4	;	ţ	ŧ	0.03	.05		1	3	;	0.04
Ni- trate (NO ₃)		0.5	0,	1.2	3.2	1	ł	.4		0.0	.2	17	.0	1.5	.1	6.2		55	1.5	47	.2	5.6	13		0.0	2.0	.8	2.2
Fluo- ride (F)		0.9	;	ļ	;	;	1	:		0.5	e.	1.3	8.3	1	1.6	.7		0.4	6.	4.		s.	.6		0.7	۲.	1.1	8.
Chlo- ride (Cl)		53	620	1,060	780	550	930	610		23	458	40	166	232	492	076		66	525	22	165	388	900		123	380	529	212
Sul- fate (SO4)	2	87	512	416	222	1,230	936	677	щ	26	12	42	173	109	101	309	one	32	67	19	43	36	277		52	64	155	37
Bicar- bonate (HCO ₃)	on Group	334	300	204	304	232	67	399	ula Tuff	271	652	366	338	319	322	371	: Sandstone	330	262	262	334	270	366	Lagarto Clay	356	310	389	338
Potas- sium (K)	Jackson	12	*403	10	39			679	Catahoula	35	492	*75	149	168	18	34	0akvi 11e	*67	147	*16	*178	8.5	35	Lagar	*191	*146	135	3.6
Sodium (Na)		*112	4	*1,010	334		- 1 -	9*		*-	*	-* -		*	476	681	0	- *	*	-*-	*	142	660		*	*	*	113
Magne- sium (Mg)		9.2	18	15	35	;	3	5.8		4.0	5.0	6.0	7.2	6.2	.0	16		4.9	36	3.6	7.4	34	14		8.7	32	6 4	28
Cal- cium (Ca)		64	282	145	275	ł	ł	157		76	42	92	136	125	6.4	152		111	225	102	54	141	128		28	165	270	100
Manga- nese (Mn)		;	;	;	ł	:	ł	;		1	1	;	;	;	00.00	.01		1	ł	ł	ł	0.00	00.		1	ł	1	00.00
(Fe)		Ð	1	1	1	1	ł	ł		0.01	1	ł	ł	ł	.03	;		1	3	ł	E	0.15	.11		1	1	;	0.04
Silica] (SiO ₂)		31	72	16	92	;	ł	40		42	86	48	77	46	77	61		27	21	59	44	35	59		18	48	76	34
		1962	1963	1955	1957	1936	1936	1955		1962	1962	1963	1962	1956	1955	1955		1962	1962	1963	1963	1955	1955		1962	8, 1963	16, 1955	15. 1955
Date of collection		26,	12,	29,	31,	8,	22,	28,		1,	19,	17,	10,	13,	22,	23,		28,	19,	16,	17,	í.	26,		28,	8,		15.
Da		Oct.	Mar.	Nov.	July	June	Sept.	Nov.		Nov.	Dec.	Jan.	Oct.	July	Nov.	Nov.		Nov.	Dec.	Jan.	Jan.	Oct.	Oct.		Nov.	Jan.	Feb.	557 Mar
Depth of well (ft.)		90	170	305	87	235	118	147		140	190	60	132	430	872	400		84	180	64	230	156	422		188	164	60	557
Well		KR-67-37-803	67-52-401	PZ-78-07-603	79-01-401	ZL-78-07-601	78-08-201	78-08-401		HX-67-46-704	67-53-202	KR-67-38-603	67-52-601	PZ-67-59-401	106-10-62	79-09-301		HX-67-46-603	79-03-301	KR-67-31-501	67-46-301	PZ-79-03-701	79-10-401		HX-67-54-806	79-12-501	79-19-502	79-21-601

- 79 -

ntct- nct- minos "C)	20 7.6	1		31 7.4	866 7.2	30 6.9	50 7.7	10 7.4		20 7.3	10 8.2		00 7.6	10 7.2		590 7.8		1	538 6.7	1	:	-	1,800 7.0		-	-	-	-
- conduct- ance (micromhos at 25°C)	1,420	1		. 68		3 2,380	7 2,160	0 1,010		6 1,320	1 1,510		5 1,300	2 1,410		2		1		- 0	ł		_	m	E	m	m	m
adsorp t tion ratio	5.8	;		1.4	1.1	2.3	3.7	2.0		2.6	5.1		5.5	7.2		:		1	0.3	1.0	1		3.1		1940 - 1449 	900 SLV	m v	т v
- Per- cent so-	64	1		5 32	3 23	6 29	8 43	6 36		6 39	8 59	1	0 64	1 72		2		2	0 8	0 21	1	_	1					
Hard- ness as CaCO3	235	4		246	353	816	578	326		396	308		240	201		252		322	260	320	ł.	516		1,030		1,	1,	1,
Dis- solved solids	802	1,620		411	526	1,340	1,210	614		781	900		768	818		;		T	322	467	ł	1,020		2,300	2,300	2,300 398 476	2,300 398 476 495	
Boron (B)	0.45	1		ł	I.	ł	ł	ł		ł	0.23		£	Т		ł		1	0.10	ł	ł	1		1	3 1	1 1 1	1 1 1 1	
Phos- phate (PO4)	£	32		;	£	1	8	ł		£	0.01		ł	;		Î		Ĩ.	0.08	1	ł	;		ł	1 1	1 1 1	1 1 1 1	1 ⁰
Ni- trate (NO ₃)	3.5	1		1.0	14	84	.2	1.0		3.0	2.2		0.8	0.		:		26	3.8	96	82	68		12	12 28	12 28 15	12 28 15 48	12 28 15 48 29 29
Fluo- ride (F)	:	1		0.4	e.	t	.8	;		£	0.8	iated	4.0	•.3	tiated	;		Ð	0.3	;	;	.2		ł	1 4	4. 4.	4 4 1	1 4 4 1 4
Chlo- H ride 1 (Cl)	262	810		54	122	498	285	139		202	235	undifferentiated	182	220	undifferentiated	35	Ħ	22	22	52	15	368	1 070	21264	26	26 40	40 52 52	26 26 40 52 52 24
Sul- fate (SO4)	37	11		17	27	65	211	27	uo	75	87		83	82	Clay, und	9.4	alluvium	46	26	00	20	46	188		17	41	41 24 21	41 24 21 43
Bicar- bonate (HCO ₃)	339	293	Goliad Sand	322	302	372	486	347	Formation	348	419	Formation,	391	382	Beaumont Cl	306	ton and	326	275	302	272	304	328	1000 Control 1000	306	306 330	306 330	306 364 398
Potas- sium (K)	8.3		Goli	52	49	150	04	*84	Lissie	*117	1.3	Lissie F	0.9	*234	and Beau	2	Leona Formation and		0.7	40		*163	*439		1 *20	*20 *20 *22	*20 *22 *38	*20 *22 *38 1.7
Sodium 1 (Na)	204	-!-		-4-	-* -	*	*204	-4-		1*	205	and	196	*2	Formation a	-1-	Leona	-;-	11		1	*	14					36
Magne- sium (Mg)	16	ł		9.5	8.7	33	38	20		26	19	Goliad Sand	31	27	Lissie Form	3		ł	16	10	1	14	51		19	19 5.3	19 5.3 6.1	19 5.3 6.1 39
cium (Ca)	68	ł		8.3	127	273	169	98		116	92	Go	45	36	Lis	1		1	78	112	1	184	328		93	93	93 118 130	93 118 130 74
Manga- nese (Mn)	3	ł		1	1	ł	E	3		1	0.00		ł	ł		:		1	0.00	ł	3	ł	ł		ł	1 1	1 1 1	00.
Iron (Fe)	4	1		1	ł	I	ł	4		1	0.01		0.00	;		1		1	0.00	I	1	1	ł		ł	1 1	1 1 1	1 1 1
Silica Iron (SiO ₂) (Fe)	36	;		36	29	57	65	58		44	51		11	18		1		ł	12	ł	ł	28	95		19			
Date of collection .	1956	11, 1937		23, 1962	15, 1963	6, 1954	23, 1955	22, 1955		20, 1954	1955		13, 1962			1962		24, 1946	13, 1962	3, 1943		3, 1963	9, 1963		5, 1963	5, 1963 18, 1962	1963 1962	5, 1963 18, 1962 20, 1957 26, 1962
ate o Llecti	18,			23,							17,		13,	op		13,					op					-		
Q O	Apr.	Mar.		Oct.	Jan.	Oct.	Feb.	Feb.		Oct.	Feb.		Feb.			Feb.		Jan.	Feb.	Dec.		Jan.	Jan.		Feb.			
Depth of well (ft.)	292	63		168	64	86	55	178		123	86		976	560		110		25	34	65	27	39	30		30			
Well	P2-79-11-801	79-11-802		HX-79-07-203	79-07-206	79-14-102	79-15-701	79-22-501		HX-79-22-901	79-23-401		WH-79-31-901	79-32-801		WH-79-32-803		BU-67-03-703	67-10-801	68-24-101	68-24-401	HX-67-62-215	67-62-216		KR-67-27-803	KR-67-27-803 67-38-803	KR-67-27-803 67-38-803 KX-67-17-702	KR-67-27-803 67-38-803 KX-67-17-702 68-32-304

Table 8 .-- Chemical analyses of water from selected wells in the West Gulf Constal Plain in the Guadalupe and San Antonio River Basins -- Continued

