STAKEHOLDER ADVISORY FORUM MEETING AUGUST 21, 2002

PRESENTATION

- REVISIONS TO MODEL (since SAF on Feb. 21, 2002)
 - Hydraulic conductivity
- STEADY-STATE CALIBRATION
 - Calibration results
- TRANSIENT DATA COMPILATION

REVISIONS TO MODEL (since SAF on Feb. 21, 2002)

HYDRAULIC CONDUCTIVITY

HYDRAULIC CONDUCTIVITY Base distribution from SWRI (Version 1) [Derived from aquifer tests] (As of 02/21/02 – To be revised)

EXPECTED REVISIONS TO HYDRAULIC CONDUCTIVITY (as of Feb. 21 SAF meeting)

- Revised K distribution from SWRI
 - based on aquifer tests and measured hydraulic heads (SWRI version 2)
 - based on aquifer tests and measured hydraulic heads and springflows (SWRI version 3)
- Mapped narrow high K zones (conduits—Steve Worthington)
 - based on potentiometric surface maps, sinking (losing) streams, geologic structures, and water chemistry
- Measured hydraulic heads and springflows (model calibration)

HYDRAULIC CONDUCTIVITY SWRI (Version 2)

[Derived from aquifer tests and measured hydraulic heads]

CONDUITS (mapped by Steve Worthington)

HYDRAULIC CONDUCTIVITY SWRI (Version 2) + Conduits

HYDRAULIC CONDUCTIVITY SWRI (Version 3) + Conduits

[Derived from aquifer tests and measured hydraulic heads and springflows]

HYDRAULIC CONDUCTIVITY

- Results of April 19, 2002 meeting:
- ✓ Do not use SWRI hydraulic conductivity (K) distributions as "base"
 - deficiencies in aquifer test data
 - statistical; not based on hydrogeology
- ✓ Use transmissivity sub areas as defined by Maclay and Land (1988) (fig. 10) as "base"
- Overlay conduits defined by Steve Worthington on "base" K distribution

(based on Maclay and Land, 1988)

Subarea	Model	Trans	Trans	К	К	
	zone #	(ord inal	(ordinal Log min 1		Log min 10	
		range)	a ve rage)	ft/d	t/d	
A	1	1-3	2	6	38	
B	2	0-5	2.5	9.5	56	
С	3	0-4	2	6	38	
D	4	0-1	0.5	1.6	14	
E	5	0-4	2	6	38	
F	6	D-3	1.5	4	28	
G	7	0-2	1	2.4	20	
н	8	3-5	4	40	160	
I	9	3-7	5	100	3 10	
ل	10	1-3	2	6	38	
К	11	3-6	4.5	64	220	
L	12	3-4	3.5	25	1 10	
M	13	3-5	4	40	160	
N	14	47	5.5	160	440	
0	15	46	5	100	3 10	
P	16	6-8	7	600	1250	
Q	17	2-3	2.5	9.5	56	
R	18	9-10	9.5	6400	7000	
S	19	6-8	7	600	1250	
Т	20	7-8	7.5	1000	1750	
U	21	1-2	1.5	4	28	

CONDUITS (mapped by Steve Worthington)

STEADY-STATE CALIBRATION

STEADY-STATE CALIBRATION

- Calibration period: 1939 1946
- Pre-1950's drought, minimal irrigation development
- Near-normal precipitation
- San Antonio precipitation: normal (1961-90) 30.98 in/yr average 1939-46 30.47 in/yr

HYDRAULIC CONDUCTIVITY ZONES [K based on Maclay and Land (1988) + Conduits]

CALIBRATION REVISIONS

- Lowered hydraulic conductivity (K) in recharge zone
- Varied K of conduit segments
- Redistributed recharge

-- decrease Cibolo Creek, increase Blanco River

- Added barrier fault in Nueces recharge zone
- Varied K in saline water zone and Kinney County

HYDRAULIC HEAD RESIDUALS

HYDRAULIC HEAD RESIDUALS

HYDRAULIC HEAD RESIDUALS (As of 6/14/02 – Subject to revision)

HYDRAULIC HEAD RESIDUALS (As of 6/14/02 – Subject to revision)

HYDRAULIC HEAD RESIDUALS

CONDUIT LOCATION REVISIONS

HYDRAULIC HEAD RESIDUALS

Observed vs. Computed Target Values

Observed vs. Residuals

(As of 6/14/02 – Subject to revision)

Residual

STEADY-STATE CALIBRATION SPRINGFLOW

• 5 springs simulated:

_	Mea	Simulated**		
	Mean	Median	Range***	: -
Comal	333	330	297 to 363*	< <u>332</u>
San Marcos	156	152	137 to 167	145
Leona	16.2	15.5	14 to 17	12.7
San Antonio	15.4	10.2	9.2 to 11.2	7.9
San Pedro	6.6	6.3	5.7 to 6.9	9.2

*(Range of medians: 274 to 358)
**(As of 6/14/02– Subject to revision)
***(± 10 percent of median – GAM guideline)

STEADY-STATE SIMULATION RESULTS

		Calibrated	Calibrated	Calibrated	SWRI (aq tests +	Maclay K	Maclay K	Calibrated
Parameter	Target	December 2001	March 2002	SWRI (aq tests)	heads +	Minimum 10	Minimum 10	Maclay K
		GWMAP	GWMAP	& Conduits	springflows)		& Conduits	& Conduits
Residual (ft)	<5	-25	-8.2	5.9	-119	-329	-0.9	2.3 (1.7)
Abs Res (it)	<20	17.7	24.8	223	121	331	27.2	19.5 (17.5)
GHB (percent)	~10	8.2	8.9	8.1	7.2	32	7.4	8.0
Springs (ft ² /sec)								
Com al	Mean : 333							
	Median: 330	347	315	349	118	228	381	332
	Range: 297-363			1	1		1	
San Marcos	Man: 156							
	Median: 152	142	165	171	110	33	138	145
	Range: 137-167							

STAGES IN MODELING PROCESS

- Conceptual model
- Model construction
- Calibration
 - steady-state
 - transient
- Verification
- Prediction

TRANSIENT DATA COMPILATION

TRANSIENT DATA COMPILATION MODEL INPUTS

- STORAGE COEFFICIENT/SPECIFIC YIELD
 - (1) Maclay and Land (1988)
 - Confined zone of aquifer $1x10^{-4}$
 - Unconfined zone of aquifer 0.05
 - (2) Specific storage x Aquifer thickness(3) Conduits high storativity values

TRANSIENT DATA COMPILATION MODEL INPUTS

- RECHARGE
 - (1) San Antonio segment
 - (a) USGS monthly recharge rates by basin
 - (2) Barton springs segment
 (a) Scanlon and others (2000)
 (b) Based on Barton Springs flow prior to 1979

TRANSIENT DATA COMPILATION MODEL INPUTS

- PUMPAGE
 - Preliminary data set developed by BEG
 - Subject to refinement during transient calibration
 - Types of wells:
 - (1) Municipal and public water supply
 - (2) Irrigation
 - (3) Industrial
 - (4) County-other (domestic)

TRANSIENT CALIBRATION TARGETS HYDRAULIC HEADS

• Calibration targets

(1) Hydraulic heads - long-term record wells

- County Index wells
- match hydrographs
- (2) Hydraulic heads selected time periods
 - periods of above- and below-normal precipitation
 - match hydraulic heads for a set of wells

TRANSIENT CALIBRATION TARGETS SPRINGFLOW

• 5 springs simulated:

San MarcoscompiledComalcompiledLeonacompiledSan Pedrocompiled*San Antoniocompiled*

*Based on relation with index well J-17