TEXAS BOARD OF WATER ENGINEERS

Joe D. Carter, Chairman O. F. Dent, Member H. A. Beckwith, Member

BULLETIN 6202

GROUND-WATER RESOURCES OF VICTORIA AND CALHOUN COUNTIES, TEXAS

Prepared in cooperation with the Geological Survey United States Department of the Interior

January 1962

TEXAS BOARD OF WATER ENGINEERS

Joe D. Carter, Chairman O. F. Dent, Member H. A. Beckwith, Member

BULLETIN 6202

GROUND-WATER RESOURCES OF

VICTORIA AND CALHOUN COUNTIES, TEXAS

Bу

.

R. F. Marvin, G. H. Shafer, and O. C. Dale United States Geological Survey

Prepared in cooperation with the Geological Survey United States Department of the Interior

January 1962

TABLE OF CONTENTS

2
>

ABSTRACT	l
INTRODUCTION	3
Purpose and Scope	3
Location and Areal Extent	3
Cultural Development	5
Previous Investigations	5
Acknowledgments	6
Well-Numbering System	6
GEOGRAPHY	7
Climate	7
Topography and Drainage	9
GEOLOGY	10
DEFINITIONS OF TERMS	12
HYDROLOGY	13
Movement of Ground Water	13
Interpretation of Electric Logs	14
Occurrence of Ground Water	16
Fluctuations of Water Levels	19
Aquifer Tests	21
Present Development	23
Potential Development	24
QUALITY OF WATER	25
Some Aspects of Quality of Water for Municipal and Industrial Use	35

TABLE OF CONTENTS (Cont'd.)

Page

Change of Chloride Content Related to Depth	37
Quality of Water for Irrigation	40
SUMMARY	40
SELECTED REFERENCES	43

TABLES

1.	Index of previously published well numbers and corresponding numbers in this report, Victoria County	6
2.	Index of previously published well numbers and corresponding numbers in this report, Calhoun County	7
3.	Geologic formations in Victoria and Calhoun Counties	11
4.	Summary of aquifer tests in Victoria and Calhoun Counties	22
5.	Chemical analyses of water from wells and springs in Victoria County	28
6.	Chemical analyses of water from wells and springs in Calhoun County	32
7.	Records of wells and springs in Victoria County	45
8.	Records of wells and springs in Calhoun County	73
9.	Drillers' logs of wells in Victoria County	91
10.	Drillers' logs of wells in Calhoun County	125

ILLUSTRATIONS

Figures

1.	Map of south-central Texas showing location of Victoria and Calhoun Counties	4
2.	Annual precipitation, 1905-58, and the normal monthly precipitation at Victoria	8
3.	Schematic diagram showing movement of ground water	15
4.	Hydrograph of Victoria County well N-13, 1952-59	20
5.	Relation between drawdown and transmissibility in an infinite aquifer	26

TABLE OF CONTENTS (Cont'd.)

6.	Relation between drawdown and time	27
7.	Chloride content of ground water at various depths near Victoria County well J-24	38
8.	Chloride content of ground water at various depths near Calhoun County well C-6	39

Plates

-	Nor should be determined and the Without and Calibration Countries	Follows
1.	Map showing location of wells in victoria and Calhoun Counties, Texas	Page 147
2.	Cross section A-A', Calhoun County, Texas	Plate 2
3.	Cross section B-B', Calhoun County, Texas	Plate 3
4.	Cross section C-C', Victoria and Calhoun Counties, Texas	Plate 4
5.	Cross section D-D', Victoria County, Texas	Plate 5
6.	Cross section E-E', Victoria County, Texas	Plate 6
7.	Cross section F-F', Victoria and Calhoun Counties, Texas	Plate 7
8.	Cross section G-G', Victoria and Calhoun Counties, Texas	Plate 8
9.	Approximate altitude of base of fresh or slightly saline water, Victoria and Calhoun Counties, Texas	Plate 9
10.	Iospachous map of sand containing fresh or slightly saline water, Victoria and Calhoun Counties, Texas	Plate 10

÷.,

Page

GROUND-WATER RESOURCES OF

VICTORIA AND CALHOUN COUNTIES, TEXAS

ABSTRACT

Unconsolidated sand, gravel, and clay of Quaternary age crop out over the greater part of Victoria and Calhoun Counties. Much of the ground water used is withdrawn from wells tapping the Lissie formation, Beaumont clay, and Recent alluvium, all of Quaternary age. Some water is withdrawn from wells tapping the Goliad sand which is exposed in northwestern Victoria County; the underlying Lagarto clay and Oakville sandstone also contain fresh-water aquifers in that area. The Goliad sand, Lagarto clay, and Oakville sandstone are of late Tertiary age. Both the Tertiary and Quaternary formations dip gently toward the coast and strike northeast-southwest. Artesian ground-water conditions exist in the gently dipping, alternating sand and clay beds.

Victoria County has a large reservoir of fresh or slightly saline water that extends from the water table, which is near or above sea level, to at least 94C feet and locally as much as 2,000 feet below sea level. The average daily rate of withdrawal was about 19 million gallons in 1958. More than half the water withdrawn was used for rice irrigation; approximately one-fourth was used for public supply. Most of the water was withdrawn from the Lissie formation and the Goliad sand.

The quality of the usable ground water in Victoria County deteriorates slightly from east to west and deteriorates considerably from the northern to the southern part of the county. Most of the water now being brought to the surface meets the standards for drinking water established by the U. S. Public Health Service for interstate carriers. Water from some wells (mainly shallow wells) in the southern and western parts of the county may contain excessive amounts of iron, chloride, nitrate, or dissolved solids. Water of better quality generally is obtainable at greater depths. Water in the fresh or slightly saline zone is suitable for most industrial purposes although most of it is hard or very hard.

Ground water of varying quality has been used for irrigation for many years in Victoria County without apparent harm to the soil. Although most of this water would be considered marginal or unsuitable in arid to semiarid climates by U. S. Department of Agriculture standards for irrigation waters, the climate of Victoria County is humid.

Calhoun County has a much smaller quantity of fresh or slightly saline ground water than Victoria County. The base of the fresh or slightly saline water is as much as 1,500 feet below sea level in the northwest corner of the county, but is much shallower in the rest of the county. Fresh water is scarce. Only a thin zone of usable, slightly saline water exists in the center of Calhoun County between Point Comfort and a point south of Seadrift. In the central and southern parts of the county, the fresh or slightly saline water is overlain by a zone of moderately saline to saline water as much as 250 feet thick. Shallow bodies of fresh water may be found in the surface sands in the Recent alluvium along the coast.

The average daily rate of withdrawal in 1958 in Calhoun County was 2.1 million gallons; most of it was used for public or stock supply. The water is withdrawn from wells tapping the Lissie formation, the Beaumont clay, and the Recent alluvium.

Ground water in Calhoun County is generally of poor quality, as much of the usable ground water in the county contains excessive amounts of chloride and dissolved solids. The water of best quality is found (1) in the northeast corner of the county, (2) in the area northwest of Port Lavaca and along the Victoria-Calhoun county line to the Guadalupe River, and (3) in small areas southeast of Seadrift in the Recent alluvium.

Six irrigation wells in a small area east of Green Lake are pumping water from an aquifer about 250 feet below the surface. The water has a very high salinity hazard but is used for supplemental irrigation and its effect upon the soil has not yet been determined.

GROUND-WATER RESOURCES OF

VICTORIA AND CALHOUN COUNTIES, TEXAS

INTRODUCTION

Purpose and Scope

The water resources of Victoria and Calhoun Counties were investigated as a part of the statewide cooperative program of the Texas Board of Water Engineers and the U. S. Geological Survey. Factual information on the thickness and areal extent of usable ground water, the hydraulic characteristics of the geologic formations, and the chemical quality of ground water at various depths and locations in the two counties are needed to guide those in search of water for future public supply, industrial development, or irrigation.

The report was prepared by the U. S. Geological Survey in cooperation with the Texas Board of Water Engineers. Field data were gathered from September 1958 to May 1959. The report is based on records of 770 water wells, 100 drillers' logs, 195 electric logs of oil tests, 100 chemical analyses of ground-water samples, and 16 aquifer tests. Data published in reports by White (1940) and Lonsdale and Johnson (1941) were also used in preparing this report. The study was made under the general supervision of A. N. Sayre and P. E. LaMoreaux, successive chiefs of the Ground Water Branch, U. S. Geological Survey, and under the direct supervision of R. W. Sundstrom, district engineer in charge of groundwater investigations in Texas.

Location and Areal Extent

Victoria and Calhoun Counties are in South Texas on the Gulf Coastal Plain (Figure 1). Victoria County is bounded by Jackson County on the east, DeWitt County on the north, Goliad County on the west, and Calhoun and Refugio Counties on the south. Calhoun County, situated on the coast, is bounded by Matagorda County on the east, Jackson and Victoria Counties on the north, and Refugio and Aransas Counties on the west.

Victoria, the county seat of Victoria County, is centrally located within the county and is about midway between Houston and Corpus Christi. Other communities in Victoria County are Bloomington, Placedo, Inez, Telferner, Nursery, Mission Valley, Guadalupe, McFaddin, and DaCosta. The area of the county is 893 square miles.

Port Lavaca, the county seat of Calhoun County, is in the northeast part of the county on the west side of Lavaca Bay, 27 miles southeast of Victoria. Other communities in Calhoun County are Point Comfort, Seadrift, Port O'Connor,

Olivia, Magnolia Beach, Long Mott, and Port Alto. The land area of the county is 537 square miles. The water area, consisting of shallow lakes, bays, and lagoons, is nearly as large.

Cultural Development

Victoria County was the site of colonizing attempts by the French under La Salle in 1685 and by the Spanish in the early seventeen hundreds, Victoria was founded in 1824 when the townsite was laid out by Don Martin De Leon. The county was created in 1836, one of the original counties of Texas. Calhoun County was created in 1846 from Matagorda, Jackson, and Victoria Counties.

Victoria County has a diversified economy supported by farming, ranching, oil production, manufacturing, and general commerce. It has several large cattle ranches and substantial oil (6,805,875 barrels in 1956) and gas production. Rice and cotton are the principal farm crops.

Calhoun County has an economy supported by farming, ranching, manufacturing, and fishing, Much of the land is used for cattle grazing; cultivated land is usually planted in rice, cotton, or grain sorghum. The important mineral resources are oil and gas.

Population growth has been rapid in both counties, due mainly to the development of industries. The population for Victoria County in 1960, according to the U. S. Bureau of the Census, was 46,475; in 1950 it was 31,241. The city of Victoria increased in population from 16,126 in 1950 to 33,047 in 1960. The population for Calhoun County in 1960 was 16,592; in 1950 it was 9,222. Port Lavaca increased in population from 5,599 in 1950 to 8,864 in 1960.

Both Victoria and Calhoun Counties are readily accessible by road. U. S. Highways 59, 77, and 78 all pass through Victoria. Port Lavaca is the southern terminus of U. S. Highway 78. Daily airline service connects Victoria to the major airline terminals of Texas. Good roads, two railroads-the Southern Pacific and the Missouri Pacific-and the Intracoastal Canal System provide ample transportation facilities for moving goods, raw or finished, to and from Victoria and Calhoun Counties. Port Lavaca and Point Comfort have barge channels connecting with the Intracoastal Waterways; a barge canal connecting the Intracoastal Waterways with Victoria was under construction in 1959.

Previous Investigations

An inventory of water wells in Victoria County was made in 1934 by James C. Cumley and again in 1940 (White, 1940). In 1940 a similar inventory of water wells in Calhoun County was made by Carl E. Johnson. An earlier survey by John T. Lonsdale in 1935 was incorporated in a report duplicated in 1941 (Lonsdale and Johnson). In 1945 an inventory was made of the public water-supply wells in the cities of Victoria, Port Lavaca, and Seadrift as part of a cooperative project between the Texas Board of Water Engineers and the U. S. Geological Survey (Broadhurst, Sundstrom, and Rowley, 1950).

Acknowledgments

Appreciation is expressed to the city officials of Victoria, Bloomington, Port Lavaca, and Seadrift; to the well drillers of the area, particularly M. G. Hobbs and R. F. Robbins, Victoria, Texas; B & P Drilling Co., Palacios, Texas; and Burt Well Service, La Ward, Texas; and to farmers, ranchers, and other well owners. Appreciation is also expressed to civilian employees of Foster Air Force Base, superintendents and employees of manufacturing companies operating in Victoria and Calhoun Counties, oil-well service companies, C. B. Burton of the Calhoun County Canal Co., the county agents of Victoria and Calhoun Counties, the Soil Conservation Service, and the Victoria County and Calhoun County Agriculture Stabilization and Conservation offices of the U. S. Department of Agriculture, all of whom contributed valuable information.

Well-Numbering System

For convenience in locating the wells within the county, a grid based on lines of latitude and longitude was constructed forming $7\frac{1}{2}$ -minute quadrangles, some of which were modified along the county borders to include small segments in larger quadrangles. The quadrangles in Victoria County are identified by letters of the alphabet starting with A in the northwest corner and ending with T in the southern part of the county. In Calhoun County, the quadrangles are lettered starting with A in the northwestern part of the county and ending with K in the southern part. To avoid confusion, the letters I and O were not used. The location of wells in Victoria and Calhoun Counties are shown on Plate 1.

In the reports by White (1940) and Lonsdale and Johnson (1941), the wells were numbered consecutively within each county. Tables 1 and 2 are indices of well numbers used in the 1940 and 1941 reports, respectively.

Old No.	New No.	Old No.	New No.	Old No.	New No.	Old No.	New No.	Old No.	New No.
l	C- 6	9	G-17	83	K-l	154	M- 12	194	T - 17
3	C-14	10	H - 1	84	К - 4	155	M-14	195	T`-14
4	C-3	25	D - 22	117	J - 38	159	M- 5	199	T - 11
5	C-17	27	C-19	121	H - 24	176	M-23	229	N - 6
6	C-15	30	D - 9	122	H - 27	180	s- 8	261	N - 33
7	G - 7	38	A-10	129	H - 20	191	T - 23	262	P - 20
8	G- 8	82	K - 10	152	G- 22	193	T - 13		

Table 1.--Index of previously published well numbers and corresponding numbers in this report, Victoria County

Old No.	New No.	Old No,	New No.	Old No.	New No.	Old No.	New No.	Old No.	New No.
3	A - 15	36	B - 17	75	D - 36	187	E - 47	214	G-8
5	A - 5	41	B - 9	87	A-27	190	E - 40	215	G - 12
6	A - 6	43	B - 22	97	B - 59	191	E-44	225	F- 19
10	A - 16	44	B - 25	109	в - 60	192	H - 4	227	G- 20
11	A - 19	45	B - 28	116	в - 36	194	H - 2	228	G- 25
12	A-21	55	D - 8	125	B - 43	198	E - 42	233	G - 17
13	A - 20	56	D - 2	152	C - 16	199	H-l	247	E - 32
14	A-22	58	D - 19	160	C - 22	206	F-7	255	E - 29
15	A-11	62	D - 30	175	E - 21	207	F- 5	261	E - 13
23	A-4	63	D - 28	176	E - 20	208	G - 5		
31	B - 13	70	D - 24	178	E - 23	209	G - 4		
32	B - 14	71	D - 23	179	E - 26	211	G-6		
34	B - 15	74	D - 37	185	E - 30	212	G - 3		

Table 2.--Index of previously published well numbers and corresponding numbers in this report, Calhoun County

GEOGRAPHY

Climate

Both Victoria and Calhoun Counties have a humid subtropical climate, characterized by mild winters and hot summers. Breezes from the Gulf of Mexico have a moderating effect on high summer temperatures. The area occasionally is subject to tropical disturbances which move in from the Gulf of Mexico during summer and fall. Destructive winds and torrential rains may occur during these storms. The normal annual rainfall at Victoria is 35.66 inches. Incomplete records of rainfall at Port Lavaca show an average yearly rainfall of 37.10 inches.

Figure 2 shows the annual precipitation recorded at Victoria from 1905 through 1958. From 1950 to 1956, unusually long dry periods were experienced although the annual rainfall never was less than the extremely dry year of 1917. The normal annual rainfall (1921-50), as shown in Figure 2, is well distributed throughout the year; the heaviest rains occur during the growing season.

Texas Boord of Water Engineers in cooperation with the U.S. Geological Survey

Most of Victoria County and all the land area of Calhoun County is a grasscovered, slightly rolling plain. A moderately dissected upland, which has a maximum relief of approximately 150 feet, occupies the northwest corner of Victoria It is underlain by the Goliad sand of Pliocene age, which supports a County. The change from upland to plain is usually disdense growth of trees and brush. tinguished by the change in vegetation. The plain is the outcrop area of the Lissie formation and the Beaumont clay of Pleistocene age and the Recent alluvium along the coast. Its nearly level surface makes it suitable for irrigation by flooding, but prevents adequate natural drainage. The plain has been dissected in places by stream erosion which provides the only relief. The Guadalupe River has cut a valley floor more than a mile wide at places and 30 to 50 feet below the level of the plain. Smaller valleys have been formed by the San Antonio River and Coleto Creek. A dense growth of trees and brush line the smaller stream courses and cover the valley floors except where they have been cleared.