- 80 -

34 Includes the equivalent of any carbonate (CO3) present. * Sodium and potassium calculated as sodium (Na).

Major	Pub	lic supply	I	ndustrial]	Irrigation		Total
subdivision	mgd	acre-ft./yr.	mgd	acre-ft./yr.	mgd	acre-ft./yr.	mgd	acre-ft./yr
GU- 4	0	0	0	0	0	0	0	0
GU- 7	.8	840	0	0	0	0	.8	840
GU- 9	.4	450	0	0	0	0	.4	450
Subtotal	1.2	1,300	0	0	0	0	1.2	1,300
SA - 3	0	0	0	0	0.3	336	.3	340
SA - 4	.1	112	0	0	0	0	.1	110
SA - 5	.6	672	0	0	1.2	1,367	1.8	2,000
Subtotal	.7	780	0	0	1.5	1,700	2.2	2,500
NU- 4	0	0	0	0	7.5	8,400	7.5	8,400
NU- 6	1.6	1,792	.5	560	34.9	39,088	37.0	41,000
NU - 9	.5	560	0	0	3.1	3,472	3.6	4,000
NU-17	0	0	0	0	2.9	3,248	2.9	3,200
NU-19	.1	112	0	0	16.2	18,144	16.0	18,000
NU-20	1.0	1,120	.2	224	25.8	28,896	27.0	30,000
NU-21	.4	448	.2	224	18.4	20,608	19.0	21,000
NU-23	0	0	.1	112	2.6	2,912	2.7	3,000
NU-25	1,5	1,680	.2	224	42.9	48,048	45.0	50,000
NU - 27	0	0	0	0	.1	112	.1	110
Subtotal	5.1	5,700	1.2	1,300	150	170,000	160.0	180,000
Total	7.0	7,800	1.2	1,300	150.0	170,000	160.0	180,000

Table 9.--Pumpage from major wells tapping the Carrizo Sand and Wilcox Group, undifferentiated, 1961

Figures are approximate because some of the pumpage is estimated. Figures are shown to nearest 0.1 mgd and to the nearest acre-foot. Totals are rounded to two significant figures.

San Antonio River Basin

In 1961, about 2,500 acre-feet (2.2 mgd) was pumped from major wells in the Carrizo Sand and Wilcox Group, undifferentiated, in the San Antonio River Basin (Table 9). Of the 2,500 acre-feet, 780 acre-feet (0.7 mgd) was for public supply and 1,700 acre-feet (1.5 mgd) for irrigation. The public supplies for Floresville, Poth, and Lavernia are obtained from the Carrizo and Wilcox.

Guadalupe River Basin

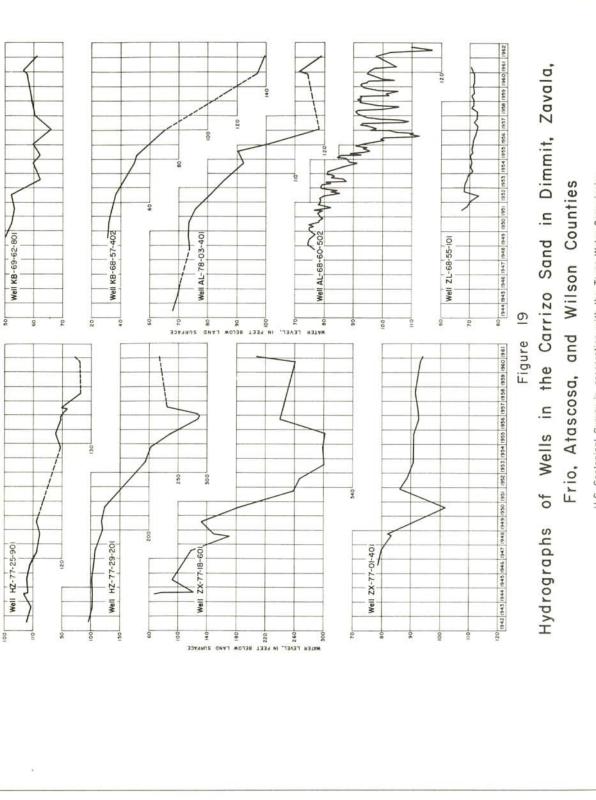
In 1961, pumpage from the Carrizo and Wilcox in the Guadalupe Basin was 1,300 acre-feet (1.2 mgd), nearly all of which was for public supply. The public water supply of Luling and part of the supply of Lockhart are obtained from wells in the Wilcox, whereas the public supply of Nixon is from the Carrizo. The withdrawal of ground water for irrigation is not shown in Table 9 because only very small quantities are used in the Guadalupe River Basin.

Changes in Water Levels

Water levels or artesian pressure in the Carrizo Sand and Wilcox Group, undifferentiated, fluctuate chiefly in response to changes in storage. The effects of recharge are distributed rather uniformly in the outcrop and are transmitted downdip, fluctuations caused by recharge being less discernible at progressively greater distances from the outcrop. The greatest changes in artesian pressure result from changes in pumping rates. During or after periods of heavy rainfall, many irrigators shut down their pumps, and the resultant recovery of the water levels often is mistakenly related to recharge.

Hydrographs showing fluctuations of water levels in wells in the Carrizo Sand in the Nueces River Basin (Figure 19) show a general decline. Several of the hydrographs show the effects of heavy pumping during the period 1951-56, when precipitation was below normal. In some wells, the water levels rose sharply following the heavy precipitation in 1957, 1958, and in the latter part of 1960 and early part of 1961. The hydrographs show that during the period 1944-61, the maximum net decline, about 144 feet, occurred in well ZX-77-18-601 in Zavala County. Actually, the water level declined as much as 236 feet during the period 1944-56; the water levels rose sharply in 1956-57 and again in 1960-61.

The relatively small pumpage compared to the large potential has resulted in little change in the water levels in wells in the Carrizo Sand and Wilcox Group, undifferentiated, in the San Antonio and Guadalupe River Basins. This is clearly shown in the hydrograph of well ZL-68-55-101 in Wilson County (Figure 19). During the period 1951-61, the water level declined only 3 feet.


Availability and Potential Development

The potential development of water from the Carrizo Sand and Wilcox Group depends on the ability of the aquifer to transmit water, the quantity of water in storage, and the rate of recharge. The coefficient of transmissibility of the Carrizo Sand, determined from tests of 35 wells in the Guadalupe, San Antonio, and Nueces River Basins, averaged about 50,000 gpd per foot, ranging

- 82 -

U.S. Geological Survey in cooperation with the Texas Water Commission

19

from 8,200 to as much as 175,000 gpd per foot. The coefficient of storage in 9 tests ranged from 0.0001 to 0.0008, and averaged 0.0003.

The specific capacities of wells in the Carrizo Sand and Wilcox Group, undifferentiated, ranged widely. The specific capacities of 15 wells ranged from 3.0 to 48.2, averaging 14.2 gpm per foot of drawdown.

The greatest thickness of the sands containing fresh to slightly saline water in the Carrizo Sand and Wilcox Group, undifferentaited, in the Nueces River Basin ranges from more than 1,000 feet in Atascosa County to more than 1,400 feet in Frio County (Plate 11). The approximate thickness of the sands in the Guadalupe and San Antonio River Basins is greatest in southern Gonzales County, where it is more than 1,400 feet (Plate 12).

Comparative estimates of the availability of ground water in the Carrizo Sand and Wilcox Group, undifferentiated, in the Guadalupe, San Antonio, and Nueces River Basins are given in Table 10. The estimates were computed using the following assumptions:

1. Water levels will be lowered to a maximum depth of 400 feet along a line of discharge midway between the center of the outcrop and the downdip limit of fresh to slightly saline water.

2. No water moves downward into the aquifer except in the outcrop where all recharge is assumed to occur along a line parallel to the strike of the outcrop and in the middle of the outcrop.

3. For computation of available water from storage:

a. The altitude of the water levels is the same at all points along the centerline of the outcrop; the altitude of the water level is the same at all points along the downdip limit of fresh to slightly saline water; and the altitude of the water level is the same at all points along the line of discharge.

b. The coefficient of storage in the water-table part of the aquifer is 0.10 and in the artesian part is 0.001.

c. The average width of the section is the effective width of the storage area.

4. For computation of the average transmission capacity of the aquifer (defined as the quantity of water that can be transmitted through a given width of an aquifer at a given hydraulic gradient):

a. No further decline in water level in the outcrop will occur.

b. The hydraulic gradient is the slope of a straight line from the water level in the outcrop to the level of drawdown at the line of discharge.

c. The assumed average coefficient of transmissibility of the sands in each basin is as shown in Table 10.

stimated fresh wate ailable from storag lowering water lev o 400 feet along li of discharge (million acre-feet)	Estimated fresh water available from storage by lowering water level to 400 feet along line of discharge (million acre-feet)	Assumed coefficient of transmissibility	Transmission capacity at average gradient	Transmission capacity at maximum gradient	R	Rate of withdrawal	Time, in y a line of	Time, in years, to lower water levels along a line of discharge to 400 feet below land surface	ter levels along feet below land	Rechargea	eat
Per linear mile of aquifer	Total	(gpd/ft.)	(acre-ft./yr.)	(acre-ft,/yr.)	(mgd)	(acre-ft./yr.)(acre-ft./yr.) (mgd) (acre-ft./yr.)	With no recharge	With recharge equal to transmission capacity at average gradient	With recharge equal to transmission capacity at maximum gradient	At average gradient (in./yr.)	At maximum gradient (in./yr.)
					1.2b	1,300	2,384	ังา	6		
0.05	3.1	50,000	29,100	52,300	100	112,000	28	37	52	0.83	1.44
					300	336,000	9.2	10	11		
					2.2b/	2,500	769	5	īci,		
.07	2.0	29,000	17,700	33,500	50	56,000	36	52	93	.60	1,12
					100	112,000	18	21	25		
					160b/	180,000	18	24	27		
.02	3.2	32,000	44,800	62,650	300	336,000	10	11	12	.96	1.44
					500	560,000	9	6.2	6.4		

Table 10.--Comparative estimates of the availability of ground water in the Carrizo Sand and Wilcox Group, undifferentiated, in the Guadalupe, San Antonio. and Nuoroe Rivor Rasine

³/ Recharge equal to transmission capacity. by Estimated 1961 rate of withdrawal. ³/ Average transmission capacity is greater than withdrawal.

