

NORTHERN SEGMENT OF THE EDWARDS AQUIFER GROUNDWATER AVAILABILITY MODEL

GAM Stakeholder Training Nov. 2003

OUTLINE

- Introduction to finite-difference modeling
- Introduction to PMWIN
- Overview of Northern Edwards aquifer model
- Hands-on modeling exercise

INTRODUCTION TO GROUNDWATER FLOW MODELING

WHAT IS AN AQUIFER?

 Rock or sediment from which usable amounts of water can be extracted

WHAT IS A GROUNDWATER FLOW MODEL?

- Mathematical representation of an aquifer
- Uses basic laws of physics that govern groundwater flow
- Calculates the hydraulic head at discrete locations (grid)
- Calculated model heads can be compared to hydraulic heads measured in wells

WHY ARE GROUNDWATER FLOW MODELS NEEDED?

- Groundwater flow is difficult to observe
- Aquifers are typically complex in terms of spatial extent and hydrogeological characteristics
- Means of integrating available data for prediction of groundwater flow

MODEL INPUT DATA

- Geology
 - Stratigraphy
 - Structure
- Water levels
- Surface water
 - Spring discharge
 - Stream discharge
- Aquifer properties
- Water use

MODELING SKILLS

- GIS
- Programming
- Geology
- Groundwater hydrology

MODELING PROCESS

- Define model objectives
- Develop conceptual model
- Design model
- Calibration and verification modeling
 - Comparison with observed data
- Predictive modeling
 - Predict impacts of projected growth
 - 2000 2050

MODEL LIMITATIONS

- Approximation of the real system
 - Regional scale
- Uncertainty in the input data
 - Grid resolution
 - Incomplete data

MODEL CELL

Hydraulic head calculated by balancing water inflows and outflows

MODEL CELL

Darcy's Law

Hydraulic Gradient $I = (h_1 - h_2)/L$

$$Q = KIA$$

$$PORE = KI$$

$$WATER = V = KI$$

$$PORE = KI$$

$$VELOCITY$$

Main Equations of Flow

 $Q_{in} + Q_{out} = 0; \quad Q_{in} + Q_{out} = Change in storage$

$$\frac{\partial}{\partial x} \left(K_x \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial h}{\partial z} \right) = 0$$

Steady-state modeling

$$\frac{\partial}{\partial x} \left(K_x \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial h}{\partial z} \right) = S_s \frac{\partial h}{\partial t}$$
Transient modeling

I ransient modeling

INTRODUCTION TO PMWIN

PROCESSING MODFLOW

- PMWIN
 - Pre/Post-processor (data entry/evaluation)

MODFLOW

- Modular 3-D groundwater flow model
- MOC3D Solute-transport model
- MT3D Solute-transport model
- MT3DMS Solute-transport model
- PEST Inverse model
- UCODE Inverse model
- PMPATH Advective transport model

PMWIN

- Grid
 - Grid size
 - Layer type Unconfined or Confined/Unconfined
 - Boundary conditions Active/Inactive cells
 - Top of layer
 - Base of layer

- Parameters
 - Time units
 - Initial hydraulic heads
 - Boreholes/observations
 - Horizontal hydraulic conductivity
 - Vertical hydraulic conductivity
 - Specific storage
 - Transmissivity
 - Vertical leakance
 - Storage coefficient
 - Effective porosity
 - Specific yield

Features

- Density
- Drains
- Evapotranspiration
- General-head boundary
- Horizontal-flow barrier
- Interbed storage
- Recharge
- Reservoir

Features

- River
- Streamflow routing
- Time-variant specified head
- Well
- Wetting capability
- Output control
- Solvers
- Run

- Post-processing tools
 - Presentation
 - View model output data
 - Water budget
 - Graphs
 - Head-time
 - Drawdown-time
 - Compaction-time ...

MODFLOW

- Modules
 - Basic Package
 - Block-Centered Flow Package
 - Density Package
 - Direct Solution Package (Solver)
 - Drain Package
 - Evapotranspiration Package
 - General-Head Boundary Package
 - Horizontal-Flow barrier Package
 - Interbed-Storage Package
 - Output Control

MODFLOW (Cont.)