A small area of the upland in Victoria County adjacent to the northwest county line and just west of the Guadalupe River is more than 200 feet above sea level. The land slopes from this high area toward the Gulf and is at sea level in the southeast corner of the county. In Calhoun County, the highest area, 50 feet above sea level, is in the northwest corner just east of the Guadalupe River. The land gradually falls away to wave-cut bluffs, marshes, or beaches that mark the end ofthe mainland. The largest part of Calhoun County is a low, broad peninsula bounded on the east by Lavaca and Matagorda Bays and on the southwest by San Antonio Bay, Matagorda Island, an off-shore bar, constitutes the coastline, protecting the shallow bays. One of Texas' largest natural fresh-water lakes, shallow Green Lake, lies on the west side of the Calhoun peninsula.

The western half of Victoria County is in the Guadalupe River drainage system. Most of the eastern half is drained by still intermittent Garcitas Creek and its tributaries, which empties into Lavaca Bay. The natural drainage of Calhoun County and the southern part of Victoria County is by small intermittent streams that empty into salt-water bays or Green Lake. Drainage is facilitated by approximately 500 miles of drainage ditches.

The principal perennial stream is the Guadalupe River. It is joined in Victoria County by two important tributaries, the San Antonio River and Coleto Creek. During the 1950-56 drought, Coleto Creek was dry part of the time and the Guadalupe River diminished in flow until it could not supply the demands made on it by industry and farmers. Guadalupe River empties into San Antonio Bay, Calhoun County. Although it is one of Texas' major rivers, it is not actively engaged in delta building at the present time but has built a delta into San Antonio Bay in Recent time. Similarly, the Lavaca River, which empties into Lavaca Bay, Calhoun County, is not actively building a delta.

In west-central Calhoun County, a network of more than 70 miles of irrigation canals supplies farmers with water from the Guadalupe River. Water is diverted from the Guadalupe River less than one-half mile below the mouth of the San Antonio River; from there it passes through a system of bayous and canals near the mouth of the Guadalupe River to the pumping station at the edge of the Guadalupe Valley about 6 miles north of Seadrift.

A barge canal is being dredged along the east side of the Guadalupe River from San Antonio Bay to a proposed point 6 miles south of the city of Victoria. This canal will be part of the Intracoastal Waterway system.

During the last 40 million years, several thousand feet of clay, silt, sand, and gravel have been deposited by sediment-laden rivers in the Gulf Coastal area. The sediments came to rest on broad deltas or on the floor of the Gulf. The sediments near shore were subject to the currents of the Gulf and storm waves which moved some of the sediments to form off-shore bars and fill lagoons. The modern delta of the Colorado River in Matagorda Bay and the off-shore bars such as Matagorda Island and Matagorda Peninsula are a continuation of the same processes. The coastal region gradually subsided as the sediments were being deposited. When the rate of deposition was less than the rate of subsidence, the sea would invade the land. A subsequent increase in the rate of deposition due to greater streamflow or slight regional uplift would again build the land seaward. Under these conditions, great thicknesses of sediments were deposited. Periodically a slight tilting of the coastal region to seaward occurred, moving the zone of greatest deposition slowly coastward.

The Tertiary formations underlying Victoria and Calhoun Counties were probably deposited in a marine environment. At the start of the Pleistocene, the coastline may have been in northern Victoria County, although it fluctuated back and forth over the county as the rate of deposition changed or as the sea level varied. Since then the land has gradually been built out to its present position, the sediments being deposited in alternately continental, transitional, or marine environments.

The geologic formations found between the surface and 3,000 feet below sea level are listed in Table 3 in the order of their age, the youngest being at the top. The formations are exposed in bands that roughly parallel the coast with the oldest cropping out farthest from the coast and the youngest (Recent alluvium) cropping out nearest the coast. The Lagarto clay, Oakville sandstone, and Catahoula tuff are exposed in DeWitt County to the northwest but do not crop out in Victoria or Calhoun Counties. The Goliad sand of Pliocene age crops out in DeWitt County and forms the dissected upland in the northwestern corner of Victoria County. The Lissie formation, Beaumont clay, and Recent alluvium underlie the grass-covered plain that spreads over the rest of Victoria County and forms the land area of Calhoun County. Northern, northeastern, and most of western Victoria County are underlain by the Lissie formation; the Beaumont clay underlies the southern part of Victoria County and the northern and central parts of Calhoun County. The Recent alluvium is exposed on Matagorda Island, on the mainland southeast of a line from Seadrift to Powderhorn Lake to Olivia to the Jackson County line on Carancahua Bay, and in the valleys of the major streams. The clay beds in the Beaumont clay weather to a black, sticky soil, which, in the area under study, is in marked contrast to the light-colored, weathered surface of the Lissie formation or the light-colored, sandy pimple-marked surface of the Recent alluvium along the coast.

Seven cross sections (Plates 2-8), which were constructed from electric logs, show the base of fresh or slightly saline water in Victoria and Calhoun Counties and indicate the ratio of sand to clay in the different parts of the counties. Five of the cross sections (Plates 2, 3, 4, 5, and 6) are aligned along the strike of the formations; two cross sections (Plates 7 and 8) are aligned parallel to the dip. The location of the cross sections is shown on Plate 1.

The heterogeneous character of the younger sediments makes correlation of sands and clays difficult and unsure over distances of several miles. The

GEOLOGY

Table 3.--Geologic formations in Victoria and Calhoun Counties

AGE		Stratigraphic Mpproximate		Character of formation	Water supply		
System	Series	Unit	thickness (feet)				
	Recent	Alluvium	300	Fluvial and marine deposits of clay, silt, sand, and gravel.	Yields small to moderate supplies of water of variable quality sufficient for munic- ipal, domestic, and stock use.		
Quat ernary	Distatores	Beaumont clay	600	Clay containing layers of sand.	Yields small to moderate supplies of fresh or slightly saline water in some areas sufficient for municipal, agriculture, and stock purposes.		
	FIEISCOCELE	Lissie formation	600	Thick beds of sand containing lentils of gravel and layers of clay, silt, and some caliche.	Yields large supplies of fresh water to municipal, industrial, and agricultural wells in Victoria County.		
	Pliocene	Goliad sand	400	Predominantly sandstone and sand containing some clay, caliche, and gravel.	Yields large supplies of fresh water for municipal, industrial and agricultural use in Victoria County.		
Tertiary	Miocene(?)	Lagarto clay	1,000±	Clay and sandy clay containing interbedded layers of sand and sandstone.	Not known to yield water to wells in Vic- toria or Calhoun County. However contains fresh to slightly saline water in northern Victoria County.		
	Miocene	Oakville sandstone	500 ±	Crossbedded sand and sandstone containing interbedded sandy, ashy, or bentonitic clay.	Not known to yield water to wells in Vic- toria or Calhoun County. Contains the base of the fresh or slightly saline water in northwest part of Victoria County.		
	Miocene(?)	Catahoula tuff	1,000±	Predominantly volcanic tuff and tuffaceous clay containing sandstone lentils.	Does not contain fresh or slightly saline water in Victoria or Calhoun County.		

deposits are often lenticular, the lenses pinch out, coalesce, or grade into each other within a short distance. The formations younger than the Oakville sandstone of Miocene age are not easily differentiated in the subsurface in drillers' or electric logs, owing to the similarity of the sediments and the lack of continuous beds. In Victoria and Calhoun Counties, the strata strike northeastward and dip southeastward toward the Gulf of Mexico. The formations dip less than 20 feet per mile near the outcrop of each formation, but the dip gradually increases so that the older formations dip more than 70 feet per mile near the coast. The Oakville-Catahoula contact (Plates 5, 6, 7, and 8) is approximately 1,500 feet below sea level in the northern part of Victoria County, descending to 3,000 feet below sea level near the center of the county. No other formational contacts are shown as they could not be distinguished on the electric logs or inferred from drillers' logs. Also, no faults are shown on the cross sections, although many faults have been mapped by oil geologists working with electric logs and other data from wells penetrating Miocene and older formations.

DEFINITIONS OF TERMS

Technical terms and terms subject to differences of interpretation are defined, as follows:

Aquifer.--A formation, group of formations, or part of a formation that is water bearing.

Artesian water.--Ground water that is under sufficient pressure to rise above the level at which it is encountered by a well is called artesian water; it does not necessarily rise to or above the surface of the ground.

Coefficient of permeability.--The rate of flow of water in gallons a day through a cross section of one square foot under a unit hydraulic gradient.

Coefficient of storage.--The volume of water an aquifer releases from or takes into storage per unit of surface area of the aquifer per unit change in the component of head normal to that surface.

Coefficient of transmissibility.--The number of gallons of water which will move in one day through a vertical strip of the aquifer one foot wide and having the height of the aquifer when the hydraulic gradient is unity. It is the product of the field coefficient of permeability and the saturated thickness of the aquifer.

Description	Dissolved solids, in parts per million
Fresh	0 - 1,000
Slightly saline	1,000 - 3,000
Moderately saline	3,000 - 10,000

Quality of water.--Water in this report is classified according to the following tabulation.

Saline

Brine

10,000 - 35,000

More than 35,000

Resistivity.--The resistivity of a water-saturated rock is a function of both the rock texture and contained fluid and is recorded in ohms per square meter per meter (ohms m^2/m).

Spontaneous potential.--The spontaneous potential is the naturally occurring potential differences between a surface electrode and an electrode that is pulled up in the column of conductive mud past the different formations. Spontaneous potential is recorded in millivolts.

Sodium-adsorption-ratio (SAR).--The sodium-adsorption-ratio is used to express the relative activity of sodium ions in exchange reactions on the soil complex.

$$SAR = \frac{Na^+}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}}$$

in which the cohcentrations of ions are expressed in equivalents per million.

Specific conductance (conductivity).--Specific conductance, which is expressed in micromhos per centimeter at 25°C, is a measure of the ability of a solution to conduct an electrical current. It is approximately proportional to the content of dissolved solids.

Water table.--The unconfined surface of the water-saturated zone in an aquifer as measured in wells.

Well depth.--To prevent misinterpretation and to limit explanatory writing, the depths of wells as used in this report have been classified as follows: Shallow, less than 100 feet; moderately deep, 100 to 500 feet; deep, more than 500 feet.

Yield.--The yield of a well is defined in this report by the following terms: small yield, less than 100 gpm (gallons per minute); moderate yield, 100 to 1,000 gpm; large yield, greater than 1,000 gpm.

HYDROLOGY

Movement of Ground Water

The origin of all fresh ground water in Victoria and Calhoun Counties is the precipitation that falls on Victoria, Calhoun, and surrounding counties. Most of the precipitation is evaporated, used in plant growth, or runs off to the Gulf. But a small part percolates through the soil, subsoil, and sediments to become ground water, filling the small spaces between mineral grains. The top of the zone of saturation is called the water table. Beds of clay and silt have very small voids between mineral grains. Water than enters these voids is strongly held by molecular attraction. But in the beds of sand and gravel, the voids are large in comparison to clay voids and water will pass readily from one void to another. Thus, the beds of sand and gravel yield water freely to wells and are the aquifers. Through the centuries, water from precipitation has been entering the aquifers where they crop out and then percolating downward to the zone of saturation. Some of the water that reaches the water table is discharged by springs at places where streams cut the water table, and some is lost by evapotranspiration from places where the water table is near the surface. The remainder moves downdip, replacing water discharged from wells and water that is lost to overlying horizons.

Figure 3 illustrates the movement of water along the dip of the aquifers. The saline water that filled the aquifers when they were deposited has been flushed from the updip portions of the aquifers by the precipitation entering the outcrop. As the aquifers dip beneath the floor of the Gulf and do not crop out in the Gulf and most of the sand beds pinch out or become clayey downdip, the flushing of the sand beds was made possible by the movement of water upward through the overlying clays (Winslow and others, 1957, pages 387-388). Although the beds of clay and silt have very low permeability and water moves very slowly through them, the movement of water has been occurring over a long time; some of the more permeable of the older aquifers have been flushed many miles downdip from their outcrop. The movement of water between beds is facilitated in many places by the presence of sandy beds that provide vertical connection between aquifers.

The water in the outcrop is subject only to atmospheric pressure and is said to be under water-table conditions. As the water moves downdip and passes beneath a bed having low permeability, it is under the pressure of the water in the outcrop and it will rise above the point that it is encountered in a well. It is then said to occur under artesian conditions. If the land surface at a well is at a lower altitude than the water table in the outcrop of the aquifer tapped by the well, and if the loss of hydrostatic head between the outcrop area and the well is less than this difference in altitude, the well will flow. However, discharge in the area where the well is located lowers the hydrostatic head so that the well will not flow in most instances.

Where large withdrawals have lowered the pressure head in a water-bearing bed or group of water-bearing beds, water moves toward the zone of lower pressure from all directions, laterally and vertically. If the zone of lowered pressure is near the interface between the fresh and saline water, the saline water will move into the zone. However, the rate of ground-water movement in sand is slow, usually only a few hundred feet a year.

Interpretation of Electric Logs

An electric log is a profile of certain electrical characteristics of the sediments and their contained fluids that are penetrated by the well. The righthand side of the electric log (second curve) indicates the relative resistivity of the fluids contained in the various layers of sediments; each curve is recorded by electrodes of different spacing. The wider the electrode spacing, the deeper the penetration; the wider spacing records the resistivity of a larger volume of sediment by measuring farther from the center of the test hold. The left-hand side (first curve) is a record of the spontaneous potential of the sediments. The base of the fresh or slightly saline water was determined by interpretation of the three resistivity curves generally recorded on electric logs in this area. Generally, fresh water has a high resistivity and slightly saline water has an intermediate resistivity. The zone containing slightly saline water ranges from a few feet to as much as 200 or 300 feet in thickness. The electric logs reproduced on the cross sections show only two of the three

FIGURE 3- Schematic diagram showing movement of ground water

resistivity curves. The dotted line (third curve) represents the resistivity of the same sediments and fluids plus some of those at a greater distance from the wall of the hole than the solid-line curve. The drilling fluid penetrates the sediments adjacent to the hole, causing a difference in the resistivity compared with that at a greater distance from the center of the hole. On cross section C-C' (Plate 4) examination of the electric logs for Victoria County wells P-21, P-9, and R-9 shows that the third curve (dotted) has a decided change in amplitude where the base of the fresh or slightly saline water has been drawn. The formation water contains more dissolved minerals than the water near the wall of the hole which has filtered from the drilling fluid. The low resistivity of the formation water, as shown by the third curve, indicates that it is moderately saline or saline.

Lack of sufficient chemical information on the mineral content of the slightly to moderately saline water zone in Victoria and Calhoun Counties prevents precise interpretation of the electric logs in some areas. Interpretation was further complicated by the presence of natural gas in some of the sands. On the electric log, natural gas exhibits high resistivity similar to that of fresh water. The presence of gas was noted during fieldwork in most of the moderately deep and deep wells in Victoria County.

The spontaneous-potential curve on the left-hand side of the electric log provides a record of the sand and clay beds penetrated by wells drilled in Victoria and Calhoun Counties. The clay or shale has nearly the same spontaneous potential value throughout the length of the well, but the sand and gravel have either a greater, the same, or lesser potential value than the clay. A displacement of the curve to the right or left usually indicates a sand or gravel bed. On many logs the clay and sand beds are not well defined by the spontaneouspotential curve in the fresh to slightly saline water zone as the drilling fluid is composed of water and clay similar to that penetrated by the hole. On those logs the sand zones were determined from the resistivity curves; the intervals of high resistivity values in the fresh-water zone usually correspond to layers of sand or gravel. A more complete discussion of the interpretation of electric logs in locating fresh water may be found in Jones and Buford (1951).

Occurrence of Ground Water

Water used for many purposes is either fresh or slightly saline as defined earlier (page 12). Although most of the water in Victoria County and northern Calhoun County, as shown on the cross sections as fresh or slightly saline, is fresh, all the fresh or slightly saline water has been grouped as one unit in this report. In all of Victoria County and parts of Calhoun County, both fresh and slightly saline water occur, but in central Calhoun County fresh water is not present. To show that some areas have no fresh water, the term "fresh or slightly saline water zone" is used instead of "fresh to slightly saline water zone," which would be applicable to much of the area under study. Plate 9 is a map of the base of the fresh or slightly saline water zone in Victoria and Calhoun Counties. It was constructed from information obtained from 195 electric logs, some of which are shown on the cross sections (Plates 2, 3, 4, 5, 6, 7, and 8). The approximate base of the fresh or slightly saline ground water also is shown on the cross sections.

A large volume of fresh ground water is stored in the aquifers that underlie Victoria County. The base of the fresh or slightly saline water extends from 940 feet to more than 2,000 feet below sea level. Water near the base of the slightly saline zone is not being tapped except by flowing stock wells 1,300 to 1,460 feet deep in the southeast corner of the county (quadrangles L and R). These are the deepest wells in the county. Only a few heavily pumped wells are more than 1,000 feet in depth.

Calhoun County is not as well endowed with ground water of good quality as Victoria County. In fact, some areas do not have any fresh ground water according to the available electric logs; the best water is slightly saline. Deep fresh water, extending to more than 1,000 feet below sea level, is found only in the northwest part of the county. The base of the fresh or slightly saline water zone is only 200 to 400 feet below sea level through the central part of the county. In some areas the fresh or slightly saline water is overlain by a zone of moderately saline water. Locally, very shallow fresh-water supplies may be created by rain water collecting in beach or surface sands. Such shallow reservoirs are not reliable as they may be easily contaminated or may be inundated by salt water during large storms. During the early 1940's, fresh water from the beach sands of Matagorda Island was used to supply part of the requirements of Matagorda Island Air Force Base.