- 85 -

d. Where recharge is considered, it is sufficient to supply the water that can be transmitted to the line of discharge at the assumed gradients.

e. The average width of the area is the effective width of the aquifer through which water is transmitted.

f. The average hydraulic gradient is the average of the present hydraulic gradient and the maximum hydraulic gradient that can be attained with a water level of 400 feet at the line of discharge.

5. For computation of time it will take to dewater to 400 feet at the line of discharge:

a. Storage is as computed.

b. Rate of discharge is as shown, assuming full recharge and assuming no recharge.

c. The average transmission capacity is the arithmetic average of the present rate based on the present hydraulic gradient and the maximum rate based on the maximum hydraulic gradient to be attained.

d. Other rates of withdrawal are as shown, assuming full recharge and assuming no recharge.

For purposes of computation, different rates of withdrawals include (1) the present rate of withdrawal and (2) rates arbitrarily chosen based on reasonable estimates of potential development. These rates of withdrawal, the amount of water in transient storage, and the average transmission capacity were used to determine the time required to dewater to 400 feet at the line of discharge. Only the amount of water in transient storage was used in computing the time required under the condition of no recharge. Results of the calculations are presented in Table 10 with the warning that the figures can be changed by a factor of several times by a small change in any one of several of the above assumptions. Limited basic data analyzed on a regional basis under assumed development conditions provide a preliminary estimate of water potentially available. Thus, these preliminary estimates, which are especially suited for comparative purposes, will need to be revised and kept current as development takes place and more data become available.

Nueces River Basin

An estimated 3,200,000 acre-feet of fresh water would be available from storage in the Carrizo Sand and Wilcox Group, undifferentiated, in the Nueces River Basin by lowering the water levels to 400 feet along a line of discharge (Table 10). The table shows that it would take about 6 years of pumping 500 mgd (about three times the 1961 rate of pumping) to lower the water levels along the line of discharge to 400 feet. After the water levels were lowered to 400 feet, the aquifer would transmit 62,650 acre-feet per year (about 60 mgd) without further lowering, assuming adequate recharge. Actually, the flow of water through the aquifer could be increased by installing wells closer to the outcrop, thereby increasing the hydraulic gradient. The amount of recharge on the outcrop necessary to replace the water moving downdip at the maximum transmission capacity (62,650 acre-feet per year) would be about 1.44 inches per year, or less than 5 percent of the annual rainfall.

San Antonio River Basin

About 2,000,000 acre-feet of fresh water would be available from storage in the Carrizo Sand and Wilcox Group, undifferentiated, in the San Antonio River Basin by lowering water levels to 400 feet along a line of discharge (Table 10). If the 1961 discharge rate (2.2 mgd or 2,500 acre-feet) were continuously maintained in wells evenly spaced along the assumed line of discharge and if recharge were adequate, the water levels would not be lowered to 400 feet. However, if the pumpage rate were increased to 50 mgd (56,000 acre-feet per year), the water levels could be lowered to 400 feet in about 36 years, assuming no recharge and that all water will be taken from storage. After the water levels are lowered to 400 feet, the aquifer will transmit 33,500 acrefeet per year (30 mgd) without additional drawdown, assuming adequate recharge. The amount of recharge on the outcrop necessary to replace the water moving downdip at the maximum transmission capacity (33,500 acre-feet per year) would be about 1.12 inches per year, or nearly 4 percent of the annual rainfall.

Guadalupe River Basin

About 3,100,000 acre-feet of fresh water would be available from storage in the Carrizo Sand and Wilcox Group, undifferentiated, in the Guadalupe River Basin by lowering the water levels to 400 feet along a line of discharge (Table 10). Based on the assumption of no recharge and that all the water will be taken from storage, the aquifer in the Guadalupe River Basin could furnish 336,000 acre-feet of water per year (300 mgd) for 9.2 years before the water levels would be lowered to 400 feet. At the end of that period, the aquifer could transmit 52,300 acre-feet per year (46 mgd) assuming 1.44 inches of recharge annually.

Problems

The decline of water levels in the most serious problem associated with the development of water from the Carrizo Sand and Wilcox Group, undifferentiated, in the Nueces River Basin. Continuing declines in some areas have resulted in reduced yields and increased pumping costs. Wider spacing of wells would result in a more uniform decline in water levels over the entire area.

The contamination of wells in the Carrizo Sand by saline water from the Bigford Member of the Mount Selman Formation has caused concern in localized areas. In the Winter Garden district, the Carrizo Sand is separated from the sands in the overlying Bigford Member by a relatively impermeable clay. Where the seal of clay is broken by an improperly constructed well, the moderately to very saline water from the Bigford may become mixed with the fresh water from the Carrizo Sand, especially during pumping when the artesian pressure in the Carrizo Sand is lower than that in the Bigford. Livingston and Lynch (1937, p. 1-20) described the corrosion of well casings by the mineralized water from the Bigford and the resulting contamination of the water in the Carrizo near and in the well.

- 87 -

Plans for the large-scale development of the ground-water resources in the Carrizo and Wilcox in the San Antonio and Guadalupe River Basins should include the proper well spacing to prevent excessive drawdowns. Also, the wells should be constructed to prevent the possible contamination of the fresh water in the Carrizo by the slightly saline water from the overlying Reklaw Member of the Mount Selman Formation.

Gulf Coast Aquifer

Physical Description

The Gulf Coast aquifer includes the following stratigraphic units: the Catahoula Tuff, Oakville Sandstone, Lagarto Clay, Goliad Sand, Lissie Formation, and Beaumont Clay. These stratigraphic units are interconnected hydrologically, and collectively they are classified as a primary aquifer -- the Gulf Coast aquifer. The aquifer consists of sand, sandstone, silt, clay, and gravel. The aquifer crops out coastward of a line extending across southeastern McMullen, northern Live Oak, central Karnes, and southeastern Gonzales Counties (Plates 1 and 2). The Gulf Coast aquifer has a maximum thickness of about 1,800 feet in the Nueces River Basin and about 1,900 feet in the San Antonio and Guadalupe River Basins. The aquifer dips coastward, the oldest stratigraphic unit having the greatest dip (Plates 3, 4, and 5). The dip of the oldest unit, the Catahoula, is about 100 feet per mile in the Nueces Basin and about 120 feet per mile in the San Antonio and Guadalupe Basins. The dip of the Oakville is about 80 feet per mile in the Nueces Basin and about 85 feet per mile in the San Antonio and Guadalupe Basins. The dip of the Lagarto is about 30 feet per mile and the dips of the Goliad, Lissie, and Beaumont are somewhat less.

Recharge, Movement, and Discharge of Ground Water

Recharge to the Gulf Coast aquifer is derived principally from the precipitation that falls on the loose sandy soil in the outcrops and, to some extent, by the seepage from streams that cross the outcrops. The movement of ground water is southeastward in the direction of the dip. The principal discharge is by seepage upward to the surface where the water is lost by evapotranspiration and, to a lesser extent, by seepage into streams and discharge through wells.

Chemical Quality of Ground Water

The Gulf Coast aquifer yields small to large quantities of fresh to moderately saline water. The water ranges widely in chemical content; however, water suitable in quality for public supply, irrigation, and most industrial uses can be found in most places underlain by the aquifer. The maximum depth to the base of the fresh to slightly saline water in the Nueces Basin is about 1,600 feet below sea level (Plate 13), and in the San Antonio and Guadalupe Basins, it is about 1,800 feet below sea level (Plate 14).

The chemical analyses of water from 18 wells that tap the Gulf Coast aquifer in the Nueces Basin are included in Table 7. The dissolved-solids content ranged from 482 to 5,180 ppm. The hardness ranged from soft to very hard--from 55 to 1,430 ppm. The chemical analyses of water from 29 wells that tap the Gulf Coast aquifer in the San Antonio and Guadalupe Basins are included in Table 8. The dissolved-solids content in these samples ranged from 411 to 2,380 ppm. The hardness ranged from 16 to 936 ppm.

Utilization and Present Development

The total pumpage during 1961 from major wells tapping the Gulf Coast aquifer in the report area was about 18,000 acre-feet, or an average of about 16 mgd (Table 11). Pumpage for irrigation was 8,700 acre-feet (7.8 mgd), for public supply 6,900 acre-feet (6.2 mgd), and for industrial use 2,200 acre-feet (1.9 mgd).

Nueces River Basin

The total pumpage during 1961 from the Gulf Coast aquifer in the Nueces Basin was about 9,100 acre-feet, or an average of about 8.1 mgd (Table 11). Pumpage for irrigation was 7,600 acre-feet (6.8 mgd), for public supply 1,100 acre-feet (1.0 mgd), and for industrial use 340 acre-feet (0.3 mgd). The public supplies for Mathis, Freer, and George West are obtained from the Gulf Coast aquifer. Most of the ground water used for irrigation is pumped in Nueces and San Patricio Counties.

