# Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer –Barton Springs Segment–Groundwater Flow Model

By William R. Hutchison, Ph.D., P.E., P.G.

and Melissa E. Hill, Ph.D., P.G. Texas Water Development Board

June 2011







The seals appearing on this document were authorized by William R. Hutchison, P.E. 96287, P.G. 286, and Melissa E. Hill, P.G. 1316 on June 27, 2011.

This page is intentionally blank.

#### Table of Contents

| Table of Tables and Figures    4                                                              |
|-----------------------------------------------------------------------------------------------|
| EXECUTIVE SUMMARY                                                                             |
| 1.0 INTRODUCTION AND PURPOSE FOR GROUNDWATER FLOW MODEL7                                      |
| 2.0 MODEL OVERVIEW                                                                            |
| 2.1 Model Packages                                                                            |
| 2.11 Basic Package                                                                            |
| 2.12 Discretization Package                                                                   |
| 2.13 Zone Array File 10                                                                       |
| 2.14 Layer-Property Flow Package 10                                                           |
| 2.15 Well Package 15                                                                          |
| 2.16 Drain Package                                                                            |
| 2.17 Recharge Package 21                                                                      |
| 2.18 Horizontal Flow Barrier Package                                                          |
| 2.19 Output Control Package                                                                   |
| 2.20 Geometric Multigrid Solver                                                               |
| 3.0 MODEL CALIBRATION AND RESULTS                                                             |
| 3.1 Model Simulated Discharges at Barton Springs versus Estimated or Measured<br>Discharges   |
| 3.2 Model Simulated Groundwater Elevations versus Measured Groundwater<br>Elevations          |
| 3.3 Water Budget                                                                              |
| 4.0 MODEL LIMITATIONS                                                                         |
| 5.0 REFERENCES                                                                                |
| APPENDICES                                                                                    |
| APPENDIX A: Regression Models Developed for the Percent of Rural Pumping                      |
| APPENDIX B:Regression Models Using Precipitation Indices and Recharge Zones                   |
| APPENDIX C: Estimated or Measured Discharges Versus Simulated Discharges at Barton Springs 55 |
| APPENDIX D: Wells Used for Measured Groundwater Elevations                                    |
| APPENDIX E: Hydrographs for Target Wells                                                      |