The base of the fresh or slightly saline water (Plate 9) is quite irregular in Victoria County, containing deep depressions and high areas. The lineation of these structures is usually northeast-southwest in close agreement with the general strike of the sediments. In Calhoun County the base of the fresh or slightly saline water is not as irregular as in Victoria County as shown on Plate 9, possibly because less information is available. The base of the fresh or slightly saline water is shallow from Point Comfort to an area on San Antonio Bay south of Seadrift. The base of the fresh or slightly saline water is 200 feet below sea level southeast of Seadrift, and is less than 400 feet deep in an area about 27 miles long and from 2 to 10 miles wide extending from south of Seadrift to Point Comfort. Northwest of this saline water ridge, the base of the fresh to slightly saline water is deeper; it reaches a depth of more than 1,700 feet below sea level in the northwest corner of the county. Southeast of the ridge, the base reaches a depth of more than 900 feet below sea level in the northeast corner of the county.

The map of the base of the fresh or slightly saline water (Plate 9) is only approximately correct; owing to the rapid pinching out of sands downdip and laterally, the actual base could be 200 feet above or below the contour depth given on the map. An example of this is shown in northwestern Victoria County between wells G-ll and G-l2((Plate 9) where the depth to the base of the fresh or slightly saline water varies 500 feet within a horizontal distance of l mile.

Lenses or beds of sand containing saline water may lie between the base of the fresh or slightly saline water and the water table. Cross sections A-A', B-B', F-F', and G-G' (Plates 2, 3, 7, and 8) illustrate instances of sand beds containing saline water occurring above the base of the fresh or slightly saline water. Sand beds close to the surface in Calhoun County (Plates 2, 3, and 7) may contain moderately saline to saline waters above the fresh or slightly saline water. Also, in many parts of Victoria County, sand lenses less than 100 feet below the surface may contain moderately saline to saline waters. In some places the moderately saline or saline waters are the result of contamination by human activities although in most places they appear to be the result of incomplete flushing caused by the isolation of the sand bed by clay beds which hindered fresh water from entering and replacing the saline water.

The seven cross sections graphically depict the vertical position of the fresh to slightly saline water in Victoria and Calhoun Counties. Both the base and top of the fresh or slightly saline water are shown along the coast of

Calhoun County in section A-A' (Plate 2). The shallow sand beds contain either saline or moderately saline water; the fresh or slightly saline zone may contain only slightly saline water.

Cross section B-B' (Plate 3), which crosses the center of Calhoun County, shows that the base of the fresh or slightly saline water zone is nearly 900 feet below sea level near the Refugio county line, less than 400 feet below sea level near the center of Calhoun County, and 800 feet below sea level at the Jackson county line. Moderately saline water overlies the zone of fresh or slightly saline water through much of Calhoun County, but may not be present near the eastern or western boundaries of the county. The thickness of the fresh or slightly saline water zone is about 200 feet in the center of the section even though the depth of the base varies.

Cross section C-C' (Plate 4) shows that the altitude of the base of the fresh or slightly saline water zone near the Victoria-Calhoun county line ranges from 990 to 1,675 feet below sea level. Moderately saline water may be present at depths less than 100 feet between wells T-7 and R-9.

Cross section D-D' (Plate 5) is a section along the strike through the middle of Victoria County where the base of the fresh or slightly saline water zone is from 1,200-1,600 feet below sea level.

Cross section E-E' (Plate 6) shows that the base of the fresh or slightly saline water zone along the Victoria-DeWitt County line is between 1,125 and 1,710 feet below sea level. It is either at or near the base of the Oakville sandstone.

Cross section F-F' (Plate 7), which is alined down the dip of the formations through the western part of Victoria and Calhoun Counties, shows that the base of the fresh or slightly saline water zone dips from 1,340 feet below sea level in Victoria County well C-2 near the DeWitt-Victoria county line to 1,800 feet below sea level in Victoria County well N-26 just north of the Victoria-Calhoun county line. From well N-26 the base of the zone rises gently to Calhoun County wells A-41 and A-48 which contain saline water between the base of the principal fresh or slightly saline water body and the surface. Between Calhoun County wells A-48 and E-46 the base of the fresh or slightly saline water zone rises from 500-600 feet below sea level to 195 feet. Near the coast the base of the fresh or slightly saline water zone is 400-500 feet below sea level and a zone of saline water overlies the fresh or slightly saline water; the top of the fresh or slightly saline water is about 250 feet below sea level.

Cross section G-G' (Plate 8), which is alined down dip through eastern Victoria and Calhoun Counties, shows that the base of the fresh or slightly saline water zone ranges from 980 to 1,990 feet below sea level in Victoria County, but in northern Calhoun County it begins to rise and is less than 400 feet below sea level through central Calhoun County. The altitude of the base is more than 600 feet below sea level on the Gulf coast.

The vertical change of the base of the fresh or slightly saline water zone is not accurately known between Calhoun County wells B-4 and C-10. It is shown on Plate 9 as a gradual change which would result if the fresh or slightly saline water terminated at successively higher altitudes in the sands. However, the deep fresh or slightly saline water could terminate within a short linear distance similar to the change shown on cross section F-F' (Plate 7) between wells A-31 and E-19. The zone of moderately saline or saline water overlying the fresh or slightly saline water is much more extensive on the eastern edge of the Calhoun peninsula than on the western edge. The top of the fresh or slightly saline water zone has been shown on Plate 8 where possible, otherwise it has been inferred.

Plate 10 is an isopachous map of the sand containing fresh or slightly saline water and is more indicative of the ground water in storage in Victoria and Calhoun Counties than the map showing the altitude of the base of the fresh or slightly saline water (Plate 9). In Victoria County the aggregate thickness of sand ranges from a maximum of more than 900 feet to less than 400 feet. In Calhoun County the total sand thickness ranges from a maximum of about 600 feet in the northwest corner of the county to less than 100 feet in the central area of the county where the base of the fresh or slightly saline water zone is less than 400 feet below the surface. The sand thickness in two-thirds of the county is less than 200 feet. Plate 10 shows that Victoria County has several times the volume of fresh or slightly saline water sand that is present in Calhoun County. Also, in Victoria County the sand contains proportionally more fresh water than in Calhoun County.

The sand thicknesses indicated on the isopachous map were obtained from interpretation of the spontaneous-potential curve or estimated from the resistivity curves of electric logs. Since many of the electric logs were run after the surface casing had been placed in the well, drillers' logs of nearby wells were used to compute the sand thickness in the zone of fresh or slightly saline water that had been cased off. In a few cases, nearby drillers' logs were not available, so that the sand thickness not recorded by the electric log was estimated. Exact thicknesses of sand cannot be interpreted from the map as the intervals are only approximate; sand thicknesses may be quite different in wells that are only a few hundred feet apart.

Fluctuations of Water Levels

The first water-bearing bed is ordinarily encountered at 60 to 70 feet below the surface in the northern part of Victoria County, but is only 30 to 40 feet below the surface in the southern part of the county. In Calhoun County, water is usually encountered within 30 feet of the surface. Near the coast, water is only a few feet below the surface, but it may be water of poor quality.

In most of Victoria County, water levels have declined in recent years due to increased pumping of ground water from new and old wells. In shallow wells part of the decline may be due to below normal rainfall in recent years. Figure 4 is a hydrograph that shows the fluctuation of the water level in Victoria County well N-13, which is in an area where withdrawals are for industrial purposes. The water table in 1959 was nearly 16 feet lower than it was in 1952. The water level dropped several feet in August 1956 after the well was opened to four additional sand beds; the water level shows a somewhat greater range in fluctuation than it did when only two of the sand beds were tapped by the well.

Comparison of water-level measurements made in 1934 (White, 1941) with measurements made in 1958 or 1959 in the same stock wells or replacement wells shows that generally the water table was lower than it was in 1934. The change in most places was less than 12 feet, except in the northeast corner of the county where the water table was 40 or more feet lower. In a few wells the 1958 or 1959 water level was as much as 7 feet higher than it was in 1934. Water-level measurements have been made annually in three irrigation wells since 1956. The greatest change

Fidure 4

78

in static water level in those wells from March 1956 to March 1960 was a rise of 5.2 feet in Victoria County well B-19; the other three wells changed less than 1.2 feet. The number of wells measured and the period of record is too short to draw any conclusions.

Some of the moderately deep and deep wells in Victoria County have stopped flowing or their flow has decreased during the past few years. The presence of natural gas in the aquifer has caused some of the wells to flow by lowering the density of the column of water in the casing so that the bottom hole pressure is sufficient to force water to the top of the well. The natural gas drive functions in similar fashion to an air-lift pump. A decrease in the amount of natural gas present has occurred in some wells several years after drilling, causing the flow to decrease or cease. In northern Victoria County sufficient gas is present in a few wells to periodically gush water out of the discharge pipe creating a fire hazard.

Comparison of water-level measurements made in 1934 and 1940 (Lonsdale and Johnson, 1940) with measurements made in 1958 or 1959 in the same wells shows no consistent change in the water table in Calhoun County. The water levels in 1958 or 1959 varied a few feet above or below the altitude of the water in 1934 or 1940. Most of the flowing wells were still flowing. Natural gas is not known to be present in any water well in Calhoun County.

Aquifer Tests

Aquifer tests were made to determine the ability of the sands to store and/ or transmit water. The coefficients of transmissibility and storage of the water-bearing beds tapped by a well can be calculated by the Theis non-equilibrium method (Theis, 1935, pages 519-524), by measuring the rate of change in water level in a well caused by a known change in pumping rate in a nearby well tapping the same water-bearing beds. The coefficient of transmissibility can be determined by the Theis recovery method (Theis, 1935, pages 519-524) from recovery measurements in a well that has stopped pumping.

Table 4 contains data obtained from 12 tests analyzed by the Theis recovery method and 4 tests analyzed by the Theis non-equilibrium method as modified by Cooper and Jacob (1946, pages 526-534). The coefficient of transmissibility in 4 wells in Calhoun County (wells A-29, B-27, C-6, and C-26) ranged from 16,000 to 36,000 gallons per day per foot. The field coefficient of permeability ranged from 247 to 570 and averaged 356 gallons per day per square foot.

The coefficient of transmissibility in 8 wells in Victoria County (wells B-20, J-3, J-21, J-22, K-2, K-18, R-15, and S-21) ranged from 21,000 to 87,000 gallons per day per foot. The field coefficient of permeability ranged from 100 to 276 and averaged 192 gallons per day per square foot. Although the coefficient of permeability is only a little more than half of that measured in Calhoun County, the wells generally tap a much greater thickness of sand and, therefore, have a larger coefficient of transmissibility. Also, three of the four wells tested in Calhoun County (A-29, C-26, and C-27) yielded water that contained more than 700 ppm chloride.

Table 4.--Summary of aquifer tests in Victoria and Calhoun Counties

		S A	N D	Pumping	Coefficient	Coefficient	Field				
	Pumped well	Interval (feet)	Thickness (feet)	rate (gpm)	of trans- missibility	of storage	permea- bility	Remarks			
		()				0	-				
Victor	/ictoria County:										
B-20	Richard Burroughs	125 - 610	215	1,570	38,000		177	Recovery of pumped well.			
J-3	McGinnes & Skopal	257 - 881	384	3,000	87,000		226	Do			
J-21	Victoria well 14	435 - 1,000	260	1,750	26,000		100	Do			
J-21	do				59,000	4.8 x 10 ⁻⁴		Recovery after shutting off well 15.			
J-22	Victoria well 15	420 - 1,020	330	1,800	41,000		124	Recovery of pumped well.			
J-22	do				40,000	5.2 x 10 ⁻⁴		Recovery after shutting off well 14.			
к-2	J. V. Wilburn	270 - 880	366	2,300	83,000 .		226	Recovery of pumped well.			
к-18	Edmond Kainer	160 - 450	170	1,170	47,000		276	Do			
R -1 5	G. E. McKamey	158 - 324	91	330	21,000		230	Do			
S-21	McFaddin Estate	185 - 798	291	1,600	53,000		182	Do			

Calhoun County:

A-29	Otto Marek	*185 - 269	**63	450	36,000		570	Recovery of pumped well.
B-27	Port Lavaca well 5	162 - 238	60	440	16,000		267	Do
C-26	Aluminum Co. of America well 1 ^{8/}	252 - 359	65	372	16,000		247	Do
c-6	Aluminum Co. of America test well 18/				19,000	3.1 x 10 ⁻⁴		Drawdown due to pumping well C-26
C-27	Aluminum Co. of America well 2ª/	260 - 375	74	602	25,000		338	Recovery of pumped well.
c-6	Aluminum Co. of America test well <u>18</u> /				24,000	1.8 x 10 ⁻⁴		Recovery after shutting off well C-27.

*Screened interval; **Length of screen in screened interval.

 $\underline{a}/$ Reported by owner from tests performed by N. A. Rose, consulting geologist.

t.

Present Development

Farmers make the greatest demand on ground-water resources in the area, principally for the irrigation of rice and cotton. At the end of 1958, 45 irrigation wells were in use in Victoria County. According to the best estimates obtainable, 9,500 acres were prepared for irrigation in 1958, 7,400 acres were to be supplied with water from wells and 2,100 with water from the Guadalupe River. Of the 7,400 acres prepared for irrigation by ground water, 3,948 acres of rice and approximately 1,200 acres of row crops and pasture, or a total of about 5,150 acres, were irrigated in 1958.

The estimated annual withdrawal of ground water for rice irrigation is shown in the following table.

Year	Acres	Withdrawals (acre-feet)	Year	Acres	Withdrawals (acre-feet)
1951	5 , 066	14,000	1955	3,748	10,000
1952	5,103	12,000	1956	3,601	11,000
1953	4,712	12,000	1957	4,312	9,000
1954	4,958	14,000	1958	3,948	13,000

Estimated withdrawal of ground water for rice irrigation, 1951-58

(Acreage data from U. S. Department of Agriculture, Stabilization and Conservation Committee, Victoria, Texas)

The amount of ground water used for rice irrigation ranged from about 9,000 acre-feet in 1957 to about 14,000 acre-feet in 1951 and 1954. In 1958, 22 wells were used to irrigate 3,948 acres. The amount of ground water withdrawn was estimated by assuming that a duty of 44 inches of water was required each year to raise a crop of rice in Victoria County. The amount of water supplied from precipitation was subtracted from 44 inches; the remainder was supplied from wells.

About 1,200 acres of cotton, other row crops, and pasture were irrigated from 16 wells in 1958; most were drilled between 1955 and 1958. In 1958 the duty of water for row crop and pasture irrigation was estimated at 4.3 inches from the electric power consumed by the pumps in three wells. Assuming that 4.3 inches of water was applied to all of the 1,200 acres of row crop and pasture, about 430 acre-feet of water was withdrawn in 1958.

Between 1949 and 1958, withdrawals of ground water for public supply ranged from 1,950 acre-feet in 1949 to 5,200 acre-feet in 1956; they were 4,600 acrefeet or about 4.1 million gallons per day in 1958. About 86 percent of the water withdrawn for public supply in Victoria County in 1958 was used in the city of Victoria; other users included Bloomington, Foster Air Force Base, Victoria County Housing Project at the County airport, and two pipeline camps.

Industrial users in Victoria County withdrew about 1,200 acre-feet of ground water from wells in 1958. The largest annual withdrawal was about 1,500 acre-feet in 1952; the annual withdrawal was only about 100 acre-feet before 1951.

Although rural domestic wells and stock wells are generally much smaller than irrigation, industrial, or public supply wells, there are several times as many in Victoria County. In 1958, it is estimated that about 1,700 acre-feet of water was withdrawn from them.

The total withdrawal from wells in Victoria County in 1958 was about 21,000 acre-feet. If an equal amount were withdrawn each day of the year, the daily rate would be about 18.7 million gallons a day; however, most of the water was pumped during the irrigation season. During the summer the average daily pumpage was from 30 to 50 million gallons. Most of the ground water in Victoria County is withdrawn from wells tapping sand beds in the Lissie formation and the Goliad sand.

In Calhoun County, six wells were used for irrigation of about 600 acres in 1958. Irrigation with ground water began in 1953. All six wells were used for row crops or pasture and are on the east side of Green Lake within 3 miles of its eastern shoreline. From electric power records of two wells, it was estimated that 3.5 inches of water was applied twice during the season. If this were true for all of the six farms, about 350 acre-feet of ground water was withdrawn by irrigation wells in Calhoun County in 1958.

About 950 acre-feet of ground water was withdrawn from wells in Calhoun County for public supplies in 1958. About 85 percent was pumped by the city of Port Lavaca; the other 15 percent was pumped by the city of Seadrift and by military installations. Point Comfort obtains its municipal water from a well field in Jackson County.

Withdrawals of ground water for industrial purposes were about 590 acrefeet in 1958 in Calhoun County. Most of the industrial water was used in aluminum refining or by the oil and gas industry. Part of the industrial water was slightly saline.

It is estimated that about 500 acre-feet of water was withdrawn from rural domestic and stock wells in Calhoun County in 1958. A large part of this water was slightly saline.

The total withdrawal of ground water in Calhoun County was about 2,400 acrefeet in 1958; the average daily rate of withdrawal was about 2.1 million gallons, although the rate was greater during the summer than during the winter. Most of the water pumped for public supply and irrigation was from wells tapping sand beds in the Beaumont clay. However, wells tapping the Recent alluvium provide good quality water for the city of Seadrift. The Lissie formation is tapped by industrial wells in the northwest corner of the county.