San Antonio River Basin

The total pumpage during 1961 from the Gulf Coast aquifer in the San Antonio Basin was about 2,100 acre-feet, or an average of about 1.9 mgd (Table 11). Pumpage for public supply was 1,100 acre-feet (1.0 mgd), for irrigation 780 acre-feet (0.7 mgd), and for industrial use 220 acre-feet (0.2 mgd). The public supplies for Kenedy, Karnes City, Goliad, and Runge are obtained from the Gulf Coast aquifer.

Guadalupe River Basin

The total pumpage during 1961 from the Gulf Coast aquifer in the Guadalupe Basin was about 6,600 acre-feet, or an average of about 5.9 mgd (Table 11). Pumpage for public supply was 4,700 acre-feet (4.2 mgd), for industrial use 1,600 acre-feet (1.4 mgd), and for irrigation 340 acre-feet (0.3 mgd). The public supplies for Victoria, Cuero, and Yorktown are obtained from the Gulf Coast aquifer. The city of Victoria is the largest user of ground water in the Guadalupe Basin, using about 3,600 acre-feet in 1961.

Availability and Potential Development

The potential development of water from the Gulf Coast aquifer depends chiefly on the ability of the aquifer to transmit water, the amount of water in storage, and the rate of recharge. Comparative estimates of the availability of fresh to slightly saline water in the aquifer in the Guadalupe, San Antonio, and Nueces River Basins are given in Table 12. The estimates were computed

Major	Pub	lic supply	I	ndustrial	I	rrigation		Total
subdivision	mgd	acre-ft./yr.	mgd	acre-ft./yr.	mgd	acre-ft./yr.	mgd	acre-ft./yr.
GU- 8						10		
GU- 9						20		
GU-10	0.1	112	0	0	0.1	112	0.2	220
GU-11	4.1	4,592	1.4	1,568	.2	224	5.7	6,400
Subtotal	4.2	4,700	1.4	1,600	.3	340	5.9	6,600
SA - 5	.8	896	.2	224	.6	672	1.6	1,800
SA - 7	.2	224	0	0	.1	112	.8	340
Subtotal	1.0	1,100	.2	220	.7	780	1.9	2,100
NU-27	.2	224	.3	336	.5	560	1.0	1,100
NU-30	.8	896	0	0	6.3	7,056	7.1	8,000
Subtotal	1.0	1,100	.3	340	6.8	7,600	8.1	9,100
Total	6.2	6,900	1.9	2,200 .	7.8	8,700	16.0	18,000

Table 11.--Discharge of ground water by major wells in the Gulf Coast aquifer, 1961

Figures are approximate because some of the pumpage is estimated. Figures are shown to nearest 0.1 mgd and to the nearest acre-foot. Totals are rounded to two significant figures.

Rate of withdrawal	Rate of Lthdraws	of iwal
e-ft./yr.)	301	(acre-ft./yr.)
6,600		6,600
112,000	-	12,000
224,000	1.4	24,000
2,100		2,100
56,000		56,000
112,000		12,000
9,100		9,100
112,000		112,000
224,000		224.000

Table 12, -- Comparative estimates of the availability of ground water in the Gulf Coast aquifer in the Guadalupe, San Antonio, and Nueces River Basins

B Recharge equal to the transmission capacity. B Estimated 1961 rate of withdrawal. G Average transmission capacity is greater than withdrawals.

- 91 -

using the same assumptions as those for the Carrizo Sand and Wilcox Group, undifferentiated, (p. 148 to 151) shown in Table 10, except that the coefficients of transmissibility were 40,000 gpd per foot for the Guadalupe Basin, 8,250 gpd per foot for the San Antonio Basin, and 26,700 gpd per foot for the Nueces Basin. The quantities of available water given in Table 12 are conservative estimates because the assumptions do not include water contributed by compaction.

Nueces River Basin

The maximum depth to the base of the fresh to slightly saline water in the Gulf Coast aquifer in the Nueces River Basin is about 1,600 feet below sea level (Plate 13). The maximum thickness of sand containing fresh to slightly saline water is about 400 feet (Plate 11). The coefficients of transmissibility, determined from pumping tests of 5 wells, ranged from 11,000 to 28,000 gpd per foot, and averaged 26,700 gpd per foot; coefficients of storage ranged from 0.00042 to 0.0012, and averaged 0.00073.

The lowering of the water levels to 400 feet below the land surface along an assumed line of discharge across the Nueces Basin would make available from storage in the Gulf Coast aquifer an estimated 11,600,000 acre-feet of fresh to slightly saline water (Table 12). If recharge is considered and the withdrawal in the Nueces Basin was increased to 100 mgd, the water levels along the assumed line of discharge would be lowered to 400 feet below the land surface in about 114 years (Table 12). This rate of withdrawal would require recharge at the rate of only 0.36 inch per year, which probably is less than the actual rate.

San Antonio River Basin

The maximum depth to the base of the fresh to slightly saline water in the Gulf Coast aquifer in the San Antonio River Basin is about 1,800 feet below sea level (Plate 14). The maximum thickness of sand containing fresh to slightly saline water is about 600 feet (Plate 12). The coefficients of transmissibility, determined from pumping tests of 10 wells, ranged from 1,400 to 17,000 gpd per foot, and averaged 8,250 gpd per foot; coefficients of storage ranged from 0.00004 to 0.00063 and averaged 0.00019.

The lowering of the water levels to 400 feet below the land surface along the assumed line of discharge across the San Antonio Basin would make available from storage in the Gulf Coast aquifer an estimated 8,340,000 acre-feet of fresh to slightly saline water (Table 12). If recharge is considered and the withdrawal in the San Antonio Basin was increased to 100 mgd, the water levels along the assumed line of discharge would be lowered to 400 feet below the land surface in about 76 years (Table 12). This rate of withdrawal would require recharge at the rate of only 0.08 inch per year, which probably is considerably less than the actual rate.

Guadalupe River Basin

The maximum depth to the base of the fresh to slightly saline water in the Gulf Coast aquifer in the Guadalupe River Basin is about 1,800 feet below sea level (Plate 14). The maximum thickness of sand containing fresh to slightly saline water is about 600 feet (Plate 12). The coefficients of transmissibility, determined from pumping tests of 9 wells, ranged from 8,300 to 83,000 gpd per foot, and averaged 40,000 gpd per foot; coefficeints of storage ranged from 0.00048 to 0.01, and averaged .0045.

The lowering of the water levels to 400 feet below the land surface along the assumed line of discharge across the Guadalupe Basin would make available from storage in the Gulf Coast aquifer an estimated 11,600,000 acre-feet of fresh to slightly saline water (Table 12). If recharge is considered and the withdrawal in the Guadalupe Basin was increased to 100 mgd, the water levels along the assumed line of discharge would be lowered to 400 feet below the land surface in about 114 years (Table 12). This rate of discharge would require recharge at the rate of 0.46 inch per year, which probably is less than the actual rate.

Problems

The contamination of the fresh to slightly saline water by salt-water invasion is a potentially serious problem in the Guadalupe, San Antonio, and Nueces River Basins. A lowering of artesian pressure by additional large-scale development enhances the possibility of salt-water contamination either by updip movement or by the movement of overlying salt water into the fresh to slightly saline zone through corroded casings or through improperly constructed wells.

In those areas where only small supplies of fresh to slightly saline water are available, it is especially important that wells be adequately spaced so as to minimize interference effects and the resultant decrease of artesian pressure.

Secondary Aquifers

Queen City Sand Member of the Mount Selman Formation

The Queen City Sand Member of the Mount Selman Formation crops out in a southwesterly-trending belt 1 to 6 miles wide across the Guadalupe and San Antonio Basins (Plate 1); in the Nueces Basin, it is mapped only in the western part of Wilson County (Plate 2). Westward from Wilson County, the Queen City is mapped as a part of the Mount Selman Formation, undifferentiated (Plate 2). The Queen City consists of medium to fine sand, clay, and shale. The thickness of the aquifer ranges from 500 to 1,000 feet. The dip of the Queen City is predominatly southeastward toward the Gulf at about 125 feet per mile.

The principal sources of recharge to the Queen City are precipitation on the outcrop and seepage from streams crossing the outcrop. In general, the water moves downward to the water table in the outcrop, thence southeastward downdip except in areas where ground-water pumping has formed cones of depression in the water table or piezometric surface.

Water is discharged from the Queen City by wells and natural means. Pumpage from major wells was 1,500 acre-feet in 1961, 780 acre-feet of which was pumped for public supply in the Nueces Basin. The rest of the pumpage was for irrigation in the San Antonio River Basin. The natural discharge of ground water from the Queen City is by seepage into other formations in the subsurface and probably by evapotranspiration in the outcrop.

The Queen City Sand Member yields small to moderate quantities of fresh to slightly saline water. Chemical analyses of water from selected wells in the Queen City are shown in Tables 7 and 8. In and near the outcrop, the water is fresh, hard to very hard, and generally is suitable for irrigation or municipal supply. Farther downdip, the water becomes progressively more saline. In Mc-Mullen County, well SU-78-28-601, depth 2,765 feet, yielded water that was soft, high in bicarbonate and sulfate, and had a SAR of 151.

Because of the small volume of water pumped from the Queen City, water levels probably have not changed significantly; however, records are not available to document this.

Insufficient data preclude an appraisal of the ground-water potential of the Queen City Sand Member in the report area. Ground water in the Queen City is developed only on a small scale, and it is probable that the withdrawals in 1961 could be increased several times, assuming that wells are properly spaced. However, large-scale development may result in excessive declines in water levels and contamination of the fresh water by saline water from the overlying or underlying formations.