#### Table of Tables and Figures

| TABLE 1. SUMMARY OF MODEL INPUT PACKAGES AND FILENAMES.       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TABLE 2. SUMMARY OF MODEL OUTPUT FILES AND THEIR NAMES.       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FIGURE 1. ACTIVE MODEL CELLS WITHIN THE MODEL DOMAIN FOR THE EDWARDS (BALCONES FAULT ZONE)-BARTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SPRINGS SEGMENT-GROUNDWATER AVAILABILITY MODEL (FROM SCANLON AND OTHERS, 2001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIGURE 2. TOP AND BOTTOM ELEVATIONS FOR THE EDWARDS (BALCONES FAULT ZONE) AQUIFER IN THE UPDATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIGURE 3. HYDRAULIC CONDUCTIVITY ZONES (FROM SCANLON AND OTHERS, 2001). ARROWS SHOW THE GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TREND IN ANISOTROPY. ZONE 2 IS NOT LISTED AS IT REPRESENTS THE INACTIVE AREAS OF THE MODEL 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FIGURE 4. BAR GRAPH OF HYDRAULIC CONDUCTIVITY VALUES IN THE UPDATED MODEL AND THOSE USED BY SCANLON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AND OTHERS (2001). HYDRAULIC CONDUCTIVITY IS ANISOTROPIC IN THE UPDATED MODEL AND ISOTROPIC IN THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SCANLON AND OTHERS (2001) MODEL. ZONE 2 IS NOT LISTED AS IT REPRESENTS THE INACTIVE AREAS OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MODEL. HYDRAULIC CONDUCTIVITY VALUES IN THE X-DIRECTION FOR ZONES 3 AND 4 IN THE UPDATED MODEL ARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.1 FT/DAY (SEE TABLE 3) AND THEREFORE, ARE NOT VISIBLE IN FIGURE 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TABLE 3. HYDRAULIC CONDUCTIVITY VALUES IN THE UPDATED MODEL (ANISOTROPIC) COMPARED TO THOSE USED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SCANLON AND OTHERS (2001) WHICH ARE ISOTROPIC. ZONE 2 IS NOT LISTED AS IT REPRESENTS THE INACTIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AREAS OF THE MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TABLE 4. SPECIFIC STORAGE VALUES FOR EACH ZONE IN THE ACTIVE AREA OF THE UPDATED MODEL. ZONE 2 IS NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LISTED AS IT REPRESENTS THE INACTIVE AREAS OF THE MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FIGURE 5. NUMBER OF NON-DOMESTIC OR POINT WELLS IN SCANLON AND OTHERS (2001) MODEL (TOP) AND PERCENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OF DOMESTIC OR RURAL PUMPING IN SCANLON AND OTHERS (2001) MODEL (BOTTOM). THE TOTAL NUMBER OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WELLS (NON-DOMESTIC PLUS DOMESTIC) IS 7,037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FIGURE 6. PERCENT OF RURAL PUMPING FOR THE MONTH OF JUNE BASED ON THE REGRESSION MODEL RELATIVE TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| THAT IN THE SCANLON AND OTHERS (2001) MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TABLE 5. SUMMARY OF ANNUAL AVERAGE PUMPING FOR EACH MODEL ZONE DURING THE RESPECTIVE TIME FRAME. ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PUMPING QUANTITIES REPORTED ARE IN ACRE-FEET PER YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TABLE 6. ANNUAL AVERAGE PUMPING IN THE UPDATED MODEL VERSUS PUMPAGE ESTIMATES PROVIDED BY THE BARTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SPRINGS/EDWARDS AQUIFER CONSERVATION DISTRICT. ALL PUMPING QUANTITIES REPORTED ARE IN ACRE-FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PER YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FIGURE 7. PLOT WITH MONTHLY PUMPING ESTIMATES PROVIDED BY THE BARTON SPRINGS/EDWARDS AQUIFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CONSERVATION DISTRICT (BSEACD) VERSUS MONTHLY PUMPING IN THE UPDATED MODEL (TOP) AND ANNUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AVERAGE PUMPING ESTIMATES PROVIDED BY THE BARTON SPRINGS/EDWARDS AQUIFER CONSERVATION DISTRICT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (BSEACD) VERSUS ANNUAL AVERAGE PUMPING IN THE UPDATED MODEL (BOTTOM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FIGURE 8. MONTHLY PUMPING (DOMESTIC PLUS NON-DOMESTIC) QUANTITIES WITH MONTHLY INDIVIDUAL NON-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DOMESTIC AND DOMESTIC QUANTITIES IN THE UPDATED MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIGURE 9. SEVEN RECHARGE ZONES. ZONES 2 THROUGH 8 ARE SHOWN. ZONE 1 IS THE CONFINED AREA OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EDWARDS (BALCONES FAULT ZONE) AQUIFER (WHITE) ZONE. DISTRIBUTED OUTCROP AREA (2), ONION CREEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON<br>CREEK (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON<br>CREEK (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>(3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON CREEK (8).</li> <li>FIGURE 10. REGRESSION MODEL DEVELOPED USING THE PRECIPITATION INDICES FOR THE MONTH OF OCTOBER AND THE RECHARGE QUANTITIES IN ZONE 3 (ONION CREEK) FROM THE SCANLON AND OTHERS MODEL (2001) 23</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>(3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON CREEK (8).