Modules

- Preconditioned Conjugate Gradient 2 Package
- River Package
- Recharge Package
- Reservoir Package
- Strongly Implicit Procedure Package (solver)
- Slice-Successive Overrelaxation Package (solver)
- Stream-Routing Flow Package
- Time-Variant Specified-Head
- Well Package

NORTHERN EDWARDS AQUIFER MODEL

EDWARDS AQUIFER

STUDY AREA

TOPOGRAPHY

AVERAGE ANNUAL PRECIPITATION

SEASONAL PRECIPITATION

HISTORIC PRECIPITATION

EVAPORATION

HYDROGEOLOGY

Series	Group		Stratigraphic Unit	Hydrologic Unit	Maximum Thickness (feet)
Gulf	Navarro			Navarro and Taylor Group	850
	Taylor				000
	Austin			Austin Chalk	450
Comanche	Eagle Ford				50
	Washita		Buda Limestone		50
		Del Rio Clay			60
			Georgetown Formation		100
	Fredericksburg	Edwards Limestone		associated limestones	200
		Comanche Peak Limestone			50
		Walnut Formation			150
	Trinity	Paluxy Formation		Lipper Trinity	10
		Glen Rose	Upper Member	Opper Thinky	450
			Lower Member	Middle Trinity	450
		Travis Peak	Hensell Sand Member		100
			Cow Cr. Limestone Member		100
			Hammett Shale Member		50
			Sligo Member	Lower Trinity	150
			Hosston Member		850

HYDROSTRATIGRAPHY

Modified from Bureau of Economic Geology Geologic Atlas of Texas

SURFACE GEOLOGY

GEOLOGIC CROSS SECTIONS

AQUIFER TOP ELEVATION

AQUIFER BASE ELEVATION

WATER LEVELS

STREAMFLOW GAIN-LOSS

(1%)

HISTORIC PUMPAGE: TOTAL

HISTORIC PUMPAGE

1995

RURAL POPULATION

Industrial and municipal wells

INDUSTRIAL/MUNICIPAL WELLS

CONCEPTUAL MODEL

MODEL GRID

GENERAL-HEAD BOUNDARY (INTER-AQUIFER FLOW)

TOTAL PUMPAGE

MODEL RESULTS: STEADY-STATE MODEL

MEASURED vs. SIMULATED WATER LEVELS

MEASURED vs. SIMULATED WATER LEVELS

MEASURED vs. SIMULATED STREAM DISCHARGE

SENSITIVITY ANALYSIS: STEADY-STATE

MODEL RESULTS: TRANSIENT MODEL

SPECIFIC YIELD

MEASURED vs. SIMULATED WATER LEVELS

MEASURED vs. SIMULATED WATER LEVELS

MEASURED vs. SIMULATED STREAM DISCHARGE

SENSITIVITY ANALYSIS: SPECIFIC STORAGE

SENSITIVITY ANALYSIS: SPECIFIC STORAGE

SENSITIVITY ANALYSIS: SPECIFIC YIELD

SENSITIVITY ANALYSIS: SPECIFIC YIELD

MODEL RESULTS PREDICTIVE MODEL

TOTAL PUMPAGE

WATER-LEVEL CHANGES: AVERAGE RECHARGE

WATER-LEVEL CHANGES: DROUGHT RECHARGE

CONCLUSIONS

- Tool to evaluate groundwater resource management strategies
- Based on available geologic and hydrologic data
- Steady-state and transient runs
 - Average recharge of 20% annual precipitation
 - Approximately 50-70% of groundwater flow in unconfined part of aquifer
 - Groundwater extraction less than 20% of discharge
- Predictive model runs (2000-2050)
 - Average recharge conditions
 - · Water-level rise throughout most of model area
 - Drought-of-record conditions
 - Water-level declines in unconfined part of aquifer
 - Water-level rise associated with lower pumping rates