Sparta Sand

The Sparta Sand consists chiefly of medium to fine sand and some clay; most of the sand is in the upper two-thirds of the formation. The Sparta Sand maintains a uniform thickness of about 110 feet where the complete section is present in the report area. In the Guadalupe and San Antonio Basins, the Sparta crops out in a belt about one mile wide across southern Wilson, northern Gonzales, and southern Bastrop Counties (Plate 1). In the Nueces Basin west of Wilson County, the Sparta Sand and the overlying Cook Mountain Formation are mapped as a unit (Plate 2). They crop out in a belt that extends across central Atascosa, southern Frio, southeastern Zavala, western LaSalle, the northeastern and southeastern corners of Dimmit, and central Webb Counties. Downdip, however, electric logs of wells indicate that the unit can be differentiated, the Sparta Sand being represented by a prominant sand body 80 to 100 feet thick. The dip of the Sparta is predominantly southeastward at about 125 feet per mile, except in the central and western parts of the Nueces Basin where the direction of dip ranges between northeast and south due to geologic structure and the dip of the beds is about 70 feet per mile.

Most of the recharge to the Sparta Sand is from precipitation on the outcrop, but some is seepage from streams that flow across the outcrop. Water moves from the outcrop southeastward and becomes confined a short distance downdip; consequently, most of the water in the Sparta is under artesian pressure. The water in the Sparta is discharged through wells, by seepage into other formations in the subsurface, and by evapotranspiration. The discharge by major wells in 1961 was about 1,500 acre-feet, of which 1,400 acre-feet was for irrigation in the Nueces Basin and only 69 acre-feet for public supply, all of which was in the Guadalupe Basin. In the San Antonio River Basin, the Sparta Sand is tapped by only a few wells, principally for domestic and livestock supplies.

- 94 -

The Sparta Sand yields small to moderate quantities of fresh to slightly saline water in the area of outcrop and for a short distance downdip. Where more deeply buried, the water in the Sparta increases in salinity and becomes unfit for most purposes. Chemical analyses of water from selected wells in the Sparta Sand in the Guadalupe, San Antonio, and Nueces River Basins and the Cook Mountain and Sparta Sand, undifferentiated, in the western part of the Nueces River Basin are shown in Table 7 and 8.

The ground-water supplies in the Sparta Sand have been developed only to a very small extent, and in many areas, it seems likely that additional moderate supplies could be developed from the formation, principally for irrigation. However, a large increase in the development of the available fresh to slightly saline water might result in the encroachment of the more mineralized water into the sands containing water of good quality. Additional data on the hydraulic characteristics are needed to determine more accurately the ability of the sands to transmit and yield water to wells. Also, additional chemical analyses are necessary to locate accurately the extent of the sands containing fresh to slightly saline water.

Leona Formation and Alluvium

The Leona Formation and Recent alluvium are mapped together in the report area and may be considered a single hydrologic unit or aquifer. The formations consist of clay, silt, sand, and gravel; the Leona forms alluvial terraces along the major streams, whereas the alluvium forms the flood-plain and channel deposits of the present streams. The Leona Formation has a maximum thickness of about 80 feet compared to about 30 feet for the Recent alluvium.

In general, the principal source of recharge to the aquifer is from the infiltration of precipitation on the outcrop. During periods of high streamflow, some recharge is temporarily added to the alluvium as bank storage. Southeast of Uvalde, the Leona Formation is in hydraulic connection with the underlying Edwards and associated limestones, and in this area, the Leona is recharged mainly by the upward flow of water from the limestones along faults.

The water occurs under water-table conditions, except in part of the Leona River Valley where a layer of silty clay overlies the gravel and acts as a confining layer at least during periods of high water levels. In general, water in the Leona moves toward the streams and is discharged naturally through springs and seeps; it is discharged also through wells, principally for domestic and livestock uses, and locally for irrigation.

The chemical analyses of water from selected wells in the Leona Formation and the Recent alluvium are included in Table 3, 7, and 8. The water is very hard but relatively low in dissolved solids except in DeWitt County, where water from two wells contained more than 1,000 ppm dissolved solids and more than 250 ppm chloride. The nitrate content in several wells exceeded the recommended limits for drinking-water standards and in one sample from a well in the Leona Formation in Medina County, the nitrate content was 387 ppm.

In 1961, about 2,900 acre-feet of water was pumped from the Leona Formation and Recent alluvium, of which 800 was from wells in the Guadalupe River Basin and 2,100 acre-feet in the Nueces River Basin. Most of the pumpage was for irrigation, only a small part being for public supply. The data are insufficient to permit a complete evaluation of the potential ground-water development from the Leona Formation and Recent alluvium. For the most part, the aquifer is heavily pumped in a few areas in the Nueces River Basin, especially in Uvalde County; however, in many areas small to moderate additional supplies probably can be developed.

SUMMARY OF GROUND-WATER WITHDRAWALS IN THE GUADALUPE, SAN ANTONIO, AND NUECES RIVER BASINS

The summaries of the ground-water discharge by major wells and springs in the Guadalupe, San Antonio, and Nueces River Basins in 1961 are given in Tables 13, 14, and 15; the withdrawals have been tabulated by principal use, aquifer, and major subdivisions of the basins. Table 16 shows that the total discharge was 910,000 acre-feet in the three basins, including 20,000 acre-feet pumped for domestic and livestock purposes. The major pumpage was for irrigation, 240,000 acre-feet, although springs in the Balcones fault zone area in the Guadalupe River Basin discharged about 380,000 acre-feet and the total spring flow was 450,000 acre-feet. More than 85 percent of the water pumped for irrigation was from wells in the Nueces River Basin, most of which was from the Carrizo Sand and Wilcox Group, undifferentiated. The largest amount of ground water used by industry and public supply was from the Balcones aquifer in the San Antonio River Basin, reflecting the large withdrawals in the metropolitan San Antonio area.

		1	Well c	Well discharge			.0	and a con-	Carrizo Sand	Edwards and associated		Gulf	Leona		
Major subdivision		Public supply	Indu	Industrial	Irr	Irrigation	ō.	opt 1160	and Wilcox Group	limestones and Balcones	Group	Coast	Formation and Recent	Sand	Total
	pgm	acre-ft.	mgd	acre-ft.	mgd	acre-ft.	mgd	acre-ft.	undif	aquifer			alluvium		
GU- 1	1.7	1,900	1	0	0.2	210	ł	ł	1	1	2,100	ł	ł	ł	2,100
2		89	ţ	0	.1	60	1	ł	:	;	150	}	;	}	150
e	;	0	3	0	3	0	1	1	ł	1	ł	J	3	1	0
4	3.7	4,200	0.6	670	е.	320	218	240,000	ł	250,000	1	ł	160	1	250,000
ы с	}	0	ł	0	;	0	1	;	1	1	1	ł	;	1	0
9	.5	520	3	0	į.	30	3	ł	1	220	ł	;	550	1	770
2	2.7	3,000	ľ	0	.1	110	124	140,000	840	140,000	ł	ł	83	69	140,000
8	1	;	;	0	ï	10	1	;	e	;	ł	10	:	ł	10
6	4.	450	3	0	ł	20	1	ł	450	1	1	20	1	ł	500
10	т.	150	ł	0	.1	110	1	ł	ł	ł	ł	220	1	1	220
11	4.1	4,600	1.4	1,600	.2	220	:	1	Ì		1	6,400	1	1	6,400
Total	13.5	15,000	2.0	2,300	1.1	1,100	34.0	380,000	1,300	390,000	2,200	6,600	800	69	400,000

Table 13. -- Summary of ground-water discharge by major wells and springs in the Guadalupe River Basin, 1961, in acre-feet

.

Totals are approximate because most figures in the table have been rounded to two significant figures and totals are further rounded to two significant figures.

eet
-fe
re
ac
in
1,
96
sin
Bas
er
tive
0
inc
nto
n A
Sa
he
-
-F
sgu
pri
S
and
to T
lel.
r
oju
Ш
by
rge
ha
isc
P
ter
-wa
put
STOU
: 60: :##
io /
ary
num
SS
4
Table i4Summary of grou
1.4

	Total		14,000	200,000	3,600	4,200	340	230,000
Queen City Sand Member	or the Mount Selman	Formation	;	;	320	077	:	760
Gulf	aquifer		ł	;	;	1,800	340	2,100
Hosston and	and Trinity	Group	210	340	330	ł	1	880
Edwards and associated	and Balcones	aquifer	14,000	200,000	2,800	1	;	220,000
Carrizo Sand	Group,	undifferentiated	1	340	110	2,000	1	2,500
Springs)	acre-ft.	ł	37.4 42,000	;	ł	I	42,000
Sp	e) i	mgd	ł	37.4	1	ł	ł	37.4
	Irrigation	acre-ft.	13,000	16,000	240	2,300	110	32,000 37.4 42,000
	Irri	mgd	11.9	14.0	.5	2.1		28.6
Well discharge	Industrial	acre-ft.	0	26,000	0	220	0	26,000
ell di	Indu	mgd	ł	23.4	ł	.2	ł	23.6
3	Public supply	acre-ft.	540	100.5 110,000 23.4	3,000	1,700	220	105.4 120,000 23.6 26,000 28.6
		рдш	0.5	100.5	2.7	1.5	.2	105.4
Maior	subdivision		SA-1	£	4	5	7	Total

- 98 -

Total pumpage for domestic and livestock uses, 6,500 acre-feet. Totals are approximate because most figures in the table have been rounded to two significant figures and totals are further rounded to two significant figures.