Potential Development

The principal factors affecting the potential development of ground-water supplies in Victoria and Calhoun Counties are the amount of fresh or slightly saline ground water in storage and the ability of the aquifers to transmit the water to wells. The amount of ground water in storage can be estimated from the isopachous map (Plate 10) and is enormous; for example, Victoria County contains about 100 million acre-feet of water in storage, assuming an average of 600 feet of sand and an average porosity of 30 percent. Assuming a thickness of 200 feet and the same porosity, about 20 million acre-feet of fresh or slightly saline ground water is present in Calhoun County. Most of the water in Victoria County is fresh; most of the water in Calhoun County is slightly saline. The water stored in the sand is in transient storage--that is, it is moving slowly from areas of recharge to areas of discharge. The amount of recharge or the amount of discharge that could be salvaged is not known, but it is believed that they would add appreciably to the amount of water available.

Although an enormous quantity of water is in storage, only a part of it is economically available to wells. The distance that water must be lifted determines a large part of the cost of water. Figure 5 shows the relationship of the decline in water level caused by a pumping well to the transmissibility of the sand tapped by the well. Pumping 1 million gallons per day from a well completed in a sand having a coefficient of storage of 0.0005 and a coefficient of transmissibility of 100,000 gallons per day per foot would cause a decline of about 5 feet at a distance of one mile during the first year, but pumping the same rate from a sand having a coefficient of transmissibility of 10,000 gallons per day per foot would cause about 34 feet of decline in the same period at the same distance.

Figure 6 shows the relation between drawdown and time in a well pumping 1 million gallons per day from a sand that has a coefficient of storage of 0.0005 and a coefficient of transmissibility of 50,000 gallons per day per foot. Most of the drawdown in the well takes place in the first few days, but the water level will continue to decline indefinitely until a source of recharge is intercepted or the sand is no longer confined. When the amount of water moving from the outcrop to the area of discharge equals the discharge rate, the water level will approach equilibrium. If recharge is smaller than the rate of withdrawal, the water level will decline in the outcrop area. However, the rate of decline will be slow as the storage coefficient of an unconfined sand is many times larger than the storage coefficient of a confined sand.

The coefficients of transmissibility usually are highest in the areas of greatest sand thickness (Plate 10). The central part of Victoria County from a point just west of the city of Victoria to the eastern county line has the most potential for development of large water supplies of fresh water. Most of northern, western, and southern Victoria County and northwestern Calhoun County are potentially capable of yielding moderate supplies of fresh water to wells.

Central and southern Calhoun County has the least potential of any area in either of the two counties. In the vicinity of Seadrift, small to moderate supplies of fresh water are obtained from shallow wells, although in most of central and southern Calhoun County only very small supplies of fresh water are available. In many places the only water available is slightly saline.

QUALITY OF WATER

The properties of water that result from the kinds and quantities of dissolved minerals determine the quality of water. Water is described as being either hard, soft, fresh, salty, or otherwise, depending on the nature and quantity of dissolved minerals in the water. Although different persons may disagree on the proper adjective to describe the taste or soap reaction of a particular water, especially if they are accustomed to a different water, certain standards have been established for comparative purposes. The standards are based on the chemical analyses of water. Table 5 contains 62 chemical analyses of ground-water samples collected in Victoria County; Table 6 contains 38 chemical analyses of ground-water samples collected in Calhoun County. Other chemical

FIGURE 5.- Relation between drawdown and transmissibility in an infinite aquifer

1

<u>7</u>3

T

FIGURE 6.-Relation between drawdown and time

Figure 6

analyses of ground water in Victoria and Calhoun Counties were given by White (1940) and Lonsdale and Johnson (1941).

Some Aspects of Quality of Water for Municipal and Industrial Use

Hardness of water is due principally to dissolved calcium and magnesium. Under the following classification of water with respect to hardness, water having a hardness of 60 ppm (parts per million) or less is called soft; 61 to 120 ppm, moderately hard; 121 to 200 ppm, hard; and greater than 200 ppm, very hard. The harder the water, the more soap it consumes in the process of washing and the faster scale will form in pipes, coils, and boilers unless the water is softened prior to use.

The samples of ground water collected in Victoria County range in hardness from 24 ppm to 970 ppm. In the fresh or slightly saline zone, the shallower water contains more calcium and magnesium than the deeper water; hardness usually decreases with depth. Only water from wells L-19 and S-21 and a drill-stem sample from J-24 were classified as soft; moderately hard water was obtained from several wells 600 to 1,100 feet deep. Water from most wells sampled was either hard or very hard, and was dominantly very hard.

The hardness of samples of ground water from Calhoun County ranged from 35 ppm to 1,120 ppm. As in Victoria County, the hardness of the water in the fresh or slightly saline zone generally decreases with increasing depth, but most of the samples analyzed were hard or very hard. However, soft water is present in two areas: A zone approximately 1,000 feet below the surface in the northwest corner of the county (well A-3), and a zone several hundred feet thick underlying much of the area east of Lavaca Bay and north of Matagorda Bay (wells D-31 and D-35).

Water used in many industrial processes must be low in dissolved silica; otherwise, hard adherent silica scale may form in pipes, coils, and boilers. This is especially true when the water is heated under pressure (Moore, 1940, page 263); the higher the temperature and pressure, the lower the concentration of silica that can be tolerated. The concentration of silica (SiO_2) in samples of ground water from Victoria County ranged from 14 to 52 ppm. The concentration generally is smaller in the deeper wells; most of the wells yielding water containing 20 ppm of silica or less where more than 500 feet deep. Samples containing more than 40 ppm silica were nearly all from wells less than 100 feet deep.

Samples of ground water from 32 wells in Calhoun County had silica concentrations ranging from 6.4 to 24 ppm. The samples containing 20 ppm or more came from wells that were less than 350 feet deep. The lowest silica concentrations were found in the samples collected east of Lavaca Bay and north of Matagorda Bay.

The maximum concentrations of some chemical substances as set forth by the U. S. Public Health Service standards (1946) for drinking water used on interstate carriers are as follows:

> Iron (Fe) and manganese (Mn) together should not exceed 0.3 ppm.

Magnesium (Mg) should not exceed 125 ppm.

Chloride (Cl) should not exceed 250 ppm. Sulfate (SO₄) should not exceed 250 ppm. Fluoride (F) must not exceed 1.5 ppm. Dissolved solids should not exceed 500 ppm; however, water having 1,000 ppm can be used if better water is not available.

Iron determinations made in a laboratory several days after a sample of water has been collected from a well may not be indicative of the amount of iron in solution in the formation because of oxidation and precipitation of iron from the sample. Total iron includes iron which was in solution when the sample was collected and may or may not have precipitated before the sample was analyzed. A sample drawn from a tap that is rarely used may contain suspended iron. Water having a dissolved iron content greater than 0.3 ppm will cause an objectionable red stain on surfaces that come in contact with it. Although several samples of water from wells in Victoria and Calhoun Counties contain more than 0.3 ppm total iron, it is not known how much dissolved iron was present in the water as it came from the wells. However, iron staining is not known to be a problem in either Victoria or Calhoun Counties. Manganese has been determined in relatively few samples: it is believed to be very low in both Victoria and Calhoun Counties.

Four samples, all from shallow stock or domestic wells in Victoria County, showed an abnormal nitrate content. A high nitrate content may indicate contamination by human or animal wastes or may be from other causes. A nitrate content greater than 44 ppm may cause methemoglobinemia (infant cyanosis or "blue baby" disease) (George and Hastings, 1951, page 451). Water from well G-21 contained 158 ppm nitrate; the others contained less than 44 ppm.

Sulfate content was much smaller than the chloride content in all samples from wells in Victoria and Calhoun Counties with exception of two drill-stem samples from Victoria County well J-24. Magnesium content was less than 25 ppm in most of the samples from Victoria County and less than 75 ppm in most of the wells from Calhoun County.

Fluoride content was less than 1.0 ppm in all but two samples that were analyzed for fluoride from Victoria County; of the samples from wells in Calhoun County that were tested for fluoride, only three wells in D quadrangle contained more than 1.5 ppm.

The chloride content of most of the samples collected in Victoria County was within the limit for drinking water set by the U. S. Public Health Service. The exceptions were mainly samples from shallow wells in the southern and western parts of the county. However, near the Victoria-Calhoun county line, even samples from the moderately deep to deep wells had a chloride content in excess of 250 ppm.

A majority of the samples collected in Victoria County had a dissolvedsolids content greater than the desirable limit of 500 ppm. But only seven samples had a dissolved-solids content greater than 1,000 ppm. They were principally samples from shallow wells in the southern and western parts of the county.

Generally speaking, the fresh or slightly saline water zone not only becomes thinner toward the Gulf but also contains water of poorer quality. In many wells in northwestern Calhoun County, fresh or slightly saline water is found beneath water having a higher mineral content; much of this fresh or slightly saline water fails to meet the standards set by the U. S. Public Health Service with respect to chloride and dissolved-solids content.

In places near the coast, analyses of samples from wells (E-34, E-35, E-40, and E-45) which penetrate the sand beds of Recent age show that the best water is within 200 feet of the surface; the water below 200 feet is of poorer quality. Analyses of samples of water taken from test pits dug by the WPA in 1940 (Lonsdale and Johnson, 1941, pages 58-66) show that small areas, probably discontinuous, of shallow ground water of good quality, exist in the Recent alluvium between Seadrift and Port O'Connor.

Much of the water used for public consumption in Calhoun County has a chloride content of about 250 ppm and a dissolved-solids content greater than 500 ppm. The water is apt to have a disagreeable taste to visitors, but many people become accustomed to the taste and use the water without apparent harm-ful effects. In some of the rural areas, water containing more than 1,000 ppm of dissolved solids is consumed with no apparent ill effects.

Chemical analyses indicate that the greater part of the fresh or slightly saline ground water in Victoria County is suitable for public, industrial, and agricultural uses. In general, the quality of the ground water is slightly better in the eastern part of the county than in the western part and is much better in the northern part than in the southern part of the county. Some areas in Calhoun County have water in sufficient quantity and of suitable quality for public supply, irrigation, and industrial use. In most of the county the high mineral content of the ground water prohibits its use for industrial purposes or the irrigation of crops, although it is used for watering livestock and, in some places, for domestic supply when better water is not available. Owing to the scarcity of fresh water near Point Comfort, water is pumped for public use from the Midway well field, which is 7.5 miles northeast of Point Comfort in Jackson County.

The best ground water in Calhoun County is found in (1) the area north of Matagorda Bay and east of Kellers Bay and Kellers Creek, (2) the area northwest of Port Lavaca and along the Victoria-Calhoun county line between the Guadalupe River and Lavaca Bay, and (3) small areas in the region between Seadrift and Port O'Connor.

Change of Chloride Content Related to Depth

The change in chloride concentration with depth near Victoria County well J-24 in the city of Victoria is shown on Figure 7. The electric log of well J-24 (city of Victoria well 10) shows the resistivity and spontaneous potential at the depths from which water samples were taken. Analyses of samples from nearby wells (J-18, H-9, and H-14) show a more complete picture of the change in chloride concentration with depth. Near well J-24 the chloride content of water from different sand beds ranges from about 60 to about 140 ppm down to 950 feet; water in sand beds below 950 feet contain higher concentrations of chloride (and other dissolved minerals).

Figure 8 shows the change in chloride concentration with depth near Calhoun County well C-6 at Point Comfort. The electric log of well C-6 is reproduced together with the chloride content of water from sand beds encountered at various depths in wells C-6 and C-27. A zone of slightly saline water is between 250

Figure 7

Texas Board of Water Engineers in cooperation with the U.S. Geological Survey

FIGURE 7.— Chloride content of ground water at various depths near Victoria County well J-24

FIGURE 8.— Chloride content of ground water at various depths near Calhoun County well C-6

1

39 -

and 370 feet below the surface; it is overlain by a zone of moderately saline water and underlain by moderately saline to saline water. This situation is common in central and southern Calhoun County with certain modifications.

Quality of Water for Irrigation

According to the U. S. Salinity Laboratory Staff (1954, page 69): "The characteristics of an irrigation water that appear to be most important in determining its quality are: (1) total concentration of soluble salts; (2) relative proportion of sodium to other cations; (3) concentrations of boron or other elements that may be toxic; and (4) under some conditions, the bicarbonate concentration as related to the concentration of calcium plus magnesium." Drainage and management practices also must be considered in recommending the suitability of a water for irrigation. The standards published by the U. S. Salinity Laboratory Staff were established for arid areas and are not always applicable in more humid areas, but are useful as guides.

Under these standards the ground water in Victoria and Calhoun Counties would be considered marginal or unsuited for irrigation, but, because the climate is humid in these counties, the standards cannot be rigidly applied. Most of the ground water used for irrigation in Victoria County would be classified as marginal because of the high salinity hazard. However, the water has been used successfully for irrigating rice for many years without apparent damage. Water from wells near the Victoria-Calhoun county line and in Calhoun County may have a very high salinity hazard and a high to very high SAR. Water from these wells has also been used for irrigation for a few years without apparent damage to crops or soil, but soil damage may be apparent only after many years of continuous irrigation under the existing climatic conditions because for most crops grown in this area, ground water is used only to supplement the rainfall. In summary, ground water in most of Victoria County is satisfactory for irrigation because of the humid climate, but ground water in Calhoun County and parts of southern Victoria County, having high to very high salinity hazard and a high to very high SAR, should be used with caution until the effect of the water upon the soil is determined.

SUMMARY

Victoria County contains an enormous quantity of fresh or slightly saline ground water in storage in the sand beds of the Beaumont clay, Lissie formation, Goliad sand, Lagarto clay, and Oakville sandstone. The order of magnitude of the water in storage is 100 million acre-feet. Although only a part of this is economically available to wells, even 10 percent would supply the 1958 rate of withdrawal (21,000 acre-feet per year) for many years. The amount of recharge or the amount of discharge that could be salvaged is not known, but it is believed that they would add appreciably to the amount of water available. Most of the water in the fresh or slightly saline water zone contains between 500 and 1,000 ppm of dissolved solids. In general, water from wells in the northern and eastern parts of the county is better than water from wells in the southern and western parts of the county.

Calhoun County contains much less fresh or slightly saline water than Victoria County; the ground water in storage is probably in the magnitude of 20 million acre-feet. Most of the water in the fresh or slightly saline zone in Calhoun County is slightly saline; that is, it contains between 1,000 and 3,000 ppm of dissolved solids. However, fresh water is present in small amounts in most of Calhoun County. The best ground water is present in (1) the area north of Matagorda Bay and east of Kellers Bay and Kellers Creek, (2) the area north-west of Port Lavaca and along the Victoria-Calhoun county line between the Guadalupe River and Lavaca Bay, and (3) small areas in the region between Sea-drift and Port O'Connor. The total withdrawal of ground water in Calhoun County was 2,400 acre-feet in 1958. About 40 percent was for municipal use; the remainder was used for industrial, domestic and stock, and irrigation purposes.

- Broadhurst, W. L., Sundstrom, R. W., and Rowley, J. H., 1950, Public water supplies in southern Texas: U. S. Geol. Survey Water-Supply Paper 1070, 114 p., 1 pl.
- Cooper, H. H., Jr., and Jacob, C. E., 1946, A generalized graphical method for evaluating formation constants and summarizing well-field history: Am. Geophys. Union Trans., v. 27, p. 526-534.
- Dale, O. C., Moulder, E. A., and Arnow, Ted, 1957, Ground-water resources of Goliad County, Texas: Texas Board of Water Engineers Bull. 5711, 93 p., 3 pls., 8 figs.
- George, W. O., and Hastings, W. W., 1951, Nitrate in the ground water of Texas: Am. Geophys. Union Trans., v. 32, no. 3, p. 450-456.
- Jones, P. H., and Buford, T. B., 1951, Electric logging applied to ground-water exploration: Geophysics, v. 16, no. 1, p. 115-139.
- Lonsdale, J. T., and Johnson, C. E., 1941, Records of wells, drillers' logs, water analyses, and map showing location of wells, Calhoun County, Texas: Texas Board Water Engineers dupl. rept., 67 p., 1 pl.
- Maxcy, K. F., 1950, Report on the relation of nitrate concentration in well waters to the occurrence of methemeglobinemia in infants: Natl. Research Council, Bull. Sanitary Eng. and Environment, App. D.
- Moore, E. W., 1940, Progress report of the committee on quality tolerances of water for industrial uses: New England Water Works Assoc. Jour., v. 54, p. 271.
- Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, The geology of Texas, v. l, Stratigraphy: Univ. Texas Bull. 3232, 1007 p., 10 pls., 54 figs.
- Theis, C. V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage: Am. Geophys. Union Trans., pt. 2, p. 519-524.
- U. S. Public Health Service, 1946, Public Health Service drinking water standards: Public Health Repts., v. 61, no. 11, p. 371-384.
- U. S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U. S. Dept. Agriculture Handbook 60, 160 p.
- White, W. N., 1940, Records of wells, drillers' logs, water analyses, and map showing location of wells, Victoria County, Texas: Texas Board Water Engineers dupl. rept., 33 p., 1 pl.
- Wilcox, L. V., 1955, Classification and use of irrigation waters: U. S. Dept. of Agriculture Circ. 969, 19 p., 4 figs.
- Winslow, A. G., Doyel, W. W., and Wood, L. A., 1957, Salt water and its relation to fresh ground water in Harris County, Texas: U. S. Geol. Survey Water-Supply Paper 1360-f, p. 375-407, 4 pls., 11 figs.

