Groundwater Availability Modeling (GAM) for the Lipan Aquifer

LBG-Guyton Associates

Presented to Stakeholder Advisory Forum San Angelo, Texas March 31, 2004

Groundwater Availability Modeling

Attachment B: Groundwater Management Areas

Texas Water Development Board

- <u>Purpose</u>: to develop the best possible groundwater availability model with the available time and money.
- <u>Public process</u>: you get to see how the model is put together.
- <u>Freely available:</u> standardized, thoroughly documented, and available over the internet.
- Living tools: periodically updated.

What is groundwater availability?

- ...the amount of groundwater available for use.
- The State does not decide how much groundwater is available for use: GCDs and RWPGs decide
- A GAM is a <u>tool</u> that can be used to assess groundwater availability once GCDs and RWPGs decide how to define groundwater availability.

Do we have to use GAM?

- Water Code & TWDB rules require that GCDs use GAM information. Other information can be used in conjunction with GAM information.
- TWDB rules require that RWPGs use GAM information unless there is better site specific information available

How do we use GAM?

- The model itself
 - predict water levels and flows in response to pumping and drought
 - effects of well fields
- Data in the model
 - water in storage
 - recharge estimates
 - hydraulic properties
- GCDs and RWPGs can request runs

- GCDs, RWPGs, TWDB, and others collect new information on aquifer
- This information can enhance the current GAMs
- TWDB plans to update GAMs every five years with new info
- Please share information and ideas with TWDB on aquifers and GAMs

Participating in the GAM process

SAF meetings

- hear about progress on the model
- comment on model assumptions
- offer information (timing is important!)
- Report review
 - Deadline for comments on the IBGAM is April 9, 2004. The final draft report is posted on TWDB website
- Contact TWDB
 - Robert Mace
 - Richard Smith

Comments:

Richard Smith richard.smith@twdb.state.tx.us (512)936-0877 www.twdb.state.tx.us/gam

Review of Conceptual Model

TWDB Aquifers

Groundwater Conservation Districts

WCD = Water Conservation District

GCD = Groundwater Conservation District

UWCD = Underground Water Conservation District

UWD = Underground Water District

UWC = Underground Water Conservation

Annual Precipitation (TWDB Quad 607)

Total Annual Precipitation 1940 - 2000

Surface Geology

Model boundary

Geologic Cross-Sections (after Lee, 1986)

Water Levels - 1981

Study Area Boundary

Ŕ

Water Levels - 1990

Study Area Boundary

Â

Water Levels - 2000

Added LKWCD Data to TWDB Data

Ŕ

Study Area Boundary

Specific-Capacity Data in TWDB Database

Estimating Specific-Capacity and Transmissivity using Production Capacity

Specific-Capacity from Production Capacity

- Use Production Capacity (Q) and Saturated thickness in Well (b)
- Assume Specific-Capacity (Sc) = Q/b
- Assume Q is in gallons per minute
- Sc is in Gallons per minute per foot
- **Transmissivity from Specific-Capacity**
- Used "Estimating Transmissivity Using Specific-Capacity Data" (Mace, 2000) Appendix A
- Assumptions: 10 minute Pumping time, 8" Well Diameter, Storativity (S) of 0.0001
- Estimated Transmissivity Values range from 0.3 to 4000 ft²/day

Estimated Specific-Capacity Based on Production Capacity

Distribution of Log of Specific Capacity

Groundwater Pumping

- TWDB specified 7 categories of Pumping
- Irrigation, rural domestic, and Livestock pumping were distributed based on land use land cover and irrigated farmland information
- City municipal, mining, manufacturing, and power are all assigned as point stresses.
- Of these 7 categories, all but power were included in the Lipan GAM.

Assigning Irrigation Distribution for 1990 – 2000

- Use the 1994 Irrigation polygon GIS coverage.
- Overlaid this with the outline of the areas of observed higher production capacity.
- Intersect these two coverages with the model grid.
- Determine which model cells are in the higher production areas.
- In a spreadsheet, distribute the irrigation pumping by assigning cells in the higher production areas more pumping than cells in the low areas.
- Make sure the total irrigation pumping is consistent with TWDB reported value.

Assigning Rural Domestic Pumping

- Based on Census data.
- Used 1990 Census for the Transient Calibration period and 2000 Census for the Verification Period.
- Census give us Population Density = people/sq. mi.
- TWDB gives us estimated total rural domestic pumping per county per year.
- Remove all areas corresponding to metropolitan areas (> 500 people).
- Determine "pumping per person" for each county.
- Distribute this on the model grid using GIS tools to intersect the model grid with the Census data.