	-	Total			15	0	0.100	6,100	8,500	41,000	4,800	10	140	111	ţ	5,600	5,400	69.000		30,000	22,000	3,500	52,000	1,200	8.000	260.000
	Sparta	Sand			ł	1		ł	٢,	ł	770	10	140	;		I	;	ł		1	:	470	É	;	-	1.400
Queen City	Sand Member	Mount Selman	Formation		;	ł	;		ł	1	:	ł	;	;		;	1	1		;	1	1	780	I	1	780 1
	Trinity	Group			:	ł	;		:	;	;	;	;	;		011	1	ł		1	;	I	;	;	;	110
Loons Formation	and Recent	alluvium		;		;	1		;		1	1	I.	77	011	011	220	1,600			;	1	l	ł	3	2,100
Gulf	Coast	aquifer		;		1	1	3	8	;	1	£	1	;	;		:	1	1			1	1	1,100	8,000	9,100
Edwards and associated	limestones	and Balcones	Jattaha	ł		l.	9,000	110			:	:	;	ł	5,400	000 0	000 f 7	49,000	Į	1.300		006 [+ + +	ł	:	68,000
Carrizo Sand	and Wilcox	Group, undifferentiated		;	;		;	8,400	41,000	000 9	000 *	1	1	;	;	3 200	0046	18,000	30,000	21,000	3.000	50,000	ort	0.11	:	180,000
Springs	þ	acre-ft.		;	1		1	1	;	;	;		;	1	f.	1	11 000	000'10	;	ł	1	;	;			31,000
ST	1	mgd		1	ł			;	1	;	;		1	;	1	;	3 20		;	;	;	1	;			_
	Irripation	acre-ft.	c	c	0	000.9	pool a	8,500	39,000	4,200	10	140			5,200	4,900	33.000		000 f 67	22,000	3,300	49,000	700	7.000	-	000-604
	Irr	ngd	1		1	8.0		7.6	34.8	3.7	;	1.	1	No.	4.6	4.4	29.5	0 30	0.7	9*61	3,0	43.6	9,	6.2		4 11
Well discharge	Industrial	acre-ft.	0	2	0	0		0	510	0	0	0	0	0	0	0	1,600	066	2	220	110	320	340	0	3.300 10	at not
Well d	Indu	mgd	;		;	I		;	0.5	;	;	;	;		1	1	1.4	0	:	°.	.1	ŗ,	m	1	3.0 3	out 1 too
	Public supply	acre-ft.	15		0	0		0	1,800	560	0	0	44	067	Dut	560	3,200	1.100		450	43	2,600	220	900	12.000	omestic ar
	Pub1:	pgm	;		ł	ł		;	1.6	s.	ł	ł	1	7		2	2.9	1.0		4.	;	2.3	•2	.8	10.6 1	e for o
Major subdivision			NU- 1		14	e	1	t	9	6	11	12	14	15		17	19	20		21	23	25	27	30	Total 1	Total pumpage for domestic and livestatic in 200

Table 15, --Summary of ground-water discharge by major wells and springs in the Nucces River Basin, 1961, in acre-feet

Table 16. -- Summary of ground-water discharge by major wells and springs in the Guadalupe, San Antonio, and Nueces River Basins, 1961, in acre-feet

			L TIMAL	FTIMALY and secondary investigation	her from				
Well discharge	Springs	Hosston E and Sligo as Formations li	Edwards Car and Sa associated ar limestones Will	Carrizo Sand Qu and Ci Wilcox Sand Group of	Queen City Sand Member Si of the	Sparta Sand	Gulf Coast aquifer	Leona Formation and	Total
Public supply Industrial Irrigation		ñ	es u		Mount Selman			Recent	
are-ft mod acre-ft. mgd	acre-ft.	Group	aquifer ent:	entiated Form	Formation				
								000	000 007
300 0.9 1.200 340.0 380,000	0 380,000	2,200	390,000 1	1,300	1	69	000,0	000	non font
					000	0	001 6	;	230.000
28.6 32,000 37.4	4 42,000	880	220,000 2	2,200	00/		00164		
			_	000	780 1	1.400	9.100	2,100	260,000
3.0 3.300 191.5 210,000 27.6	6 31,000	110	00,000 100	100,000	T				
	t		-	_		500	18,000	2,900	890,000
.000 220 240,000 410	450,000	3,200	-	_					
32,000 220 240,000 410	_	000	000 3,200	3,200 680,000	3,200 680,000 180,000	3,200 680,000 180,000 1,500	3,200 680,000 180,000 1,500	3,200 680,000 180,000	3,200 680,000 180,000 1,500 1,500 18,000

Total pumpage for domestic and livestock uses, 20,000 acre-feet, not included in total. Totals are approximate because most figures in the table have been rounded to two significant figures and totals are further rounded to two significant figures.

÷

-

SELECTED REFERENCES

Anders, R. B., 1957, Ground-water geology of Wilson County, Texas: Texas Board Water Engineers Bull. 5710.

1960, Ground-water geology of Karnes County, Texas: Texas Board Water Engineers Bull. 6007.

- Anders, R. B., and Baker, E. T., Jr., 1961, Ground-water geology of Live Oak County, Texas: Texas Board Water Engineers Bull. 6105.
- Arnow, Ted, 1959, Ground-water geology of Bexar County, Texas: Texas Board Water Engineers Bull. 5911.
- Baker, B. B., Dillard, J. W., Souders, V. L., and Peckham, R. C., 1963, Reconnaissance investigation of the ground-water resources of the Sabine River Basin, Texas: Texas Water Commission Bull. 6307.
- Baker, B. B., Peckham, R. C., Dillard, J. W., and Souders, V. L., 1963, Reconnaissance investigation of the ground-water resources of the Neches River Basin, Texas: Texas Water Commission Bull. 6308.
- Baker, E. T., Jr., Long, A. T., Jr., Reeves, R. D., and Wood, L. A., 1963, Reconnaissance investigation of the ground-water resources of the Red River, Sulphur River, and Cypress Creek Basins, Texas: Texas Water Commission Bull. 6306.
- Baker, R. C., 1962, A reconnaissance of the ground-water resources of the Lower Rio Grande Basin, Texas: U. S. Geol. Survey open-file rept.
- Bennett, R. R., and Sayre, A. N., 1962, Geology and ground-water resources of Kinney County, Texas: Texas Water Commission Bull. 6216.
- Bloodgood, D. W., Patterson, R. E., and Smith, R. L., Jr., 1954, Water evaporation studies in Texas: Texas Agr. Expt. Sta. Bull. 787.
- Broadhurst, W. L., Sundstrom, R. W., and Rowley, J. H., 1950, Public water supplies in southern Texas: U. S. Geol. Survey Water-Supply Paper 1070.
- Broadhurst, W. L., Sundstrom, R. W., and Weaver, D. E., 1951, Public water supplies in western Texas: U. S. Geol. Survey Water-Supply Paper 1106.
- Brown, J. B., Rogers, L. T., and Baker, B. B., 1962, Reconnaissance investigation of the ground-water resources of the Middle Rio Grande Basin, Texas: Texas Water Commission rept. [in review for publication].
- Cronin, J. G., Follett, C. R., Shafer, G. H., and Rettman, P. L., 1963, Reconnaissance investigation of the ground-water resources of the Brazos River Basin, Texas: Texas Water Commission Bull. 6310.
- Dale, O. C., Moulder, E. A., and Arnow, Ted, 1957, Ground-water resources of Goliad County, Texas: Texas Board Water Engineers Bull. 5711.

Darton, N. H., Stephenson, L. W., and Gardner, Julia, 1937, compilers, Geologic Map of Texas: U. S. Geol. Survey geol. map.

- Davis, M. E., and Leggat, E. R., 1962, Reconnaissance of the ground-water resources of the Upper Rio Grande Basin in Texas: U. S. Geol. Survey open-file rept.
- Dean, H. T., Arnold, F. A., and Elvove, Elias, 1942, Domestic water and dental caries: Public Health Repts., v. 57, p. 1155-1179.
- Dean, H. T., Dixon, R. M., and Cohen, Chester, 1935, Mottled enamel in Texas: Public Health Repts., v. 50, p. 424-442.
- DeCook, K. J., 1960, Geology and ground-water resources of Hays County, Texas: Texas Board Water Engineers Bull. 6004.
- Deussen, Alexander, 1924, Geology of the Coastal Plain of Texas west of the Brazos River: U. S. Geol. Survey Prof. Paper 126.
- Deussen, Alexander, and Dole, R. B., 1916, Ground water in LaSalle and McMullen Counties, Texas, <u>in</u> Contributions to the Hydrology of the United States, 1915: U. S. Geol. Survey Water-Supply Paper 375, p. 141-177.
- Fennenman, N. M., 1938, Physiography of Eastern United States: New York, McGraw-Hill Book Co., Inc.
- Flawn, P. T., Goldstein, A., Jr., King, P. B., and Weaver, C. E., 1961, The Ouachita system: Univ. Texas Pub. 6120.
- Garza, Sergio, 1962a, Recharge, discharge, and changes in ground-water storage in the Edwards and associated limestones, San Antonio area, Texas, a progress report on studies, 1955-59: Texas Board Water Engineers Bull. 6201.

1962b, Chemical analyses of water from observation wells in the Edwards and associated limestones, San Antonio area, Texas: Edwards Underground Water District duplicated rept.