Wood, L. A., 1956, Availability of ground water in the Gulf Coast region of Texas: U. S. Geol. Survey open-file rept., 55 p., 26 pls.

٠.

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well A-13

Owner: Felecia Gonzales. Driller: Thompson Drilling Co.

Surface soil and clay	17	17	Sand	20	213
Sand and gravel with	50	76	Shale	32	245
nard streaks	79	10	Sand	20	265
Shale with hard streaks	117	193	Shale	24	289

Well B-10

Owner: A. J. Brady. Driller: Thompson Drilling Co.

Surface soil	7	7	Sand, hard, broken	40	155
Sand	23	30	Sand	12	167
Shale and caliche	85	115			

Well D-8

Owner: John Otto. Driller: Thompson Drilling Co.

Clay	35	35	Rock and hard streaks-	61	226
Caliche with hard rock	08	100	Shale with hard streaks	34	260
	90	102	Sand with hard streaks	80	340
Snale	32	105			

Well D-12

Owner: Jewel Davies, et al., well 1. Driller: W. H. Cocke and R. H. Goodrich.

Clay	30	30	Sand with hard sand-		
(morro]). 7	stone streaks	98	150
Graver	11	41	Sand, hard	46	196
Sandstone, hard	5	46		<i>.</i>	
Sand	6	52	Shale, sandy	6	202

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)				
Well D-12Continued									
Sand with hard streaks-	• 73	275	Shale, sandy	- 1 4	566				
Shale, sandy, with sand streaks	l · 17	292	Shale, sticky	11	577				
Shale	- 21	313	Shale, sandy, with sticky and hard streaks	- 19	596				
Sand	38	351	Sand	- 8	604				
Shale, sticky	20	371	Shale and sand	- - 14	618				
Sand, hard	· 14	385	Sand, hard	. - 1	619				
Shale with hard streaks	12	397	Shale, sandy	- 3	622				
Sand	35	432	Sand (gas show)	8	630				
Lime, hard, sandy	15	447	Shale	- 12	642				
Shale	13	460	Sand	- 51	693				
Shale, sandy, with hard sand streaks	30	490	Shale, sandy, with har streaks	rd 21	714				
Shale, hard, sticky, and lime	45	535	Sandstone, hard	- 4	718				
Shale, hard, and lime	15	550	Shale, sticky	- 7	725				
Sand, hard	2	552							

Well D-20

No record	96	96	Sand, hard, broken	6	119
Sand	6	102	Sand, very hard	7	126
Sand, hard	l	103	Sand	2	128
Sand, hard, and fine gravel	5	108	Sand, coarse	9	137
Sand, hard	5	113	Sand, hard	4	141

Owner: Melvin Bowen. Driller: Grady Stalcup.

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)			
Well D-20Continued								
Sand	4	145	Sand, broken	. 17	182			
Sand, hard, broken	3	148	No record	- 25	207			
Sand, very hard	9	157	Sand	. 35	242			
Sand, hard, broken	6	163	Gravel, fine, and sand	i 14	256			
Shale	2	165						

Well E-15

Owner: Brown and Corey. Driller: Leonard Mickelson.

.

					-
Clay	69	69	Rock and sand	4	317
Sand	20	89	Shale, sticky	22	339
Rock	4	93	Sand	4	343
Sand	11	104	Lime and shale	13	356
Clay	6	110	Chalk	10	366
Sand	14	124	Shale and sand	4	370
Lime and shale	31	155	Shale, sticky	13	383
Sand	10	165	Sandrock, broken	74	457
Shale and lime	14	179	Clay, red	9	466
Sand	10	189	Shale, sand, and rock-	16	482
Sand and lime, broken-	56	245	Clay	7	489
Sand	11	256	Shale and sand	9	498
Sandrock	23	279	Clay	17	515
Sand, broken	32	311	Sand	80	595
Rock	2	313			

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)					
Well E-26										
Owner: J. A. McFaddin Estate. Driller: A. H. Masirin.										
Surface soil	3	3	Sand and boulders	- 100	497					
Clay	6	9	Shale	- 67	564					
Sand and gravel	53	62	Boulders	- 4	568					
Shale	18	80	Shale	- 43	611					
Sand	8	88	Sand and boulders	- 37	648					
Shale	16	104	Shale	- 65	713					
Sand	9	113	Shale, sandy	- 16	729					
Shale	13	126	Shale	- 75	804					
Sand and boulders	7	133	Sand, hard	- 44	848					
Rock, hard	9	142	Shale	- 6	854					
Shale, blue	14	156	Sand, hard	- 51	905					
Rock, broken sand,	- 7	010	Shale	- 105	1,010					
and grave1	57	213	Sand and boulders	- 9	1,019					
ROCK, nard	3	210	Shale, hard	- 118	1,137					
Shale	34	250	Sand and boulders	- 28	1,165					
and boulders	70	320	Shale	- 13	1,178					
Shale	18	338	Sand and boulders	- 30	1,208					
Sand and gravel	18	356	Shale	- 3	1,211					
Shale	41	397								

Well E-35

Owner:	J. A. McFaddin	Estate.	Driller:	A. H. Masirin.		
Soil		2	2	Clay	13	15
		(Co:	ntinued or	n next page)	·	

	Thickness (feet)	Depth (feet)		Thi ckn ess (feet)	Depth (feet)				
Well E-35Continued									
Sand and gravel	14	29	Shale	16	380				
Caliche	5	34	Sand	45	425				
Sand	7	4ı	Shale	33	458				
Caliche	10	51	Sand	33	491				
Sand	12	63	Shale, sticky	33	524				
Shale	3	66	Sand and boulders	15	539				
Sand and gravel	6	72	Shale and sand streaks	18	557				
Shale	13	85	Sand and boulders	6	563				
Sand	11	96	Shale, sandy	9	572				
Shale	8	104	Shale	5	577				
Sand and boulders	3	107	Caliche	79	656				
Shale	13	120	Sand, hard, with	3h	690				
Shale, sandy	5	125	Shale	17	707				
Sand and boulders	7	132	Boulders hard	-1	101				
Caliche	55	187	broken	4	711				
Sand and boulders	11	198	Shale, hard, sticky	49	760				
Shale	41	239	Shale, sandy	16	776				
Sand and boulders	14	253	Sand and boulders	11	787				
Shale, hard, with lime streaks	28	281	Shale, hard	82	869				
Sand and boulder3	36	317	Sand, hard, and boulders	33	902				
Gumbo	11	328	Shale, hard	13	915				
Shale, sandy	16	344	Sand and boulders	34	949				
Sand	20	364	Shale	2	951				

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well F-1

Owner: Don Meek. Driller: Leonard Mickelson.

Clay	6	6	Shale and limerock	38	266
Sand	8	14	Sand and limerock	3	269
Clay	14	28	Shale and limerock	9	278
Sand	28	56	Sand and limerock	83	361
Rock and sand	25	81	Limerock	3	364
Lime	8	89	Gumbo	12	376
Rock and clay	10	99	Sand and limerock	26	402
Sand	15	114	Shale and limerock	13	415
Limerock	8	122	Sand and clay	17	432
Sand, lime, and rock	48	170	Shale and sand	23	455
Shale	6	176	Sand and limerock	29	484
Sand and limerock	23	199	Lime and shale	10	494
Shale	5	204	Sand and limerock	38	532
Clay, red	19	223	Shale, limy	30	562
Sand and limerock	5	228	Sand and limerock	38	600

Well F-9

Owner:	R.	Ε.	Meek.	Driller:	Leonard	Mickelson.
--------	----	----	-------	----------	---------	------------

Clay	45	45	Lime, rock, and sand	49	189
Sand	19	64	Lime and shale	33	222
Lime and gumbo	6	70	Lime, shale, and sand-	11	233
Lime, rock, and sand	65	135	Sand and limerock	67	300
Lime	5	140	Lime and shale	13	313
	1				

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)					
Well F-9Continued										
Lime, shale, and sand-	7	320	Lime and shale	- 5	483					
Lime and gumbo	12	332	Sand and limerock	- 16	499					
Clay, red	14	346	Lime and shale	- 11	510					
Sand	20	366	Sand	- 24	534					
Sand and shale	5	371	Lime and shale	- 18	552					
Sand and limerock	51	422	Sand and limerock	- 33	585					
Shale and sand	12	434	Shale and sand	- 11	596					
Lime and shale	31	465	No record	- 23	619					
Sand	13	478								

Well G-10

Owner: Walton Rux.	Driller: Th	nompson	Drilling Co.		
Clay	6	6	Sand with hard streaks	34	130
Sand	11	17	Rock, hard, and gravel	11	141
Clay	79	96	Gravel	9	150

Well G-18

Owner: Hahn Estate. Driller: Thompson Drilling Co.

Sand with shale streaks	67	67	Shale	10	197
Shale	56	123	Sand	16	213
Caliche with shale streaks	64	187			

Well H-4--partial log

Owner: G. and Mary Conti. Driller: Guadalupe Valley Oil Co.

Soil	2	2		Clay	4	6
	(Cont	inued	or	n next page)		

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)				
Well H-4Continued									
Sand	16	22	Gumbo, red	33	497				
Gravel	4	26	Shale, blue	6	503				
Rock	4	30	Gumbo, red	20	523				
Clay	3	33	Gumbo and rock, blue	39	562				
Sand and gravel	13	46	Gumbo and shale, brown	84	646				
Clay, blue	7	53	Rock, gumbo, and blue	26	672				
Rock, white	17	70	Gravel hard	10	68)				
Sand and gravel	10	80	Gumbo, grav	68	752				
Clay	14	94	Gravel hard	5	757				
Rock	2	96	Cumbo and houldong	25	782				
Clay	18	114	Shale hive	2)	785				
Gumbo, pink	29	143	Gravel hand	3	905 805				
Rock, white	16	159	Graver, nard	40	027				
Shale, blue	3	162	blue	13	838				
Gravel	28	190	Sandrock	10	848				
Sandrock	11	201	Gumbo, gray	17	865				
Shale, sandy	21	222	Sand, loose	12	877				
Chalkrock	23	245	Gumbo, gray	67	944				
Sand, pink, shaly	16	261	Sand, hard	13	957				
Shale, sandy	11	272	Gumbo, gray	63	1,020				
Rock, brown	3	275	Sand, loose	3	1,023				
Sand and gravel	45	320	Shale, hard	2	1,025				
Gumbo, red	80	400	Sand, hard	3	1,028				
Gravel, brown	64	464	Shale, hard	2	1,030				

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)					
Well H-4Continued										
Sand, loose	3	1,033	Sand and brown gumbo	7	1,596					
Shale, hard	7	1,040	Lime, white, pasty	4	1,600					
Sand, hard	5	1,045	Gumbo	29	1,629					
Shale, hard	51	1,096	Shale, sandy	16	1 , 645					
Gumbo, gray	6	1,102	Gumbo	7	1 , 652					
Gypsum, white	. 12	1,114	Lime, sandy	8	1,660					
Gumbo, gray	8	1,122	Gumbo	83	1,743					
Shale, sandy	9	1,131	Lime, sandy	10	1,753					
Sand and shale, hard	45	1,176	Gumbo, blue	3	1,756					
Gumbo	222	1,398	Lime, sandy	3	1,759					
Lime, blue, sandy	28	1,426	Gumbo	51	1,810					
Gumbo, blue	22	1,448	Lime, blue	15	1 , 825					
Gumbo, brown	32	1,480	Gumbo, blue	111	1,936					
Shale, blue	4	1,484	Lime, blue	21	1 , 957					
Gumbo, brown	25	1,509	Gumbo and shale, blue-	38	1,995					
Shale, gumbo and boulders	80	1,589	Total Depth		3,855					

Well H-13

Owner: City of Victoria, well 9. Driller: Layne-Texas Co.								
Clay, sandy	13	13	Shale and caliche	19	138			
Sand and caliche	19	32	Shale, gravel, and lime	20	158			
Sand and gravel	61	93	Shale	20	178			
Sand, shale, and caliche	26	119	Sand	10	188			

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)					
Well H-13Continued										
Shale and lime	39	227	Sand	35	409					
Sand	3	230	Shale	5	414					
Shale, hard, and lime-	49	279	Sand	22	436					
Sand	12	291	Shale, sandy	12	448					
Shale and lime	6	297	Shale, hard	14	462					
Sand, hard	7	304	Shale with lime streak	s 10	472					
Lime, hard, and shale-	12	316	Sand	8	480					
Shale	7	323	Shale	2	482					
Shale, sticky	16	339	Sand and gravel, fine-	45	527					
Sand	12	351	Gumbo, pink	29	556					
Sandrock	2	353	Sand	<u>.</u> 44	600					
Sandrock and sand	8	361	Shale	4	604					
Gumbo, pink	13	374								

Well H-22

Owner: Central Power and Light Co. Driller: Layne-Texas Co.

Surface soil	2	2	Clay and caliche	44	305
Clay	13	15	Sand and clay	18	323
Sand and gravel	65	80	Sand and clay breaks	14	337
Clay and boulders	18	98	Clay, sandy, and	01	259
Clay and sand lavers	64	162	calicne	21	350
Sand	19	181	Clay	27	385
Sand and clay streaks-	20	201	Caliche, clay, and sand breaks	67	452
Clay	60	261	Sand, brown	24	476

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	We	ell H-22	Continued		
Sand, gravel, and clay	35	511	Shale, sticky	59	832
Sand and clay breaks	24	535	Shale, hard	. 9	841
Clay	12	547	Shale, broken	. 49	890
Sand and hard streaks-	31	578	Sand, hard	. 18	908
Clay	10	588	Shale and sandy shale-	- 32	940
Sand and shale layers, hard	62	650	Shale, hard, and sand streaks	· 14	954
Sand	30	680	Sand with shale breaks	30	984
Shale	7	687	Shale	- 27	1,011
Sand	31	718	Shale and sand layers,	Q	1 010
Shale, red, sticky	24	742		. 0	1,019
Sand with hard layers-	31	773	· · · · · · · · · · · · · · · · · · ·		

Well H-26

Owner: Alvin Helwig. Driller: Thompson Drilling Co.

Surface soil and clay-	50	50	Sand with shale streaks	12	162
Sand and gravel	30	80	Shale	16	178
Caliche and sand	45	125	Sand	32	210
Clay and gravel	25	150			

Well H-29

Owner: Victoria County Housing Project, well 1. Driller: Layne-Texas Co.

Surface soil	3	3	Clay	8	23
Clay	6	9	Sand	15	38
Sand	6	15	Clay	15	53

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)			
Well H-29Continued								
Sand	10	63	Lime, hard	- 10	394			
Clay	10	73	Gumbo	- 11	405			
Sand	45	118	Sand	- 24	429			
Clay	6	124	Clay	- 9	438			
Sand	19	143	Gumbo	- 11	449			
Gumbo	65	208	Sand	- 66	515			
Clay, sandy	16	224	Gumbo	- 9	524			
Gumbo	44	268	Sand	- 18	542			
Sand and gravel	90	358	Gumbo	- 16	558			
Lime, hard	6	364	Sand	- 30	588			
Sand and gravel	20	384						

Well J-6

Owner: Duncan Bros. Dr	riller:	Katy Dri	lling Co.		
Subsurface soil and). 7). 7	Sandrock	11	231
ciay	4 (4 (Rock, hard	14	245
Clay and sand streaks-	13	60	Class and most	10	261
Sand, rock, and gravel	30	90	Cray and Pock	19	204
Clay and rook	05	115	Rock and sand streaks-	14	278
oray and rock	2)		Sandrock	10	288
Sand	16	131	Clav	2	200
Clay	9	140		2	290
Sand	5	145	Sand	37	327
		147	Clay	6	333
Clay	5	150	Sand	32	365
Sand	10	160	bunu	2	507
Clay	60	220	Clay	5	370

Table 9.--Drillers' logs of wells in Victoria County--Continued

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	We	11 J-6-	-Continued		
Sandrock	74	444	Sandrock	- 13	768
Clay and rock	50	494	Clay	- 16	784
Sand	9	503	Sand	- 5	789
Clay	16	519	Clay	- 3	792
Sand and rock	14	533	Sandrock	- 28	820
Clay	12	545	Shale	- 26	846
Sand and sandy shale	39	584	Sand	- 5	851
Clay and sandy shale	66	650	Shale	- 18	869
Sand	53	703	Sand	- 6	875
Clay	52	755	Clay	- 10	885

Well J-10

Owner: Owen Kolle. Driller: Mickelson Bros.

Clay	14	14	Sand	10	254
Clay and sand	31	45	Gumbo and lime	49	303
Sand and lime	25	70	Sand	12	315
Sand	30	100	Lime	5	320
Clay	8	108	Sand and lime	30	350
Sand and lime	24.74	152	Sand	15	365
Clay	6	158	Sand and lime	19	384
Sand and lime streaks-	27	185	Lime and gumbo	26	410
Lime and gumbo	14	199	Sand	4	414
Sand	10	209	Lime and gumbo	22	436
Lime and gumbo	12	221	Sand and lime	38	474
Sand	12	233	Lime	6	480
Lime and gumbo	11	244	Sand and lime	52	532

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well J-17

Owner: Dowell, Inc. Driller: H & S Drilling Co.

Clay	30	30	Sand and shale	22	192
Sand	7	37	Shale	13	205
Clay	23	60	Sand and shale	30	235
Sand with hard streaks	25	85	Sand	12	247
Shale with hard streaks	85	170	Clay	3	250

Well J-21

Owner: City of Victoria. Driller: Layne-Texas Co.

