STAKEHOLDER ADVISORY FORUM (SAF) MEETING JUNE 5, 2001

AGENDA

- GROUND-WATER FLOW MODELS
- FLOW IN EDWARDS AQUIFER
- EDWARDS AQUIFER MODEL
- PROJECT SCHEDULE

GROUND-WATER FLOW MODELS

WHAT IS A GROUND-WATER FLOW MODEL ?

- Numerical computer ground-water flow model
- A set of mathematical equations that represents the physical aquifer system
- Computer code -- MODFLOW
- Based on conceptual model of aquifer system

WHAT IS A GROUND-WATER FLOW MODEL ?

- Model is an approximation of physical aquifer system
 - requires assumptions and simplifications
- Uses of model
 - test and refine conceptual model
 - predictive tool

MODEL INPUT/DATA SETS

- Aquifer structure
- Hydraulic properties
- Recharge
- Discharge

MODEL INPUT/DATA SETS

- Boundary conditions
 - inflow to modeled area
 - outflow from modeled area
 - no flow

MODEL OUTPUT

- Hydraulic heads (water levels)
- Flow rates
 - spring discharge, leakage to streams
- Water budget of inflows and outflows

MODEL LIMITATIONS

- Model scale (cell size)
 - regional scale vs. local features
- Available information
 - aquifer structure, hydraulic properties, recharge, discharge

STAGES IN MODELING PROCESS

- Conceptual model
- Model construction
- Calibration
 - match measured and simulated hydraulic heads and flows
- Verification
 - compare measured and simulated hydraulic heads and flows
- Prediction

FLOW IN EDWARDS AQUIFER (CONCEPTUAL MODEL)

Edwards Aquifer

Edwards Aquifer

Downdip limit of freshwater

EDWARDS AQUIFER MODEL

PREVIOUS MODELS

- San Antonio segment
 - Klemt and others (1979)
 - Thorkildsen and McElhany (1992)
 - Maclay and Land (1988)
- Barton Springs segment
 - Slade and others (1985)
 - Scanlon and others (2000)

EDWARDS AQUIFER MODEL

- Uniform ¹/₄-mi grid
- 370 rows; 700 columns; 259,000 cells
- One layer
- Grid alignment:
 - Major faults and flow near Comal and San Marcos Springs

AQUIFER STRUCTURE AND HYDRAULIC PROPERTIES

- Aquifer top elevation
- Aquifer bottom elevation
- Faults
- Hydraulic conductivity

FAULTS

- Simulated using Horizontal Flow Barrier Package
- Model inputs:
 - (a) fault location
 - (b) hydraulic characteristic (C)
 - hydraulic conductance term
- Assumption: hydraulic characteristic (C) is a function of fault displacement
 - inversely proportional

BOUNDARY CONDITIONS NORTHERN BOUNDARY

- General-head boundary condition
- Will allow simulation of inflow from Trinity aquifer
- Reasonableness of model-computed inflow
 - compare with model-computed outflow from Trinity aquifer from TWDB model of Trinity aquifer

BOUNDARY CONDITIONS SOUTHERN BOUNDARY

- No-flow boundary
- Located at 10,000 mg/L saline water line
 - conservative in terms of potential flow across boundary
- Previous models used 1,000 mg/L line
- Final placement determined by model calibration

BOUNDARY CONDITIONS EASTERN BOUNDARY

- Located at Colorado River
 - regional ground-water discharge point
 - well-defined hydrogeologic boundary
 - Colorado River simulated using River Package
- Previous models used g-w divide near Kyle in Hays County
 - poorly defined spatially and temporally

BOUNDARY CONDITIONS WESTERN BOUNDARY

- No-flow boundary
- Located at g-w divide near Brackettville in Kinney County
- Same drawbacks as g-w divide near Kyle
 - no other well-defined hydrogeologic boundary within reasonable distance
 - further removed from principal areas of interest

RECHARGE

- Recharge to Edwards aquifer occurs in outcrop area
- Recharge basins delineated by USGS
- Monthly recharge rates calculated by USGS
 - 1934 to present

RECHARGE DISTRIBUTION

- Initially uniformly distributed over each recharge basin
- Initial rate = Annual recharge/ Recharge basin area
- Refinement: partition recharge into a stream channel component and areal component
- Areal component
 - infiltration of precipitation
 - distributed based on hydrogeologic variability within recharge basin

SPRINGS

5 springs simulated:
 San Marcos San Pedro
 Comal San Antonio
 Leona

REPRESENTATION OF SPRINGS

- Springs represented using MODFLOW Drain Package
- Model inputs
 (a) hydraulic conductance term (C)
 (b) drain elevation
- Parameters are poorly defined, difficult to measure
- C determined by model calibration

STEADY-STATE CALIBRATION

- Calibration period: 1939 1946
- Pre-1950's drought, minimal irrigation development
- Near-normal precipitation
- San Antonio precipitation: normal (1961-90) 30.98 in/yr average 1939-46 30.47 in/yr

STEADY-STATE CALIBRATION

- Average conditions 1939-46
- Recharge
- Discharge
 - Pumpage

STEADY-STATE CALIBRATION TARGETS

• Calibration targets

(1) Measured predevelopment water-levels- Measured water levels for 1939-46

- (2) Springflow
 - 1939-46 averages

SPRINGS

• 5 springs simulated:

1939-46 mean flows

	(cfs)
San Marcos	153
Comal	335
Leona	16
San Pedro	ND
San Antonio	ND

ND – no data; flow will be estimated

TRANSIENT CALIBRATION TARGETS

- Calibration targets
 - (1) Long-term record wells
 - County Index wells
 - match hydrographs
 - (2) Selected time periods
 - periods of above- and below-normal precipitation
 - match measured water levels

TRANSIENT CALIBRATION TARGETS

• Selected time periods (1) Below-normal precipitation (a) 1950-56 (b) 1982-84 (2) Above-normal precipitation (a) 1971-74 (b) 1990-94

PROJECT SCHEDULE

- Develop conceptual model
- Construct model
- Steady-state calibration
- Transient calibration and verification
- Report preparation
- Draft report due
- Final report due

June – Nov 2000 Dec 2000 – June 2001 July – Nov 2001

Dec 2001 – June 2002 July – Nov 2002 Dec 2002 July 2003