- George, W. O., 1952, Geology and ground-water resources of Comal County, Texas, with sections on surface-water runoff by S. D. Breeding and chemical acter of the water by W. W. Hastings: U. S. Geol. Survey Water-Supply Paper 1138.
- Heller, V. G., 1933, The effect of saline and alkaline waters on domestic animals: Oklahoma Agr. and Mech. Coll., Expt. Sta. Bull. No. 217.
- Holt, C. L. R., Jr., 1959, Geology and ground-water resources of Medina County, Texas: U. S. Geol. Survey Water-Supply Paper 1422.
- Imlay, R. W., 1945, Subsurface Lower Cretaceous formations of south Texas: Am. Assoc. Petroleum Geologists Bull., v. 29, p. 1416-1469.
- Lang, J. W., 1953, Ground water in the Trinity Group in the San Antonio area, Texas: U. S. Geol. Survey open-file rept.

1954, Ground-water resources of the San Antonio area, Texas: Texas Board Water Engineers Bull. 5412. Livingston, Penn, 1942, A few interesting facts regarding the natural flow from artesian well 4 owned by the San Antonio Public Service Co., San Antonio, Texas: U. S. Geol. Survey open-file rept.

1947a, Ground-water resources of Bexar County, Texas: Texas Board Water Engineers duplicated rept.

1947b, Relationship of ground water to the discharge of the Leona River in Uvalde and Zavala Counties, Texas: Texas Board Water Engineers duplicated rept.

- Livingston, Penn, and Lynch, W., 1937, Methods of locating salt-water leaks in water wells: U. S. Geol. Survey Water-Supply Paper 796-A.
- Livingston, Penn, Sayre, A. N., and White, W. N., 1936, Water resources of the Edwards Limestone in the San Antonio area, Texas: U. S. Geol. Survey Water-Supply Paper 773-B.
- Long, A. T., 1958, Ground-water geology of Real County, Texas: Texas Board Water Engineers Bull. 5803.

1962, Ground-water geology of Edwards County, Texas: Texas Water Commission Bull. 6208.

- Lonsdale, J. T., 1935, Geology and ground-water resources of Atascosa and Frio Counties, Texas: U. S. Geol. Survey Water-Supply Paper 676.
- Lonsdale, J. T., and Day, J. R., 1937, Geology and ground-water resources of Webb County, Texas: U. S. Geol. Survey Water-Supply Paper 778.
- Lozo, F. E., and Stricklin, F. L., Jr., 1956, Stratigraphic notes on the outcrop basal Cretaceous, central Texas: Gulf Coast Assoc. Geol. Soc. Trans., v. 6, p. 67-78.
- Marvin, R. F., Shafer, G. H., and Dale, O. C., 1962, Ground-water resources of Victoria and Calhoun Counties, Texas: Texas Board Water Engineers Bull. 6202.
- Mason, C. C., 1960, Geology and ground-water resources of Dimmit County, Texas: Texas Board Water Engineers Bull. 6003.

1963, Ground-water resources of Refugio County, Texas: Texas Water Commission Bull. 6312.

- Maxcy, D. F., 1950, Report on the relation of nitrate concentration in well waters to the occurrence of methemoglobinemia in infants: Natl. Research Council Bull. Sanitary Engineering and Environment, p. 265-271, App. D.
- Moulder, E. A., 1957, Development of ground water from the Carrizo Sand and Wilcox Group in Dimmit, Zavala, Maverick, Frio, Atascosa, Medina, Bexar, Live Oak, McMullen, LaSalle, and Webb Counties, Texas: U. S. Geol. Survey openfile rept.

Mount, J. R., Rayner, F. A., Shamburger, V. M., Jr., and Peckham, R. C., 1962, Reconnaissance investigation of the ground-water resources of the Colorado River Basin, Texas: Texas Water Commission rept. [in review for publication].

- Peckham, R. C., Souders, V. L., Dillard, J. W., and Baker, B. B., 1963, Reconnaissance investigation of the ground-water resources of the Trinity River Basin, Texas: Texas Water Commission Bull. 6309.
- Petitt, B. M., and George, W. O., 1956, Ground-water resources of the San Antonio area, Texas: Texas Board Water Engineers Bull. 5608.
- Piper, A. M., 1953, The Nation-wide water situation, in The Physical and Economic Foundation of Natural Resources, v. IV, Subsurface facilities of water management and patterns of supply-type area studies: U. S. Cong., House of Representatives, Committee on Interior and Insular Affairs, p. 1-20.
- Rasmussen, W. C., 1947, Geology and ground-water resources of Caldwell County, Texas: Texas Board Water Engineers duplicated rept.
- Reeves, R. D., and Lee, F. C., 1962, Ground-water geology of Bandera County, Texas: Texas Water Commission Bull. 6210.
- Renick, B. C., 1936, The Jackson Group and the Catahoula and Oakville Formations in a part of the Texas Gulf Coastal Plain: Univ. Texas Bull. 3619.
- Sayre, A. N., 1936, Geology and ground-water resources of Uvalde and Medina Counties, Texas: U. S. Geol. Survey Water-Supply Paper 678.
- _____1937, Geology and ground-water resources of Duval County, Texas: U. S. Geol. Survey Water-Supply Paper 776.
- Sayre, A. N., and Bennett, R. R., 1942, Recharge, movement, and discharge in the Edwards Limestone reservoir, Texas: Am. Geophys. Union Trans., pt. 1, p. 19-27.
- Scofield, C. S., 1936, The salinity of irrigation water: Smithsonian Inst. Ann. Rept. 1935, p. 275-287.
- Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, The geology of Texas, v. 1, Stratigraphy: Univ. Texas Bull. 3232, Bur. Econ. Geology [1933].
- Sellards, E. H., and Baker, C. L., 1934, The geology of Texas, v. II., Structural and economic geology: Univ. Texas Bull. 3401.
- Sundstrom, R. W., Broadhurst, W. L., and Dwyer, B. C., 1949, Public water supplies in central and north-central Texas: U. S. Geol. Survey Water-Supply Paper 1069.
- Sundstrom, R. W., and Follett, C. R., 1950, Ground-water resources of Atascosa County, Texas: U. S. Geol. Survey Water-Supply Paper 1079-C.
- Sundstrom, R. W. Hastings, W. W., and Broadhurst, W. L., 1948, Public water supplies in eastern Texas: U. S. Geol. Survey Water-Supply Paper 1047.
- Texas Board Water Engineers, 1958, Texas water resources planning at the end of the year 1958--A Progress Report to the Fifty-Sixth Legislature: Texas Board Water Engineers duplicated rept.

1960, Reconnaissance investigation of the ground-water resources of the Canadian River Basin, Texas: Texas Board Water Engineers Bull. 6016.

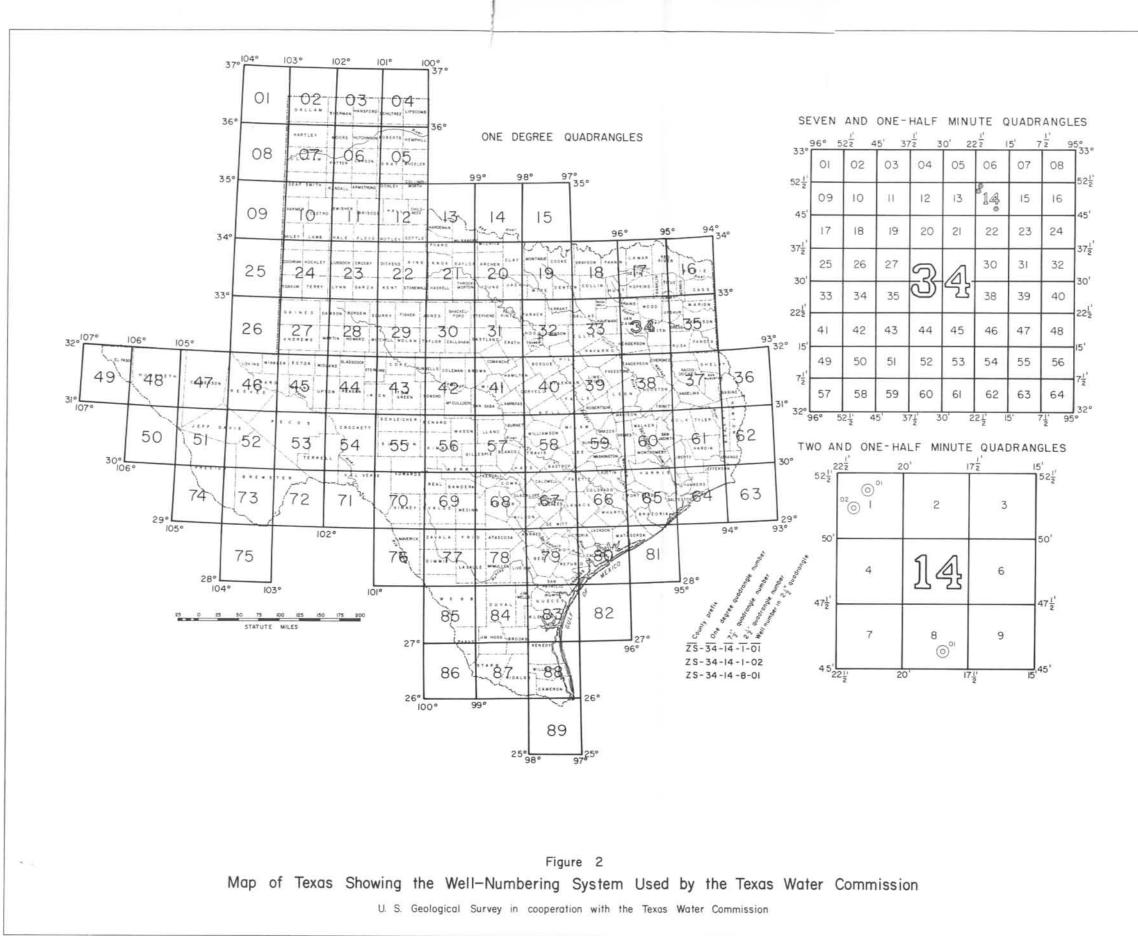
- 104 -

Thornthwaite, C. W., 1952, Evapotranspiration in the hydrologic cycle, <u>in</u> The Physical and Economic Foundation of Natural Resources, v. II, The physical basis of water supply and its principal uses: U. S. Cong., House of Representatives, Committee on Interior and Insular Affairs, p. 25-35.