Surface soil	6	6	Shale, hard, and lime-	30	314
Clay	9	15	Shale, sandy	14	328
Clay, sandy	25	40	Shale, hard, and lime-	28	356
Sand, coarse	29	69	Sand and gravel	12	368
Gravel	27	96	Clay and sandy shale	15	383
Clay	12	108	Sand, gravel, and lime	17	400
Sand and fine gravel-	22	130	Sand and gravel	14	414
Clay and caliche	50	180	Shale, hard, and lime-	20	434
Sand and caliche	14	194	Shale, sandy	10	444
Shale	11	205	Sand and gravel	20	464
Sand	24	229	Clay and lime	16	480
Shale and lime	6	235	Shale, sandy	16	496
Sand	18	253	Sand	19	515
Sand, shale, and lime	17	270	Shale, sticky	14	529
Sand and hard streaks	14	284	Shale, hard	24	553
1	1	. 1	T		·

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)			
Well J-21Continued								
Shale	24	577	Sand	- 31	811			
Sand and hard streaks-	8	585	Shale, sandy	- 7	818			
Shale, hard, and lime-	16	601	Clay, hard, sticky	- 29	847			
Shale, sandy	14	615	Shale, hard, sandy	- 17	864			
Sand and hard streaks-	18	633	Sand, hard	- 21	885			
Shale, hard	6	639	Shale	- 18	903			
Shale, sandy	6	645	Shale, sandy	- 5	908			
Sand and hard streaks-	28	673	Shale	- 21	929			
Shale, sandy, and lime	15	688	Shale, sandy	- 4	933			
Sand, broken	26	714	Sand	- 28	961			
Clay and lime	12	726	Shale, hard	- 15	976			
Shale, sandy	8	734	Sand, broken	- 25	1,001			
Sand with hard layers-	18	752	Shale	. 16	1,017			
Clay, sandy shale, and lime	- 28	780						

Well J-22

Owner: City of Victoria. Driller: Layne-Texas Co.

Surface soil	5	5	Caliche and clay	15	148
Clay	8	13	Sand and caliche	16	164
Sand	20	33	Sand with shale layers	33	197
Sand and gravel	27	60	Shale and sandy shale-	15	212
Gravel	24	84	Sand and sandy shale	38	250
Caliche and clay	11	95	Shale	20	270
Sand, gravel, and clay	38	133	Shale, sandy	19	289
			•		•

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)			
Well J-22Continued								
Shale and sandy shale-	27	316	Sand with shale and lime layers	30	720			
Sand and lime	15	331	Shale	- 5	725			
Shale and sandy shale-	16	347	Sand with shale and					
Sand, gravel, and lime	25	372	lime layers	39	764			
Sand, shale, and lime-	23	395	Shale sticky	13	777			
Sand	16	411	Sand with shale and	40	817			
Clay	11	422	Cholo mod	40				
Clay, sandy	13	435		39	070			
Sand	29	464	Shale, hard, sandy	1	063			
Shale, red, sticky	18	482	Snale, sticky	6	869			
Sand	12	494	Sand	20	889			
Shale, sticky	8	502	Shale	31	920			
Shale. sandy	23	525	Sand	32	952			
Sand	27	562	Shale	7	959			
Shele and conduction	10	580	Sand and sandy shale	14	973			
Share and sandy share-	01	-00	Sand with hard layers-	45	1,018			
Sand	8	588	Shale, sandy	2	1,020			
Shale	24	612	Shale and lime	8	1,028			
Sand with hard streaks	39	651	Shale, sandy, and lime	7	1.035			
Shale, sandy, with hard streaks	28	679			_,			
Shale, sticky	11	690						

Well J-30

Owner:	Emil Otto.	Driller:	Tho	mpson D	rilling Co.		
Clay			30	30	Sand	8	38
			(Cont	inued o	n next page)	·	

	Thickness (feet)	Depth (feet)	r	hickness (feet)	Depth (feet)			
Well J-30Continued								
Clay	6	44	Sand and caliche, hard	15	210			
Sand, hard	15	59	Sand with shale streaks	4 0	250			
Sand	11	70	Shale	10	260			
Clay	2	72	Sand	8	268			
Sand	8	80	Sand, broken	12	280			
Sand, hard	4	84	Shale	25	305			
Shale	4	88	Sand	7	312			
Sand with hard streaks	30	118	Shale	13	325			
Shale	20	138	Sand	12	337			
Sand with hard streaks	4	142	Shale	56	393			
Sand	11	153	Sand	15	408			
Caliche, hard	22	155	Shale	72	480			
Sand with hard streaks	20	175	Sand	57	537			
Shale and sand	20	195	· · · · · · · · · · · · · · · · · · ·					

Owner: George Smyjstrla. Driller: H & S Drilling Co.

Clay and surface soil-	15	15	Shale	25	340
Sand	15	30	Sand	17	357
Shale	60	90	Shale	13	370
Sand	20	110	Sand	38	408
Shale	20	130	Shale	10	418
Sand	105	235	Sand	10	428
Shale and sand streaks	45	280	Shale	72	500
Sand	35	315	Sand and shale streaks	30	530

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)				
Well J-40									
Owner: Mrs. Patricia Welder Robinson. Driller: B. F. Powell.									
Soil	3	3	Boulders and clay	- 15	420				
Clay	36	39	Gravel and sand	- 28	448				
Sand	19	58	Clay, soft	- 4	452				
Clay	22	80	Rock and gravel	- 28	480				
Gravel and sand	170	250	Clay, red	- 20	500				
Clay, soft	4	254	Sand, hard, and rock	- 70	570				
Sand and gravel	56	310	Boulders and clay	- 40	610				
Clay, white	8	318	Sandrock and gravel	- 75	685				
Sand and gravel	32	350	Clay, white	- 45	730				
Clay, blue and white	15	365	Sand and rock	- 20	750				
Rock and hard sand	20	385	Clay, red, hard	- 121	871				
Clay, blue, hard	15	400	Sand	- 38	909				
Boulders and sand	5	405							

Well K-2

Owner: J. V. Wilburn. Driller: Katy Drilling Co.

Surface soil	15	15	Sand	25	295
Sand	45	60	Shale, sandy	20	315
Clay	13	73	Shale and rock	25	340
Sand with clay streaks	42	115	Shale	10	350
Clay	14	129	Sand and rock	30	380
Sand and rock	101	230	Sand and shale streaks	20	400
Shale, sandy	40	270	Sand and rock	37	437
	1				

	Thickness (feet)	Depth (feet)	Thickness (feet)		Depth (feet)			
Well K-2Continued								
Shale	8	445	Shale	- 32	690			
Sand and rock	38	483	Sand	- 55	745			
Shale	67	550	Shale	- 8	753			
Sand	18	568	Sand	- 60	813			
Shale	27	595	Shale	- 12	825			
Sand and rock	25	620	Sand	- 25	850			
Shale	15	635	Shale	- 30	880			
Sand	23	658						

Owner: Allen Bros. Driller: Mickelson Bros.

Surface soil and shale	22	22	Sand	15	191
Sand	6	28	Shale and lime	19	210
Shale	18	46	Sand and rock	11	221
Sand	12	58	Shale	6	227
Shale	15	73	Sand and rock	9	236
Sand	18	91	Shale, sticky	19	255
Shale	8	99	Shale and sand	16	271
Sand	4	103	Sand and rock	11	282
Shale	10	113	Shale, sticky	6	288
Sand and rock	12	125	Sand and rock	21	309
Shale	6	131	Shale	3	312
Sand and shale	34	165	Sand	4	316
Shale, sticky	11	176	Shale, sticky	18	334

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well K-5Continued					
Shale and sand	8	342	Sand and rock	- 6	476
Shale, sticky	10	352	Shale	- 23	499
Sand and rock	11	363	Shale and sand	- 10	509
Shale	12	375	Shale, sticky	- 36	545
Sand and rock	8	383	Rock and sand	- 16	561
Shale, sticky	17	400	Shale	- 5	566
Sand, rock, and shale-	38	438	Rock and sand	- 88	654
Shale	32	470			

Well K-ll

Owner: D. R. Blackburn. Driller: H & S Drilling Co.

Clay	45	45	Shale and sand streaks	18	203
Sand	5	50	Sand	27	230
Shale	54	104	Shale and sand streaks	65	295
Sand	11	115	Sand	15	310
Shale and hard sand	18	122	Shale	35	345
	10	132	Sand	13	358
Sand	14	147	Shale, sandy	139	L97
Shale	18	165	Share, Sanay		121
Sand and gravel	20	185	Sand	56	553

Well K-18

Owner: Edmund Keiner. Driller: H & S Drilling Co.

No record	30	30	No record	70	110
Sand	10	40	Sand	20	130

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	We	ell K-18	Continued		
No record	13	143	Sand and shale streaks	s 15	300
Sand	29	172	Sand	- 38	338
Shale	10	182	Shale	- 27	365
Sand	18	200	Sand	- 23	388
Shale and sand streaks	53	253	Shale	- 12	400
Sand	14	267	Sand and shale streaks	3 0	430
Shale	18	285	Sand	- 20	450

Well K-24

Owner: Mrs. Armel Baker. Driller: H & K Drilling Co.

Dirt	8	8	Clay	85	160
Clay	10	18	Sand	705	865
Sand	8	26	Sand, hard	15	880
Clay	24	50	Sand	83	963
Sand	25	75			

Well L-4

Owner: Anton Otto. Driller: H & S Drilling Co.

Clay	35	35	Sand	53	215
Sand	10	45	Shale	150	365
Clay	13	58	Sand	25	390
Sand	12	70	Shale and sand streaks	45	435
Shale	92	162	Sand	35	470

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well L-8

Owner: Mrs. Emily Campbell. Driller: H & K Drilling Co.

No record	25	25	No record	37	157
Sand and clay	95	120	Sand	1,257	1,414

Well M-2--partial log

Owner: Reaves, well 1. Driller: Houston Gulf Gas Co.

Surface sand	3	3	Gumbo, red	22	378
Clay, white	10	13	Sand and gravel	27	405
Sand	12	25	Gumbo, red	7	412
Clay, red	5	30	Lime and gravel streaks	8	420
Sand, coarse	10	40	Gumbo, red	15	435
Sandrock	7	47	Gravel	3	438
Clay, sandy	13	60	Gumbo, red	17	455
Sandrock	2	62	Lime and sandy shale	43	498
Clay, sandy, white	17	79	Shale, red and blue	10	508
Sand	14	93	Sand, white, and red,	18	526
Rock	l	94	Cumbo mod mod gond	10)20
Gumbo, red, and lime	66	160	and gravel, and blue	ו(די ר	700
Lime and gravel streaks	40	200	Grovel	10	710
Gravel and coarse sand	45	245	Cumbo nod	20	740
Lime	50	295	Shale hlue	ں د ا	752
Sand and gravel	30	325	Curbe red and brown	20 T.)	785
Rock	l	326	Cumbo, rea ana brown) Jup	
Gravel and coarse sand	30	356	Guildo	43	020

	Thickness (feet)	Depth (feet)	Т	hickness (feet)	Depth (feet)
	We	ell M-2-	-Continued		
Sand and pyrite	18	846	Sand	2	1,322
Shale, sand, and	6	850	Sand and blue gumbo	8	1,330
Shale, blue	- 53	905	Sandrock and shale	4	1,334
Gumbo	10	915	Gumbo, blue	2	1,336
Shale, blue	81	996	Sandrock	l	1,337
Sand. blue	17	1.013	Sand, soft, black	l	1,338
Shale, blue	51	1.064	Sand and lime streaks-	11	1,349
Gynsum or soanstone.		1,001	Gumbo, blue	9	1,358
sand and lime streaks	s 20	1,084	Clay, green	56	1,414
Sand and rock	16	1,100	Gumbo, blue, sandy, and lime streaks	ц	1.418
Clay, brown, flaky	10	1,110	Sand, vellow and blue		
Gumbo and shale streaks	s 16	1,126	clay, and lime streak	s 18	1,436
Shale, pink, and lime	24	1.150	Gumbo, green	12	1,448
Gumbo	26	1.176	Sandstone, gray	l	1,449
Shale and pyrite	3	1,179	Gumbo, sandy, green, and lime streaks	26	1,475
Gumbo containing			Sand, blue	21	1,496
gypsum, lime, and yellow clay	59	1,238	Gumbo, sand, shale,		
Lime boulders	4	1,242	and pyrite	64	1,560
Gumbo and lime	44	1,286	Shale, sandy, blue	4	1,564
Sand and lime streaks-	4	1,290	Gumbo, blue	4	1,568
Gumbo, blue, and lime			Sand, hard	2	1,570
streaks	10	1,300	Gumbo, green and blue-	28	1,598
Gumbo, blue, and pyrite	20	1,320	Shale boulders	38	1,636

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	We	ell M-2-	-Continued		
Gumbo, chocolate-brown	16	1,652	Caprock	- 11	1,831
Sand, blue shale, and	7	2 (5 9	Sand	- 4	1,835
pyrite	0	1,000	Shale, blue, sandy	- 2	1,837
Sand, shaly	12	1,670	Shale, blue	- 16	1,853
Gumbo, chocolate-brown	10	1,680	Lime boulders	· l	1,854
Sand, shale, and lime streaks	14	1,694	Gumbo, blue, and lime	2.07	1 001
Rock, hard	l	1,695	streaks	- 127	1,981
Gumbo, green	33	1,728	Gumbo, blue	- 13	1,994
Sand	35	1,763	Gumbo, blue and red, and lime streaks	- 4	1,998
Gumbo, chocolate, and lime streaks	22	1,785	Total depth	-	3,103
Gumbo, chocolate	35	1,820			

Well N-10

Owner:	E.	I.	дл	Pont	de	Nemours	&	Co.	Driller:	Layne	-Texas	Co.
--------	----	----	----	------	----	---------	---	-----	----------	-------	--------	-----

Clay	25	25	Sand and lime streaks-	30	288
Sand	10	35	Sand, and few shale	100	200
Clay	10	45	DI Cars	102	390
Cond	27	80	Shale, sandy, and sand	60	450
Dang	31	02	Shale	88	538
Shale	2	84			<i>(</i> – ,
Sand coarse and			Shale, sandy, and shale	115	653
gravel	105	189	Shale	28	681
Shale, sandy	35	224	Shale, sandy, and lime		
Sand and lime streaks-	29	253	streaks	27	708
	-7		Sand	13	721
Shale	5	258			

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	We	ell N-10	Continued		
Shale	7	728	Shale	25	1,000
Sand	101	829	Sand	48	1,048
Shale	16	845	Shale and sand streaks	25	1,073
Sand	14	859	Shale	17	1,090
Shale	8	867	Sand and sandy shale	15	1,105
Sand and lime streaks-	40	907	Shale	15	1,120
Shale, tough	42	949	Shale, sandy	10	1,130
Sand	26	975			

Owner: John Swcboda.	Driller:	H & S D	rilling Co.		
Clay	17	17	Clay	70	300
Sand	8	25	Sand and shale	30	330
Clay	17	42	Shale	25	355
Sand	23	65	Sand, thin shale streaks	55	410
Clay	7	72	Sand	60	470
Sand with clay streaks	38	110	Shale, sandy	10	480
Shale	40	150	Sand	23	503
Sand with gravel stread	ks 65	215	Shale	17	520
Shale	15	230	Sand	12	532

Owner: Victoria County Water Control and Improvement Dist. No. 1 Driller: Texas Water Wells Service.

Surface soil	5	5	Clay	28	33
	(Cont	inued o	n next page)		

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)			
Well N-30Continued								
Sand	6	39	Clay	- 23	281			
Clay	9	48	Sand-+	. 48	329			
Sand	9	57	Clay	19	348			
Clay	31	88	Sand	· 12	360			
Sand and gravel	13	101	Clay	· 10	370			
Clay	37	138	Sand	25	395			
Sand	20	158	Clay	· 14	409			
Clay	2	160	Sand	. 9	418			
Sand and gravel	25	185	Clay	. 30	448			
Clay	18	203	Sand	· 6	454			
Sand	6	209	Clay	. 8	462			
Clay	17	226	Sand	- 22	484			
Sand	14	240	Clay	. 4	488			
Clay	7	247	Sand	- 11	499			
Sand	11	258	Clay	50	549			

Well P-4--partial log

Owner: G. Keeran, et al., well 5. Driller: Gulf Production Co.

Surface clay	60	60	Shale, sticky	80	370
Sand and gravel	65	125	Sand	30	400
Cl.ay	23	148	Shale	40	440
Shale, sticky	50	198	Sand and boulders	70	510
Sand and gravel	82	280	Gumbo	140	650
Gumbo	10	290	Sand and gravel	30	680
•					-

	Thickness (feet)	Depth (feet)	Thickness (feet)		Depth (feet)			
	Well P-4Continued							
Shale, sticky	215	895	Sand and boulders	40	1,490			
Sand and boulders	55	950	Gumbo	29	1,519			
Shale, sticky	65	1,015	Shale and boulders	26	1,545			
Sand and boulders	10	1,025	Gumbo, pink	73	1,618			
Shale, sticky	103	1,128	Sand and boulders	52	1,670			
Shale and boulders	72	1,200	Shale and lime	252	1,922			
Gumbo	58	1,258	Sand, hard, and boulder	s 43	1,965			
Sand and boulders	152	1,410	Total depth		5,570			
Gumbo	40	1,450						

Well P-ll

1,015

Owner: Sunray Oil Corp.	Driller	: Town	send Water Well Service.	
Clay	30	30	Sand	32
Sand	80	110	Clay	30
Clay	30	140	Sand	55
Sand	50	190	Clay	20
Clay	30	220	Sand	43
Sand	50	270	Clay, sticky	166
Clay	40	310	Sand	45
Sand	40	350	Clay	91
Clay, sticky	38	388	Sand	40

Sand and clay streaks-

Clay-----

Clay-----

Sand-----

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well P-14

Owner: R. H. Matson. Driller: Thompson Drilling Co.

