Texas Water Development Board (TWDB) Groundwater Availability Modeling (GAM) Program

Cindy Ridgeway (Manager) Groundwater Availability Modeling Program Texas Water Development Board

What is the Texas Water Development Board?

Not regulatory agency like Texas Commission on Environmental Quality.

Science: Groundwater, surface water, innovative water technology, conservation, education, flooding.

Planning: Assist with regional planning and state planning (drought and flood plans)

Funding: We assist with implementing water projects with funding

Groundwater Availability Modeling (GAM) Program

Aim: Develop groundwater flow models for the major and minor aquifers of Texas.

Purpose: Tools that can be used to aid in groundwater resources management by stakeholders.

Public process: Stakeholder involvement during model development process.

Models: Freely available, standardized, thoroughly documented. Reports, data, models are available for download from TWDB download page for models.

Living tools: Periodically updated.

Why Stakeholder Advisory Forums?

Keep stakeholders updated about progress of the modeling project

Inform how the groundwater model can, should, and should not be used

Provide stakeholders with the opportunity to provide input and data to assist with model development

Contact Information

Jean Perez **TWDB Contract Manager** 512-936-4017 lean.perez@twdb.texas.gov

Cindy Ridgeway, P.G. Manager of Groundwater Availability Modeling Section 512-936-2386 Cindy.ridgeway@twdb.texas.gov

> **Texas Water Development Board** P.O. Box 13231 Austin, Texas 78711-3231

> > Web information:

https://www.twdb.texas.gov/groundwater/models/gam/mrtn/mrtn.asp

Marathon Aquifer Conceptual Model Stakeholder Advisory Forum #1 December 3-4, 2020 Marathon, Texas

Agenda

- 1. Introduction to Project Team
- 2. Marathon Aquifer Overview
- 3. Project Objectives
- 4. Approach
- 5. Project Schedule
- 6. Request for Data
- 7. Stakeholder Input and Questions

Additional Staff Support Available Companywide

53 Hydrologists/Hydrogeologists	13 Environmental Scientists	
38 Geologists	14 GIS/CADD/Database	
	39 Laboratory and Field Technicians	

57 Engineers 2 Biologists

Marathon Aquifer

Study Area and Surface Geology

Regional Water Planning Areas

Groundwater Management Areas

Project Objectives

- Develop a conceptual model of the Marathon Aquifer
 - Describe the best understanding of how groundwater moves through the aquifer system
- Future Goal: Develop numerical groundwater flow model (GAM) of the Marathon Aquifer

Components of Conceptual Model

- 1. Physiography and climate
- 2. Geology
- 3. Hydrostratigraphy
- 4. Hydrostratigraphic framework
- 5. Water levels and regional groundwater flow
- 6. Recharge
- 7. Rivers, streams, springs and other surface water features
- 8. Hydraulic properties
- 9. Subsidence
 - 10. Discharge
 - 11. Water quality

Previous Studies

- Geology Over 30 publications used in our proposal
- Hydrogeology
 - Brune (2002) Springs of Texas
 - DeCook (1961) Reconnaissance of Groundwater
 Resources in the Marathon Area
 - Muse (1966) Water level data for Brewster and adjoining counties
 - Smith (2001) Hydrogeology of the Marathon Basin

Approach: Geology

- Utilize results of prior studies
 - Georeference and digitize selected plates from King (1937), King (1980), Flawn (1956) and possibly others
- Geophysical log search (add up to 20)
- Supplemental strike and dip measurements
- GIS hill shade/fracture analysis to identify highly faulted/fractured areas