Trowbridge, A. C., 1923, A geologic reconnaissance in the Gulf Coastal Plain of Texas near the Rio Grande: U. S. Geol. Survey Prof. Paper 131-D, p. 85-115.

1932, Tertiary and Quaternary geology of the lower Rio Grande region, Texas: U. S. Geol. Survey Bull. 837.

- Turner, S. F., and Robinson, T. W., 1934, Records of wells and water-level fluctuations in observation wells in Dimmit, Zavala, and eastern Maverick Counties, Texas: U. S. Geol. Survey open-file rept.
- Turner, S. F., Robinson, T. W., and White, W. N., revised by Outlaw, D. E., George, W. O., and others, 1960, Geology and ground-water resources of the Winter Garden district, Texas, 1948: U. S. Geol. Survey Water-Supply Paper 1481.
- U. S. Public Health Service, 1962, Drinking water standards: U. S. Dept. of Health, Education, and Welfare, Public Health Service Pub. No. 956.
- U. S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkaline soils: U. S. Dept. Agr. Handbook 60.
- Welder, F. A., and Reeves, R. D., 1962, Geology and ground-water resources of Uvalde County, Texas: Texas Water Commission Bull. 6212.
- White, W. N., and Meinzer, O. E., 1931, Ground water in the Winter Garden and adjacent districts in southwestern Texas: U. S. Geol. Survey open-file rept.
- White, W. N., Turner, S. F., and Lynch, W. A., 1934, Ground water in Dimmit and Zavala Counties, Texas: U. S. Geol. Survey press release.


Winslow, A. G., and Kister, L. R., 1956, Saline-water resources of Texas: U. S. Geol. Survey Water-Supply Paper 1365.

- Wood, L. A., Gabrysch, R. K., and Marvin, R., 1963, Reconnaissance investigation of the ground-water resources of the Gulf Coast region, Texas: Texas Water Commission Bull. 6305.
- Young, K., 1962, Mesozoic history, Llano region, <u>in</u> Geology of the Gulf Coast and Central Texas: Houston Geological Society Guidebook of Excursions, p. 98-106.
- Zink, E. R., 1957, Résumé of the Lower Cretaceous of South Texas: Gulf Coast Assoc. Geol. Societies, Trans., v. 7, p. 13-22.

Records of water levels and artesian pressure in observation wells in the Guadalupe River, San Antonio River, and Nueces River Basins are published in the following U. S. Geol. Survey Water-Supply Papers:

Year	Water-Supply Paper no.	Year	Water-Supply Paper no.	Year	Water-Supply Paper no.
1935	777	1942	947	1949	1159
1936	817	1943	989	1950	1168
1937	840	1944	1019	1951	1194
1938	845	1945	1026	1952	1224
1939	886	1946	1074	1953	1268
1940	909	1947	1099	1954	1324
1941	939	1948	1129	1955	1407

Era System	Series	Group	Geologic unit	Approximate thickness (ft.)	Lithologic character	Water-bearing properties
			Cook Mountain Formation and Sparta Sand, un- differentiated (Nueces River Basin)	600- 900	Gypsiferous clay, sandstone, impure limestone, and lignite. Much of the sandstone is glauconitic.	Yields small to moderate quantities of slightly to moderately saline water for domestic uses and irrigation from sands in lower part of Cook Mountain and Sparta, undifferentiated.
			Sparta Sand (San Antonio and Guadalupe River Basins)	110	Chiefly medium to fine sand, and some clay.	Yields small to moderate quantities of fresh to slightly sailne water in outcrop area; water is slightly to moderately sailne downdip.
				700- 900	Chiefly dark clay, a few beds of sandstone and limestone, and thin beds of coal. Clay beds contain large quantities of gyostum.	Generally yields small quantities of slightly to moderately saline water. Yields small to moder- moderate quantities of fresh to slightly saline water near outcrop in Atascosa and Frio Counties.
ozole Tertiarv	Eocene	Clatborne	7 nemlačinuoX 19viX seces Kiver 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	400- 800	Chiefly Speiferous sandy clay; con- tains many lenses of sandstone ne near the base; also contains a few thin layers of limestone and many thin layers of lighte. Plant re- mains are abundant.	Yields small quantities of fresh water in and near the outcrop in northern Zavala County. Else- where in the Winter Garden diatrict it yields small quantities of slightly to very saline water.
			tonio revis e	100- 200	Fossiliferous glauconitic shale and sand. Weathers to reddish-brown ferruginous soil.	Not known to yield water to wells.
			quisbau	500-1,000	Medium to fine sand, clay, and shale.	Generally yields small to moderate quantities of fresh to slightly saline water.
) noij uO bns snissä	200- 400	onitic sand	Yields small quantities of fresh to slightly saline water to wells in and near outcrop.
			14	200-1,000	Coarse to fine sand, sandstone, silt, shale, and clay.	A primary aquifer in the report area. Yields moderate to large quantities of fresh to slightly saline water.
		Wilcox		N.	r clay, sand, clay, sil	ierate quantities of fresh
	Paleocene	Midway	Wills Foint Formation Kincald Formation	30- 550	Clay with sandy and limy concretions. Dark marine shale, sandy shale.	Not known to yield water to wells in the report area.
					dstone, and sandy limestone and sandstone, in places 1 gnated with asphalt. Thin	uo. Yields small quantities of fresh to slightly salin water to wells in Maverick, Kinney, and Medina
		Navarro	Olmos Formation	400- 920	Deds of limestone in Medina County. Clav. mand sandy clav coal and	t is no
			Kemp Clay and		thin beds of sandstone. Marl, clay, shale, lenticular sand-	Not known to yield water to wells in the report
-			1 1 1	300- 800	cone, and ilmescone. Calcareous sandstone and sandy lime- stone interbedded with clay.	area. Not known to yield water to wells in report area except in Kinney County where the sudstone beds viald mull intrifice of over allow varee beds
			Den Clay	750±	Clay, marl, chalky limestone, thin lenticular beds of sadstone, and some lavers of svasum	Small quantities of very saline water obtained from sandstone beds.
	1100		R Anacacho Limestone (equivalent in age to San Miguel and Upson Formations and to Tavlor Marl)	240- 500	Limestone, chalk, marl, and sandy clay; some limestone asphaltic.	Vields small quantities of water for domestic and livestock uses in parts of Kinney County; else- where it is not known to yield fresh water.
			of Anto- of and satises Taylor Mari	230- 550	Nodular marl, locally chalky, and calcareous clay.	Supplies small quantities of water to a few shallow wells.
			us t Gu	135-1,030+	White to buff chalk, marl, limestone, and some pyrite.	Yields small to moderate quantities of fresh to slightly sails when to wells
			Eagle Ford Shale	20- 300	sandy limestone w clay and	ities of water to we
			Buda Límestone	30- 180	Fine-textured, brittle limestone with minute calcite veins and red and black specks.	Not known to yield water to wells in the report area.
		Washita	Grayson Shale	30- 220	Blue clay, thin bods of fossiliferous limestone, pyrite and gypsum.	bo.
ozoie Cretaceoue			Georgetown Limestone	20- 500	Chiefly hard massive limestone with some thin beds of marl; contains chet nodules in Uvalde and Kinney Counties.	Yields large quantities of fresh water in Bexar County and westward.
			Klamichi Formation	155- 210	Black shale, black and brown lime- stone, and anhydrite.	Not known to yield fresh water to wells in the report area.
		Fredericks	Edwards Limestone	350- 600	Hard massive limestone and dolomitic limestone; contains flint nodules. Cavernous in places.	Principal water-bearing formation in Balcones fault zone. Vields moderate to large quantitiem of fresh water.
		burg	Comanche Peak Limestone	30- 70	Nodular, marly limestone.	Water-bearing properties similar to the Edwards Limestone.
			Walnut Clay	1- 20		quantities ty, but gen
	Comanche		иррег пепрег 805е	2 -005	Shale and marl alternating with thin layers of impure limestone; also contains two thin layers of anhy- drife.	Yields are generally small, and much of the water is saline.
				50- 380	Massive fossiliferous limestone basal part, thin beds of marl and limestone in upper part.	Yields small to moderate supplies of fresh water.
		Trinity	<u>д</u>	20- 150	fer-	Yields small to moderate quantities of fresh to slightly saline water.
			insqus uj uoj	50- 75	Massive, detrital limestone, sandy limestone, and dolomite.	Yields small quantities of fresh water.
			Format	45- 75	Sandy, fossiliferous, dark-blue to gray shale containing thin inter- bedded layers of dolomitic lime- stone (in Bandera County).	Yields no water to wells.
	Coahuila	Nuevo Leon and	Sligo Formation	0- 200		Yields small to moderate quantities of fresh water in Bandera County.
	(Mexico)	Durango (Mexico)	Hosston Formation	0- 900	olo- ime-	Yields small to moderate quantities of fresh water in Bandera County and northwestern Bexar County.
oic	6	62	62	¢.,	Hard black, red and green non- calcareous shale, sandstone, lime- stone, schist and slate.	Not known to yield water to wells in report area.
Cenozoic Tertiary			Theorem works			

÷