Clay	30	30	Shale	35	195
Sand and gravel	62	92	Sand	63	258
Shale	53	145	Shale and sand streaks	102	360
Sand and hard streaks-	15	160	Sand and hard streaks-	114	474

Well P-15

Owner: Bloomington School. Driller: H & K Drilling Co.

Clay	40	40	Sand	50	240
Sand	10	50	No record	57	297
No record	10	60	Sand	36	333
Sand	20	80	No record	72	405
No record	35	115	Sand	40	445
Sand	33	148	Clay	5	450
No record	42	190			

Owner: John Keeran. Driller: H & K Drilling Co.

Clay	35	35	Sand, black, coarse	21	243
Clay with hard streaks	37	72	Shale with hard streaks	27	270
Sand	8	80	Shale	28	298
Shale	45	125	Sand, coarse	22	320
Sand	40	165	Shale with sand streaks	180	500
Shale, sticky	25	190	Sand	25	525
Shale, sandy	32	222	Shale	12	537

	Thickness (feet)	Depth (feet)	Т	hickness (feet)	Depth (feet)			
Well R-1Continued								
Sand	38	575	Shale with hard streaks	40	1,120			
Shale	12	587	Shale	70	1,190			
Sand	23	610	Sand with hard streaks	20	1,210			
Shale	37	647	Shale	45	1,255			
Sand	21	668	Sand	35	1,290			
Shale with hard streaks	s <u>1</u> 33	801	Rock	3	1,293			
Sand	38	839	Sand	44	1,337			
Shale	19	858	Shale	25	1,362			
Sand	34	892	Sand	28	1,390			
Shale	68	960	Sand and shale	25	1,415			
Sand	43	1,003	Sand	25	1,440			
Shale with hard streaks	s 17	1,020	Shale with hard streaks	55	1,495			
Sand	60	1,080						

Well R-6

Owner: John Keeran. Driller: H & K Drilling Co.

No record	12	12	Shale	9	1,415
Sand	1,394	1,406			_

Well R-15

Owner: G. E. McKamey. Driller: Townsend Water Well Service.

Clay	18	18	Clay	20	90
Sand	10	28	Sand	25	115
Clay	28	56	Clay	43	158
Sand	14	70	Sand	32	190

	Thickness (feet)	Depth (feet)	Thickness (feet)		Depth (feet)			
Well R-15Continued								
Clay	45	235	Clay	. 30	290			
Sand	25	260	Sand	. 34	324			

Well S-4

6

14

9

11

14

49

33

108

122

131

142

156

205

238

8 Sand-----Surface soil and clay-8 Sand-----4 12 Shale-----Shale-----18 30 Sand with hard streaks Sand-----20 50 Shale-----82 Shale-----Sand-----32

93

102

Owner: J. J. Murphy. Driller: Thompson Drilling Co.

Shale-----

Sand-----

Owner:	Agnes	Murphy.	Driller:	Thompson	Drilling	Co.

11

9

Sand with hard streaks

Shale-----

Clay	18	18	Shale	12	110
Sand with hard streaks	80	98	Sand with hard streaks	35	145

Well S-21

Owner: J. A. McFaddin E	state.	Driller:	Layne-Texas Co.		
Surface scil	2	2	Shale, blue	9	76
Clay	40	42	Sand, coarse, gray,	2)ı	100
Sand	6	48	and share streaks	24	100
Clay	10	58	Clay	44	144 144
Sand, coarse, gray	9	67	Sand, coarse, gray	31	175

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)			
Well S-21Continued								
Clay	13	188	Clay and sand	28	630			
Clay and sand streaks-	10	198	Sand and clay streaks-	20	650			
Sand, coarse, gray, and clay streaks	60	258	Clay	19	669			
Clay	20	278	Sand, gray, with shale streaks	51	720			
Sand, coarse, gray	· 11	289	Shale	8	728			
Clay	73	362	Sand, coarse, with	60	788			
Sand with clay streaks	17	379	Shalo stick		809			
Shale, hard, blue	63	442	Shale, Sticky	40	020			
Clay and sand streaks-	16	458	Shale with sand streak	s 10	030			
Sand, fine, gray	27	485	Sand	15	853			
Shale, sandy	26	511	Shale, hard	50	903			
Shale, sandy, hard	28	539	Shale	25	928			
Sand fine group		5).8	Sand	13	941			
Sand, IIIe, gray	9	540	Shale, sandy	18	959			
Shale	10	558	Sand	14	973			
Sand, fine, gray	26	584	Shale, sandy	30	1.003			
Shale, hard	18	602	Share, Sandy	ىر				

Well T-l

ner: J. A. McFaddin Estate. Driller: Kelley Water Well Service.					
Clay	10	10	Sand	20	68
Sand	15	25	Shale	33	101
Shale	23	48	Sand	30	131
Thickness	Depth	Thickness	Depth		
------------	--------	-----------	--------		
 (feet)	(feet)	(feet)	(feet)		

Well T-4

Owner: J. A. McFaddin Estate. Driller: Unknown.

Clay	30	30	Shale	127	558
Sand	20	50	Sand	22	580
Shale, sandy	30	80	Shale	60	640
Sand	15	95	Sand	48	688
Shale with sand streaks	85	180	Shale, sticky	112	800
Sand	42	222	Sand	80	880
Shale with sand streaks	181	403	Shale	8	888
Sand	28	431			

Well T-12

Owner: J. A. McFaddin Estate. Driller: A. H. Masi	rin.
---	------

Soil	2	2	Sand and boulders	13	369
Clay	6	8	Shale	8	377
Sand	128	136	Sand	11	388
Shale	6	142	Shale	10	398
Sand	20	162	Sand and boulders	25	423
Shale	8	170	Shale	49	472
Sand and shale streaks	62	232	Sand	9	481
Shale, sandy	27	259	Shale	94	575
Sand	8	267	Sand	14	589
Shale	12	279	Shale	14	603
Sand and boulders	36	315	Sand	13	616
Shale	41 41	356	Shale	9	625

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)		
Well T-12Continued							
Sand	14	639	Sand and boulders	10	673		
Shale	3	642	Shale, sticky, hard	57	730		
Sand	17	659	Shale, pink	72	802		

Well T-19--partial log

Sand and boulders----

663

4

Shale-----

863

61

Owner: A. M. McFaddin	Estate.	Driller:	Houston Oil Co.		
Surface clay	12	12	Sand	80	890
Sand	28	40	Gumbo	26	916
Sand and gravel	90	130	Sand	46	962
Sand	160	290	Gumbo	6	968
Rock	3	293	Sand	30	998
Sand with clay and	97	280	Gumbo	20	1,018
graver streaks	01	300	Sand and hard shale	17	1,035
Gumbo, tough	16	396	Sand	25	1.060
Rock	4	400	C the minh		1,000
Sand	20	420	Gumbo, pink	22	1,002
Bock	2	122	Sand	15	1,097
	-		Gumbo, pink	7	1,104
Gumbo, tough	133	ללל	Sand	29	1,133
Sand	12	567	Gumbo nink	0	1 1/10
Gumbo	45	612		2	
Sand	6	618	Lime, hard, sandy, shaly	18	1,160
Gumbo	31	649	Lime, sandy	25	1,185
Sand	53	702	Sand	40	1,225
Gumbo, pink	108	810	Gumbo	35	1,260

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
L		<u>יייי</u>	-Continued	((
	WC.	LT 1-19-			
Sand	20	1,280	Gumbo	- 108	1,686
Gumbo	20	1,300	Sand	- 10	1,696
Sand	20	1,320	Gumbo	- 49	1,745
Gumbo	20	1,340	Lime, sandy	- 20	1,765
Sand	50	1,390	Sand	- 32	1,797
Gumbo and shale	30	1,420	Gumbo	- 38	1,835
Sand boulders	40	1,460	Gumbo and shale	- 160	1,995
Gumbo and shale	100	1,560	Total depth	-	4,633
Sand	18	1,578			

-

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well A-3

Owner: Humble Oil & Refining Co. Driller: Layne-Texas Co.

Soil, black	4	4	Sand	14	490
Clay and sandy clay	46	50	Shale, sandy	10	500
Sand and gravel	25	75	Sand	9	509
Clay, sandy	6	81	Shale and sticky shale	54	563
Shale, sandy, and shale	37	118	Shale, sandy	12	575
Sand, hard	7	125	Sand and sandy shale	30	605
Sand and gravel	27	152	Shale, hard	23	628
Clay	11	163	Shale, sandy	17	645
Sand and gravel	32	195	Shale, hard and sticky	58	703
Clay, sandy	11	206	Shale, hard	21	724
Sand	6	212	Shale, hard, sandy	33	757
Clay, sandy	11	223	Sand and gravel	36	793
Sand and clay streaks-	33	256	Shale, hard, sandy	7	800
Clay	7	263	Shale, hard, sticky	28	828
Sand	20	283	Shale, hard, sandy	46	874
Clay and sandy shale	24	307	Shale, hard, red	30	904
Sand	15	322	Shale, hard, sandy	30	934
Shale	25	347	Shale, hard, red	25	959
Sand, sandy shale, and	58	1.05	Shale, sandy	4	963
Chale and hand caliche	52	40)	Sand	13	976
Sond	در م	4)66	Shale, hard, sandy	25	1,001
	0	400	Sand and caliche	19	1,020
Snale, sandy	TO	476			

Table 10.--Drillers' logs of wells in Calhoun County--Continued

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)		
Well A-3Continued							
Caliche, hard, sandy	7	1,027	Shale, sandy	- 5	1,075		
Sand and caliche	23	1,050	Shale	. 9	1,084		
Sand	20	1,070			· ·		

Well A-6

Owner: P. H. Welder. Driller: B. F. Powell.

Soil	2	2	Clay and rock	20	540
Clay, red	18	20	Sand, good	18	558
Sand	24	44	Sand, brown	32	590
Clay, red	76	120	Sand	22	612
Sand	180	300	Clay	12	624
Clay, white	18	318	Sand	16	640
Clay and rock	12	330	Clay	8	648
Sand	10	340	Sand	10	658
Clay	12	352	Clay, dark-brown	62	720
Sand	38	390	Sandrock	8	728
Clay	20	410	Sand, fine	14	742
Rock and sand	20	430	Clay, rock, and sand	53	795
Clay	20	450	Clay, hard, black and	60	955
Sand	10	460	White	20	077
Clay, soft	30	490	Clay and rock	30	801
Rock, hard	3	493		0	091
Sand, dark	27	520	Dana (Ras)	21	915

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well A-ll

Owner: H. C. Robinson. Driller: G. H. Laughter.

Soil	2	2	Clay, mixed	73	385
Clay, red	8	10	Sand	7	392
Sand, fine	10	20	Clay, dark	42	434
Clay, red	20	40	Sand	10	444
Sand	35	75	Clay, hard, blue	125	569
Clay, red	40	115	Sand	7	576
Sand, fine	5	120	Clay	2	578
Clay, soft, red	30	150	Sand, fine	5	583
Sand	38	188	Sand, brown	50	633
Clay	5	193	Sand	10	643
Sand	15	208	Clay, blue	25	668
Clay, white and blue	20	228	Sand, fine	17	685
Sand	26	254	Clay	12	697
Clay	7	261	Sand, fine	5	702
Sand	17	278	Clay, blue and red	142	844
Sand and clay, fine	2	280	Sand, fine	2	846
Sand, hard	20	300	Clay, hard, red	39	885
Clay, dark	12	312	Sand	43	928

Well A-15

Owner: P. H. Welder. Driller: G. H. Laughter.

Scil, black	2	2	Sand and gravel	10	50			
Clay, yellow and white	38	40	Clay, white	80	130			
(Continued on next page)								

	Thickness (feet)	Depth (feet)	r	Thickness (feet)	Depth (feet)					
Well A-15Continued										
Sand	20	150	Clay, blue, and boulders	10	370					
Clay, yellow, and boulders	10	160	Sand	10	380					
Sand	10	170	Clay, blue	20	400					
Clay, yellow	10	180	Clay, red and yellow	30	430					
Sand	35	215	Sand	10	440					
Sand and clay streaks-	25	240	Clay, yellow and white	100	540					
Sand, coarse	20	260	Streaks, blue, hard and soft	40	580					
Clay, blue	15	275	Sand blue fine	10	590					
Sand	10	285	Claw wellow and blue	110	700					
Clay, blue	10	295	ciay, yerrow and blue-	110	700					
Sand	20	315	Clay, red, and boulder	s 10	710					
Clay, blue and yellow-	25	340	Clay, red and blue	10	720					
Sand	20	360	Sand and gravel (gas)-	20	740					

Well A-19

Owner: P. H. Welder. Driller: E. T. Elwood.

Soil	5	5	Sand	10	360
Sand	10	15	Clay, brown	56	416
Mud	5	20	Sand, coarse	7	423
Sand and gravel	255	275	Clay	20	443
Gravel	15	290	Sand	2	445
Clay, blue	10	300	Clay, white	13	458
Gravel, coarse	20	320	Sand	6	464
Clay	2	322	Clay, white	16	480
Sand	18	340	Sand	10	490
Clay	10	350			

		Thickness (feet)	Depth (feet)	Thickness (feet)	Depth (feet)	
Well A-21						
Owner:	H. C. Robinson	. Driller:	G. H. Laughter.			

Sand, brown	10	10	Clay, hard, blue	20	403
Sand, white	10	20	Rock, hard, white	2	405
Clay, yellow	40	60	Clay and sand streaks,). 7).50
Clay, blue	60	120		4 (472
Sand	5	125	blue	58	510
Wood	3	128	Sand	15	525
Clay, blue and white	52	180	Clay, hard, red	5	530
Clay, blue	40	220	Sand	26	556
Rock, hard	1	221	Clay, red and blue	100	656
Sand	9	230	Clay, soft, white, and	F	663
Clay, light-blue	70	300	rock	2	001
Sand	20	320	Packsand	15	676
Sand and clay streaks-	48	368	Clay, soft, white, and hard blue clay	64	740
Sand	15	383	Gravel (gas)	18	758

Owner: H. C. Robinson.	Driller:	G. H.	Laughter.		
Dirt, brown	10	10	Sand	15	135
Sand	20	30	Sand and clay streaks-	20	155
Clay, yellow	30	60	Sand and rock	15	170
Sand, coarse	16	76	Sand	25	195
Clay, red	24	100 -	Clay, blue	20	215
Clay, white	20	120	Sand	10	225

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)			
Well A-22Continued								
Clay, blue	10	235	Clay, hard, blue	- 30	460			
Sand	25	260	Clay, soft, blue	- 40	500			
Clay, blue	10	270	Clay, hard, blue	- 50	550			
Clay, white	30	300	Clay, blue and brown	- 50	600			
Sand	10	310	Sand	- 20	620			
Clay, light-blue	30	340	Clay, yellow	- 44	664			
Rock	l	341	Clay, blue and red	- 46	710			
Sand	9	350	Sand	- 10	720			
Clay, light-blue	25	375	Clay, blue and red	- 50	770			
Clay, soft, yellow	10	385	Mud	- 10	780			
Sand	15	400	Clay, blue and red	- 80	860			
Clay, light-blue	, 30	430	Sand and gravel	- 21	881			

Well A-28

Owner: Otto Marek. Driller: B. & P. Drilling Co.

Soil	3	3	Clay	34	243
Clay	30	33	Sand	16	259
Sand	4	37	Clay	9	268
Clay	27	64	Sand	50	318
Sand	15	79	Clay	26	344
Clay, sandy	47	126	Clay, sandy	12	356
Sand	. 7	133	Sand	6	362
Clay, sandy	6	139	Clay	21	383
Sand	38	177	Sand	12	395
Clay, sandy	12	189	Clay	10	405
Sand	20	209			

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well A-39

Owner: J. C. Williams. Driller: H. & S. Well Service.

No record	67	67	Shale and sand streaks	20	887
Sand	800	867			

Well A-45

Owner: Clyde Bauer. Driller: B. & P. Drilling Co.

Soil	3	3	Sand	4	38
Clay	7	10	Clay	57	95
Clay, sandy	3	13	Sand	9	104
Clay	21	34	Clay	l	105

Well B-8

Owner: Paul Freier. Driller: B. & P. Drilling Co.

Soil	2	2	Clay	60	151
Clay	19	21	Sand	5	156
Sand	21	42	Clay	43	199
Clay	10	52	Sand	17	216
Sand	5	57	Clay	53	269
Clay	2	59	Sand	24	293
Sand	32	91	Clay	1	294

Well B-12

Owner: L. J. Foester. Driller: John O'Neil.

Clay, white	10	10	Clay, sandy	5	20
Clay, yellow	5	15	Sand, fine	5	25

	Thickness (feet)	Depth (feet)	Thickness (feet)		Depth (feet)				
Well B-12Continued									
Clay, soft, white	10	35	Clay, white	. 60	162				
Clay, white	20	55	Sand, shaly	. 40	202				
Limerock and clay	10	65	Sand (water)	. 23	225				
Clay, sandy	10	75	Clay	• 2	227				
Clay, yellow	27	102							

Well B-23

Owner: L. J. Foester. Driller: B. & P. Drilling Co.