Geologic Column and Preliminary Hydrostratigraphic Designations

Age	Formations	Predominant Lithology	Hydrostratigraphic Designation
Quaternary	Alluvium, fan, landslide, playa and eolian deposits	Gravel, sand, silt, clay	Aquifer
Tertiary	Volcanic rocks, multiple formations	Rhyolite, tuff, basalt flows	Not significant sources of groundwater
Cretaceous	Glen Rose Formation; Telephone Canyon	Limestone	Aquifer (?)
Permian	Skinner Ranch Formation; Hess Limestone; Lenox Hills Formation	Dolomite, Limestone (calcarenite), shale, conglomerate	Aquitard
Upper Pennsylvanian	Gaptank Formation; Haymond Formation	Limestone, sandstone, shale	
Lower Pennsylvanian	Dimple Limestone; Tesnus Formation	Limestone, shale sandstone, quartzite	Aquifer, except where Tesnus is predominately shale
Devonian-Upper Ordovician	Caballos Novaculite; Maravillas Chert; Woods Hollow Shale; Fort Pena Formation; Alsate Shale	Novaculite, chert, limestone, shale	Aquitard
Lower Ordovician-Upper Cambrian	Marathon Limestone; Dagger Flat Sandstone	Limestone and Sandstone	Aquifer

Aquifer Types

Primary Porosity

Secondary Porosity

Daniel B. Stephens & Associates, Inc. .

Hydrostratigraphic Framework

Anticline

photo by Neil Blandford

Syncline

photo by Neil Blandford

Overthrust Fault

Source: https://en.wikipedia.org/wiki/Thrust_fault

Hydrostratigraphic Framework - Cont'd

Blue areas to a depth of 1,000 feet are potential aquifers that will be evaluated to identify areas with high density fractures

Approach: Water Levels and Regional Groundwater Flow

- Compile, analyze, summarize available data
- Confirm that water levels from early studies are included in the database
- Collect up to 15 current water levels

Approach: Groundwater Recharge

- Use Distributed
 Parameter
 Watershed Model
 (DPWM) to
 estimate recharge
 - Soil water-balance
 - Site-specific climate, topography, geology, soils and vegetation
 - Daily time step, aggregate into annual values and long-term averages

Approach: Hydraulic Properties

- Compile available data from prior reports, TWDB and TDLR well logs
- Estimate aquifer transmissivity where data is available
- Field work conduct several short-term aquifer tests where existing pumping configuration allows and landowner approval is obtained
- Storage coefficients will be estimated based on aquifer rock type

Approach: Groundwater Discharge

- Compile, analyze, summarize available data
- Discharge to springs and evapotranspiration
- Groundwater pumping TWDB data and Brewster County GCD
 Marathon Aquifer Pumpage

Daniel B. Stephens & Associates, Inc.

Approach: Water Quality

- Compile, analyze, summarize all available data
- About 28 wells with basic water quality data
- Field parameters (electrical conductivity, pH) for wells that can be pumped or are pumping in the field

Project Schedule

- October 1, 2020 Start date
- December 3-4, 2020 SAF 1
- Field work January, February 2021
 - Strike and dip, water levels, pumping tests
- July 30, 2021 Interim Deliverable
- March 31, 2022 Study Completion Date
- April 2022 SAF 2 (approximate)

Data Requests

- Well locations and construction information
- Water level data
- Production data (water use information)
- Aquifer test data
- Spring locations
- Property access?

Contact Info

https://www.twdb.texas.gov/groundwater/models/gam/mrtn/mrtn.asp

Jean Perez

TWDB Contract Manager jean.perez@twdb.texas.gov 512-936-4017

Neil Blandford, P.G.

DBS&A <u>nblandford@geo-logic.com</u> 505-822-9400

Allan Standen, P.G. Allan R. Standen, LLC <u>astanden@att.net</u> 512-731-6242

Daniel B. Stephens & Associates, Inc. _

Cindy Ridgeway, P.G.

TWDB <u>cindy.ridgeway@twdb.texas.gov</u> 512-936-2386

Stephanie J. Moore, P.G. DBS&A smoore@geo-logic.com 512-651-6013

Thank you!

Marathon Aquifer Conceptual Model Stakeholder Advisory Forum #1 December 3-4, 2020