Other Pumping

- Assign livestock pumping similar to rural domestic pumping using Land Use / Land Cover data to delineate potential livestock areas.
- City municipal, a point source, corresponds to Goodfellow Air Force Base
- Manufacturing is also a point source coverage and is located at two manufacturing locations identified by TWDB.
- Mining, Manufacturing, City Municipal and Livestock pumping account for 0.03% to 0.7% of the total pumping

Irrigation Wells Installed Since 1950

Numerical Model Block Diagram

USGS Stream Gages

Concho River at Paint Rock (Nov 13, 2003)

USGS Gain-Loss Study 1918

USGS Gain-Loss Study 1925

Estimated Transmissivity

(based on production data)

Pumping

Irrigation Wells in Lipan Flats

Irrigation Well Distribution

Data from Lipan-Kickapoo Water Conservation District

Model Architecture

Model Specifications

- Three dimensional (MODFLOW-96)
- Regional scale
- Includes ground/surface water interaction
- Grid spacing = $\frac{1}{2}$ -mile
- Calibration to within 10% of head drop

GAM Modeling Protocol

Boundary Conditions and Properties

Boundary Conditions

- 1. Wells
- 2. Streams
- 3. Lakes
- 4. General Head Boundaries

5. Drains

Parameters

- 1. Hydraulic Conductivity
- 2. Specific Yield
- 3. Recharge
- 4. Evapotranspiration

Streams

Lakes

General Head Boundaries

2100'

Drains

Hydraulic Conductivity

Specific Yield

Sources of Recharge

- Precipitation
- Irrigation Return Flow
- Stream and River Leakage
- Lake and Pond Leakage
- Injection Wells

Nearby Recharge Estimates

	Aquifer		
Recharge	Edwards-	Seymour	Southern
Rate (in/yr)	Trinity		Ogallala
Min	0.30	1.00	0.05
Мах	2.00	2.60	8.62
Average	1.18	2.02	1.92
Count	4	5	17

Recharge

	Recharge	Rainfall
Zone	in/yr	in/yr
5	0.41	20.49
6	0.42	21.04
7	0.43	21.48
8	0.44	22.02
9	0.45	22.46
10	0.46	23.01
11	0.47	23.45
12	0.48	24.00
13	0.49	24.54

Recharge = 2% of Rainfall

Initial Estimate of Recharge as 4% of Mean Annual Historic Precipitation

Evapotranspiration

1994 Groundwater and Mixed Irrigated Lands

Higher Production Capacity Zones

Irrigation Pumping Distribution

Close-up of Irrigation Distribution

1980 Wells

				Туре	Acre-reel/yr
5 47	7.3		10	IRRIGATION	8990.00
1 5 8	as the songer	Pares .	0	MUNICIPAL CITY	0.12
SA K	Su Rey St A	Hola	non	LIVESTOCK	27.00
- Cast & Fl	New L	x 2 min	L	MANUFACTURING	44.73
7 4 5	St Prove	Same &	na i	MINING	0.007
N.			Ren FS/	RURAL DOMESTIC	1364.36

Model Calibration Results

Lipan GAM Modeling Periods

Model Water Level

Simulation Time Frame

- Modeled 1980 as Steady-State
- Incorporated 1980 Pumping Stresses
- Transient Calibration 1980 1990
- Transient Verification 1990 2000
- Predictive Simulations 2000 2050

Time Frame	Stress Periods	Years
Steady-State	1	< 20,000
Transient	20	20
Predictive	50	50

Analysis of Steady-State Calibration

Simulated Water Levels

Observed Simulated

Gradients

Observed Simulated

Concho River Low Flow Analysis 1979 - 1981

Average Minimum Flows 1979 - 1981			
Gage Location			
San Angelo	8.19	cfs	
Paint Rock	25.00	cfs	
Gain (+) / Loss (-)	16.81	cfs	
Ft3/day	1,452,035.08		
Acre-ft/Year	12,175.29		

Stream Flow Responses

- For different Calibration simulations, river gains from San Angelo to Paint Rock varied from 1,000 acre-feet per year to over 15,000 acre-feet per year.
- Amount of gain or loss in the river is sensitive to ET Depth, ET Rate and Recharge.