Soil	4	4	Clay	17	173
Clay	14	18	Sand	5	178
Sand	6	24	Clay	22	200
Sand and clay	19	43	Sand	9	209
Sand	9	52 [.]	Clay	4	213
Clay	101	153	Sand	7	220
Sand and shell	3	156	Clay	2	222

Soil	5	5	Sand	24	214		
Clay	116	121	Clay	6	220		
Clay, sandy	5	126	Sand	15	235		
Clay	44	170	Clay	18	253		
Sand	15	185	Sand	17	270		
Clay	5	190	Clay	13	283		

Owner: City of Port Lavaca. Driller: Layne-Texas Co.

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well B-37

Owner: A. B. McDonald. Driller: B. & P. Drilling Co.

Soil	4	4	Sand	10	67
Clay	10	14	Clay, sandy	3	70
Sand	12	26	Sand	2	72
Clay	14	40	Clay, sandy	129	201
Sand	2	42	Sand	24	225
Clay, sandy	15	57	Clay	1	226

Well B-40

Owner: Melvin Blake. Driller: B. & P. Drilling Co.

Soil	3	3	Clay	9	165
Clay	18	21	Sand and clay	4	169
Sand	16	37	Clay, sandy	50	219
Clay, sandy	31	68	Sand	6	225
Sand	3	71	Clay, sandy	2	227
Clay	75	146	Sand	22	249
Clay, sandy	10	156			

Well B-44

Owner: Sno-Brite Laundry. Driller: B. & P. Drilling Co.

Soil	3	3	Clay	32	100
Clay	13	16	Sand	2	102
Sand and clay	30	46	Clay	33	135
Clay	10	56	Sand	7	142
Sand	12	68	Clay	72	214

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)			
Well B-44Continued								
Sand	3	217	Sand	- 27	272			
Clay, sandy	28	245	Clay	- 3	275			

Well B-47

Owner: Wilborn & Graham. Driller: B. & P. Drilling Co.

Soil	4	4	Clay	26	118
Clay	20	24	Sand	6	124
Sand	15	39	Clay	67	191
Clay	23	62	Sand	15	206
Sand	30	92	Clay	90	296

Well B-51

Owner D. D. Raus	ey. DITTTEI.	D. 0. I.	DITTTING CO.		
Soil	5	5	Sand	6	216
Clay	37	42	Clay, sandy	4	220
Sand	16	58	Sand	7	227
Clay, sandy	4	62	Clay	2	229
Sand	5	67	Sand	1	230
Sand and clay	31	98	Clay, sandy	4	234
Clay	98	196	Sand	4	238
Sand	2	198	Clay	35	273
Clay, sandy	12	210			

B & P Drilling Co ਸ਼ਾ S Romeow Drillor. Ouror.

Well B-58

Owner: C. E. Roberts. Driller: B. & P. Drilling Co. Clay-----65 4 61 4 Soil---------

	Thickness (feet)	Depth (feet)	Thickness (feet)		Depth (feet)				
Well B-58Continued									
Sand	5	70	Clay	- 22	235				
Clay	22	92	Sand	- 20	255				
Sand and clay	7	99	Clay, sandy	- 4	259				
Sand	13	112	Sand	- 2	261				
Clay	95	207	Clay	- 1	262				
Sand	6	213							

Well C-l

Owner: Mrs. John Y. Bell. Driller: Burt Well Service.

Soil	3	3	Sand	11	158
Clay	14	17	Clay	29	187
Sand	4	21	Shell and clay	7	194
Clay	16	37	Clay	31	225
Sand	13	50	Sand and gravel	13	238
Clay	97	147			

Well C-2

Soil	3	3	Lime	2	105
Clay	4	7	Broken formation	36	141
Sand	2	9	Sand	7	148
Clay	19	28	Clay	17	165
Sand	8	36	Sand	12	177
Clay	19	55	Broken formation	90	267
Sand	13	68	Sand and gravel	13	280
Clay	35	103			

Owner: C. S. Traylor. Driller: Burt Well Service.

Table 10.--Drillers' logs of wells in Calhoun County--Continued

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well C-7

Owner: Maude B. Traylor. Driller: B. & P. Drilling Co.

Soil	4	4	Clay, sandy	22	333
Clay	62	66	Sand	3	336
Sand	35	101	Clay, sandy	2	338
Clay, sandy	5	106	Sand	4	342
Sand	13	119	Clay, sandy	49	391
Clay, sandy	190	309	Sand	21	412
Sand	2	311	Clay	2	414

Well C-13

Owner: John Butler. Driller: B. & P. Drilling Co.

Soil	4	4	Sand, shell, and clay-	14	224
Clay	14	18	Clay	49	273
Clay, sandy	5	23	Sand and shell	11	284
Sand	16	39	Clay	62	346
Clay	59	98	Sand and shell	10	356
Sand	3	101	Clay	2	358
Clay	65	166	Sand	2	360
Sand	15	181	Clay	10	370
Clay	5	186	Sand	11	381
Sand and clay	2	188	Clay	8	389
Clay	22	210			

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well C-17

Owner: L. J. Foester, Jr. Driller: John O'Neil.

Sand and clay	5	5	Sand, hard (water)	10	160
Clay, red	15	20	Joint clay	45	205
Clay, light-yellow	20	40	Gumbo, yellow, and clay	40	245
Sand, shaly, salt,	10	50	Mudshell	15	260
and clay	10	50	Clay, white	35	295
Sand and salt	30	80	Sand (fresh water)	13	308
Limerock and clay, light	70	150	Clay, hard, yellow	2	310

Well C-18

Owner: M. D. Shillings. Driller: John O'Neil.

Soil	6	6	Clay, yellow	54	180
Clay and pebbles	22	28	Clay, white	51	231
Sand and salt	12	40	Sand, shaly	20	251
Clay, red	80	120	Sand	14	265
Shell	6	126	Clay	2	267

Well C-21

OWHELS TOW DEDNATOR DITITION DO W TO DITITING OF	Owner:	Tom Deshazor.	Driller:	В. &	Ρ.	Drilling (Co.
--	--------	---------------	----------	------	----	------------	-----

Sand and shell	15	15	Sand and shell	5	192
Clay, sandy	31	46	Clay, sandy	85	277
Sand	10	56	Sand	16	293
Clay, sandy	36	92	Clay	2	295
Clay	95	187			

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well D-4

Owner: Traylor Sells.	Driller:	Burt W	ell Service.		
Soil	3	3	Clay	16	112
Clay	8	11	Sand	15	127
Sand	10	21	Broken formation	15	142
Clay and shells	4ı	62	Clay	33	175
Broken formation	21	83	Sand and gravel	23	198
Sand	13	96	Clay	l	199

Well D-8

Owner: Olivia Gin Co. Driller: V. E. Damstrom.

Soil	2	2	Clay, blue	31	228
Clay, red, and white	16	19	Clay and rock	18	246
rock	TO	10	Clay gray and blue		
Sand, fine	8	26	and shells	21	267
Clay, red	64	90	Clay	38	305
Clay, blue and red	10	100	Clay, blue, sticky,	0.0	
	F	105	and shells	20	325
Sand, line, gray	2	102	Clav	21	346
Clay, blue and red	10	115		<u> </u>	5,6
		/	Clay, blue	29	375
Sand, fine, gray	11	126			
			Sand	20	395
Clay, blue	34	160		6).01
Cond and lime	27	107	Sand, rock, and shell-	O	401
Sand and Time	31	191			

Well D-22

Owner:	Holmes Drilling Co.	Dri	ller: E	urt Well Service.		
Soil		3	3	Clay	8	11
		(Con	tinued c	n next page)		

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	Wel	.1 D-22-	-Continued		
Sand	5	16	Clay	- 31	172
Clay	35	51	Broken formation	- 11	183
Sand	12	63	Clay	- 37	220
Clay	24	87	Broken formation	- 26	246
Sand and gravel	39	126	Clay	- 91	337
Clay	3	129	Sand and gravel	- 20	357
Sand	12	141			

Well D-27

Owner: Maude B. Traylor. Driller: John Finster.

Sand	3	3	Clay, yellow and blue-	53	170
Clay, red	12	15	Shale, rock, and sand	22	002
Sand, red	15	30	sureaks	33	203
Clay, blue	28	58	Clay	20	223
Sand, gray	11	69	Sand, broken	9	232
Clay, blue	11	80	Clay	45	277
Cond fine	 		Sand	29	306
Sand, IIne	14	94			
Sand, coarse, white and gray	23	117			

Well D-29

Owner: J. A. Wright. Driller: B. & P. Drilling Co.

Soil	4	4	Clay	2	73
Clay	62	66	Sand	14	87
Sand	5	71	Sand and lime	5	92
	5			2	92

Table 10.--Drillers' logs of wells in Calhoun County--Continued

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	Wel	.1 D-29-	-Continued		
Sand	12	104	Sand	- 5	182
Clay	8	112	Clay	- 2	184
Sand	4	116	Sand	- 12	196
Clay	8	124	Clay	- 12	208
Sand	2	126	Sand	- 11	219
Clay	51	177	Clay	- 4	223

Well D-30

Owner: R. T. Damstrom.	Driller:	V. E.	Damstrom.		
Clay, red and tlue	60	60	Clay, soft, blue	15	395
Sand, fine	20	80	Clay, blue, red, and green	63	458
and red	284	364	Rock, white, soft, limy	10	468
Sand, white	16	380	Sand, coarse (water)	12	480

Well D-32

Owner: Maude B. Traylor. Driller: Burt Well Service.

Soil	3	3	Clay	26	191
Clay	26	29	Broken formation	17	208
Sand	8	37	Clay	18	226
Clay	61	98	Lime	3	229
Sand	23	121	Clay and shells	66	295
Clay	37	158	Sand and gravel	21	316
Sand	7	165			

.

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)
	L		i

Well D-38

Ouron.	Francet	Schicko	Drillor	Bunt Woll	Somiao
Owner:	Ernest	Benicke.	Driffer:	burt well	Service.

Soil	2	2	Sand and gravel	8	128
Clay	17	19	Clay	[°] 4	132
Sand	2	21	Sand and gravel	25	157
Clay	16	37	Clay	47	204
Sand	32	69	Sand	14	218
Clay	5	74	Clay	49	267
Sand	7	81	Sand	15	282
Clay	17	98	Broken formation	35	317
Sand	5	103	Sand	15	332
Clay	17	120			

Well D-40

Soil	3	3	Broken formation	21	248
Clay	35	38	Sand and shells	11	259
Sand	3	41	Clay	2	261
Clay	38	79	Shells	5	266
Sand	5	84	Clay	34	300
Clay	33	117	Sand	23	323
Sand	2	119	Clay	6	329
Broken formation	22	141	Sand	28	357
Clay	79	220	Clay	2	359
Sand	7	227	Sand	10	369

Owner: H. C. Smith. Driller: Burt Well Service.

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	Wel	1 D-40-	-Continued		
Clay	5	374	Clay	- 26	436
Broken formation	10	384	Broken formation	· 14	450
Sand	15	399	Sand and shells	. 26	476
Clay	2	401	Clay	. 4	480
Sand	9	410			

Owner: Carl Manuel. Driller: B. & P. Drilling Co.

Soil	4	4	Sand	4	143
Clay	7	11	Clay	18	161
Sand	3	14	Sand	17	178
Clay and shell	47	61	Clay, sandy	11	189
Sand	20	81	Sand	6	195
Clay, sandy	14	95	Clay, sandy	9	204
Sand	7	102	Sand	7	211
Clay	37	139	Clay	l	212

Well E-10

Owner:	Lester Shafer.	Driller:	B. & P	. Drilling Co.		-
Soil		4	4	Sand	9	200
Clay		103	107	Clay	44	244
Sand an	d clay streaks-	12	119	Sand	2	246
Clay		2	121	Clay, sandy	6	252
Sand		18	139	Sand	27	279
Clay		52	191	Clay	2	281

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Owner: C. H. Stiernberg. Driller: A. T. Marouly.

Soil and clay	12	12	Sand	20	117
Sand, broken, and clay	46	58	Clay	33	150
Clay	21	79	Sand, fine	14	164
Sand, salty	10	89	Sand (water)	22	186
Clay	8	97			

Well E-24

Owner: Lockwood, Andrews & Newman. Driller: B. & P. Drilling Co.

Soil	4	4	Sand	15	127
Clay, sandy	28	32	Clay	63	190
Clay	30	62	Sand	4	194
Clay, sandy	6	68	Clay, sandy	3	197
Sand	10	78	Sand	18	215
Clay, sandy	34	112	Clay	7	222

Well E-27

Owner: L. M. Fisher, Jr. Driller: John O'Neil.

Sand, clay, and pebbles	10	10	Sand, fine, pasty	17	127
Sand, heavy, red	15	25	Clay, white	122	249
Clay, red	35	60	Sand	14	263
Clay, soft, sandy	10	70	Clay	l	264
Clay, yellow	40	110			

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Owner: L. M. Fisher, Jr. Driller: John O'Neil.

Sand and clay	15	15	Clay	8	101
Sand, red	10	25	Clay, white, and lime-	105	206
Clay, yellow	40	65		107	200
Sand, salty	9	74	Sand (water)	17	223
			Clay	l	224
Clay and sand	19	93			

Well E-39

	Owner:	L.	Μ.	Fisher,	Jr.	Driller:	John	Finster
--	--------	----	----	---------	-----	----------	------	---------

Clay, red and yellow	12	12	Clay, blue	4	72
Sandrock	2	14	Sand	3	75
Sand (water)	16	30	Clay, blue	4	79
Clay	4	34	Sandrock	l	80
Clay, blue	18	52	Sand, gray (water)	5	85
Sand	4	56	Clay, blue	l	86
Clay, blue	10	66	Sand (water)	19	105
Sand	2	68			

Well E-44

Owner: J. J. Welder Estate. Driller: G. H. Laughter.

Soil	2	2	Sand	10	100
Clay	10	12	Clay, red and yellow	40	140
Sand	38	50	Caliche	1	141
Clay, white	13	63	Clay, soft, yellow	19	160
Sand	1	64	Sand	10	170
Clay, red and yellow	26	90	Clay, red and blue	50	220
I		· ·	,		

Thickness (feet)		Depth (feet)		Thickness (feet)	Depth (feet)			
Well E-44Continued								
Sand	20	240	Clay, hard, blue	. 32	320			
Clay, blue	38	278	Sand	· 14	334			

288

Owner: J. J. Welder Estate. Driller: G. H. Laughter.

10

Sand-----

Sand	80	80	Sand, blue	15	295
Sand and clay streaks-	20	100	Clay, hard, blue	25	320
Clay, white	10	110	Sand, coarse, blue	24	344
Sand	20	130	Clay, hard, blue	108	452
Clay, blue	70	200	Clay, white, red, and	0	
Material, dark	15	215	yellow	8	460
Sand	10	225	Sand, hard, red	5	465
Clay, dark-blue	55	280	Sand, coarse, red	12	477

Well G-5

Owner: San Antonio Loan & Trust Co. Driller: John O'Neil.

Clay, stiff, red	140	140	Sand (water)	15	230
Sand (salt water)	20	160	Sand and clay	256	1486
Sand and shell (water)	10	170	Sand	70	556
Clay, blue	45	215			

Well G-9

Owner: Byers & Schaefer. Driller: B. & P. Drilling Co.

Sand and shell	61	61	Clay, sandy, and shell	61	122
	(Cont	inued of	n next page)		

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)				
Well G-9Continued									
Sand	2	124	Clay	65	214				
Clay	17	141	Sand and clay	• 3	217				
Sand and clay	5	146	Sand	. 10	227				
Sand	3	149	Clay, sandy	. 4	231				

Well G-15

Owner: Intercoastal Lumber Co. Driller: B. & P. Drilling Co.

Sand and shell	78	78	Clay, sandy	8	162
Clay, sandy	51	129	Sand	5	167
Sand	5	134	Clay	35	202
Clay, sandy	8	142	Sand	7	209
Sand	12	154	Clay, sandy	4	213

Well H-2

Owner: J. J. Welder Estate. Driller: G. H. Laughter.

Sand	60	60	Clay, red and yellow	52	212
Clay, yellow	25	85	Sand	18	230
Sand	20	105	Clay, soft, yellow and brown	30	260
Sand	4 (8	160	Clay, blue and yellow-	50	310
	0	100	Sand and gravel	17	327

Well H-4

Owner: J. J. Welder Estate. Driller: G. H. Laughter.

Soil	2	2	Sand	20	30
Clay	8	10	Clay, yellow	5	35
	,	•			•

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)				
Well H-4Continued									
Sand	10	45	Clay, red and blue	- 35	250				
Clay, dark-red	5	50	Clay, blue	- 45	295				
Clay, yellow	45	95	Shell and mud	- 5	300				
Sand	5	100	Wood	- 2	302				
Clay, yellow	95	195	Clay, blue, hard	- 6	308				
Sand	20	215	Sand, red	- 17	325				

Well J-10

Owner: U. S. Coast Guard.	Drill	er: He	nry Cleveland.		
No record	190	190	Sand and shell	98	433
Sand, fine, and shell-	10	200	No record	17	450
No record	77	277	Sand and rock	15	465
Sand and shell	16	293	Sand and shell	230	695
No record	19	312	Sand, coarse (water)	32	727
Sand, fine	17	329	Clay, sandy	22	749
No record	6	335			

.