Simulated Concho River Gain

Area of Active ET Steady-State Model

Transient Calibration and Verification

Transient Recharge 1980 - 2000

Wells used in Calibration and Verification

Analysis of Transient Calibration

174 Data Points

Analysis of Transient Verification

Error during Calibration and Verification

Simulated Water Levels 1981

Observed

Simulated

Simulated Water Levels 1990

Observed

Simulated

Simulated Water Levels 2000

Observed

Simulated

Hydrographs 1

Hydrographs 2

Hydrographs 3

Concho River Flow Analysis 1980 - 2000

Concho River Flow

Year

Predictive Simulations

Drought of Record

Average Annual Precipitation

Recharge from Drought of Record

- Drought of Record from 1950 1956
- Precipitation in these 7 years was 65% of Normal
- Assigned Recharge for these 7 Years by Reducing Recharge in Each Zone by the Percentage of the Average Recharge in the Model Area

Predictive Irrigation Pumping 2000 - 2050

Historical and Predictive Irrigation Pumping

Other Predictive Pumping

Drawdown at 2010 – Average Recharge

Drawdown at 2020 – Average Recharge

Drawdown at 2030 – Average Recharge

Drawdown at 2040 – Average Recharge

Drawdown at 2050 – Average Recharge

Drawdown at 2050 – Drought of Record Last 7 Years

Hydrograph 50-year Drought of Record

Simulated water Level at 43-38-617 (Leona) 50-year Drought of Record

Difference Between Average Recharge and Drought of Record Recharge - 2050

Drawdown at 2040 – Drought of Record Last 7 Years

Drawdown at 2030 – Drought of Record Last 7 Years

Drawdown at 2020 – Drought of Record Last 7 Years

Drawdown at 2010 – Drought of Record Last 7 Years

Pumping Sensitivity

Model Limitations

Supporting Data

- hydrogeology, hydraulic properties, fractures, heterogeneity
- Accuracy of pumping data
- Limiting Assumptions
 - Continuous porous media model
 - "Lumped-layer" conceptualization
- Limits of Applicability
 - Only a tool
 - Use only for generalized regional modeling

Conclusions

- Model meets GAM calibration/verification requirements
- Model is a good tool for RWP efforts
- Good tool to assess regional drawdown from proposed pumping and changes in recharge
- Not a good tool for detailed evaluations

5th Stakeholder Advisory Forum March 31st, 2004 Lipan GAM List of Attendees

Name	Affiliation
James Beach	LBG-Guyton Associates
Richard Smith	TWDB
Chico Denis	Lipan -Kickapoo WCD
Bill Lange	Lange Drilling Company
Virgil Polecek	Sutton Co. UWD
Winton Milliff	Coke Co. UWCD
Gregory Phinney	Farmer/Rancher
John Book	
Michael Hoclsek	
Nolan Nichues	Farmer
Leon Bradey	
Allan Lange	Lipan -Kickapoo WCD
Cindy Cawley	Plateau/Sutton
Ed Trotter	
Allen Gully	Farmer
Will Wilde	City of San Angelo
Don Davis	Lipan -Kickapoo WCD
Gene Davis	Rancher

Lipan Aquifer Groundwater Availability Model (GAM) 5th Stakeholder Advisory Forum (SAF) Meeting March 31, 2004 San Angelo, Texas

Meeting Summary

The fifth Stakeholder Advisory Forum (SAF) meeting for the Lipan Aquifer Groundwater Availability Model (GAM) was held on March 31st from 7:00 to 8:30 PM at the Texas A&M Research Center in San Angelo, Texas. TWDB project manager Richard Smith gave an introduction to the GAM program and introduced LBG-Guyton Associates.

James Beach of LBG-Guyton made a presentation to an audience consisting of about 15 attendees. The presentation, along with a list of participants who signed up at the meeting, is available at the TWDB GAM website (www.twdb.state.tx.us/gam). The presentation was structured to review key components of the conceptual model, MODFLOW model calibration, and predictive results.

The questions and answers from the SAF are presented below.

Questions and Answers

- *Q*: Why does the model simulate flow with one layer when we know that there are unique zones in the limestone that are usually one to two feet thick that produce most of the water in the wells?
- A: MODFLOW uses a continuous porous media conceptualization to simulate groundwater flow. This basically means that the aquifer material in each model layer is the same throughout the thickness of that model layer. To appropriately implement a model with many layers, we would need to know where each of the high permeability zones is located in each well, as well as how contiguous that zone is in the surrounding area. That level of information does not exist; therefore the aquifer has been conceptualized to contain one layer and that layer is assumed to represent the overall transmissivity of the aquifer. The transmissivity value in each model grid block represents the overall "productivity" of the aquifer in that area. This conceptualization is consistent with the overall GAM model objectives and the level of data that is available at this time. This approach has been used successfully to simulate overall ground-water availability in aquifers that have similar vertical variation in hydraulic properties.
- *Q:* The results indicate that water levels could decrease another 90 feet by 2050. If that happened, some of the wells in that area would be dry, but your model doesn't indicate that, why?
- A: This is partly due to the conceptual model, which was discussed in the previous question. The model is designed to represent typical conditions in the aquifer, but doesn't simulate well hydraulics in individual wells. Although some wells would be dry under those conditions, the model layer representing the "average" aquifer dimensions is deeper than most of those wells. Because the model assumes that the wells are completed all the way to the base of the aquifer, they would not be dry under those conditions.