</li> <li>FIGURE 10. REGRESSION MODEL DEVELOPED USING THE PRECIPITATION INDICES FOR THE MONTH OF OCTOBER AND THE RECHARGE QUANTITIES IN ZONE 3 (ONION CREEK) FROM THE SCANLON AND OTHERS MODEL (2001) 23</li> <li>FIGURE 11. A COMPARISON OF MONTHLY RECHARGE BASED ON THE REGRESSION MODELS WITH THAT USED IN THE</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>(3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON CREEK (8).</li> <li>FIGURE 10. REGRESSION MODEL DEVELOPED USING THE PRECIPITATION INDICES FOR THE MONTH OF OCTOBER AND THE RECHARGE QUANTITIES IN ZONE 3 (ONION CREEK) FROM THE SCANLON AND OTHERS MODEL (2001) 23</li> <li>FIGURE 11. A COMPARISON OF MONTHLY RECHARGE BASED ON THE REGRESSION MODELS WITH THAT USED IN THE SCANLON AND OTHERS (2001) MODEL (NOTED AS "BEG" IN THE LEGEND). TWO ANOMALIES (CIRCLED) ARE</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>(3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON CREEK (8).</li> <li>FIGURE 10. REGRESSION MODEL DEVELOPED USING THE PRECIPITATION INDICES FOR THE MONTH OF OCTOBER AND THE RECHARGE QUANTITIES IN ZONE 3 (ONION CREEK) FROM THE SCANLON AND OTHERS MODEL (2001).</li> <li>FIGURE 11. A COMPARISON OF MONTHLY RECHARGE BASED ON THE REGRESSION MODELS WITH THAT USED IN THE SCANLON AND OTHERS (2001) MODEL (NOTED AS "BEG" IN THE LEGEND). TWO ANOMALIES (CIRCLED) ARE APPARENT.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>(3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON CREEK (8).</li> <li>FIGURE 10. REGRESSION MODEL DEVELOPED USING THE PRECIPITATION INDICES FOR THE MONTH OF OCTOBER AND THE RECHARGE QUANTITIES IN ZONE 3 (ONION CREEK) FROM THE SCANLON AND OTHERS MODEL (2001) 23</li> <li>FIGURE 11. A COMPARISON OF MONTHLY RECHARGE BASED ON THE REGRESSION MODELS WITH THAT USED IN THE SCANLON AND OTHERS (2001) MODEL (NOTED AS "BEG" IN THE LEGEND). TWO ANOMALIES (CIRCLED) ARE APPARENT.</li> <li>TABLE 7. MAXIMUM RECHARGE RATES PER ZONE IN THE UPDATED MODEL.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>(3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON CREEK (8).</li> <li>FIGURE 10. REGRESSION MODEL DEVELOPED USING THE PRECIPITATION INDICES FOR THE MONTH OF OCTOBER AND THE RECHARGE QUANTITIES IN ZONE 3 (ONION CREEK) FROM THE SCANLON AND OTHERS MODEL (2001) 23</li> <li>FIGURE 11. A COMPARISON OF MONTHLY RECHARGE BASED ON THE REGRESSION MODELS WITH THAT USED IN THE SCANLON AND OTHERS (2001) MODEL (NOTED AS "BEG" IN THE LEGEND). TWO ANOMALIES (CIRCLED) ARE APPARENT.</li> <li>TABLE 7. MAXIMUM RECHARGE RATES PER ZONE IN THE UPDATED MODEL.</li> <li>24</li> <li>TABLE 8. DRY THRESHOLDS, DRY FACTORS, WET THRESHOLDS, AND WET FACTORS FOR MONTHS 1 THROUGH 12 IN</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>(3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON CREEK (8).</li> <li>FIGURE 10. REGRESSION MODEL DEVELOPED USING THE PRECIPITATION INDICES FOR THE MONTH OF OCTOBER AND THE RECHARGE QUANTITIES IN ZONE 3 (ONION CREEK) FROM THE SCANLON AND OTHERS MODEL (2001) 23</li> <li>FIGURE 11. A COMPARISON OF MONTHLY RECHARGE BASED ON THE REGRESSION MODELS WITH THAT USED IN THE SCANLON AND OTHERS (2001) MODEL (NOTED AS "BEG" IN THE LEGEND). TWO ANOMALIES (CIRCLED) ARE APPARENT.</li> <li>TABLE 7. MAXIMUM RECHARGE RATES PER ZONE IN THE UPDATED MODEL.</li> <li>24</li> <li>TABLE 8. DRY THRESHOLDS, DRY FACTORS, WET THRESHOLDS, AND WET FACTORS FOR MONTHS 1 THROUGH 12 IN THE UPDATED MODEL.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>(3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON CREEK (8).</li> <li>FIGURE 10. REGRESSION MODEL DEVELOPED USING THE PRECIPITATION INDICES FOR THE MONTH OF OCTOBER AND THE RECHARGE QUANTITIES IN ZONE 3 (ONION CREEK) FROM THE SCANLON AND OTHERS MODEL (2001) 23</li> <li>FIGURE 11. A COMPARISON OF MONTHLY RECHARGE BASED ON THE REGRESSION MODELS WITH THAT USED IN THE SCANLON AND OTHERS (2001) MODEL (NOTED AS "BEG" IN THE LEGEND). TWO ANOMALIES (CIRCLED) ARE APPARENT.</li> <li>TABLE 7. MAXIMUM RECHARGE RATES PER ZONE IN THE UPDATED MODEL.</li> <li>TABLE 8. DRY THRESHOLDS, DRY FACTORS, WET THRESHOLDS, AND WET FACTORS FOR MONTHS 1 THROUGH 12 IN THE UPDATED MODEL.</li> <li>TABLE 9. DECADAL RECHARGE FACTORS IN THE UPDATED MODEL. THESE QUANTITIES WERE USED TO ACCOUNT FOR</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>(3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON CREEK (8).</li> <li>FIGURE 10. REGRESSION MODEL DEVELOPED USING THE PRECIPITATION INDICES FOR THE MONTH OF OCTOBER AND THE RECHARGE QUANTITIES IN ZONE 3 (ONION CREEK) FROM THE SCANLON AND OTHERS MODEL (2001) 23</li> <li>FIGURE 11. A COMPARISON OF MONTHLY RECHARGE BASED ON THE REGRESSION MODELS WITH THAT USED IN THE SCANLON AND OTHERS (2001) MODEL (NOTED AS "BEG" IN THE LEGEND). TWO ANOMALIES (CIRCLED) ARE APPARENT.</li> <li>TABLE 7. MAXIMUM RECHARGE RATES PER ZONE IN THE UPDATED MODEL.</li> <li>TABLE 8. DRY THRESHOLDS, DRY FACTORS, WET THRESHOLDS, AND WET FACTORS FOR MONTHS 1 THROUGH 12 IN THE UPDATED MODEL.</li> <li>TABLE 9. DECADAL RECHARGE FACTORS IN THE UPDATED MODEL. THESE QUANTITIES WERE USED TO ACCOUNT FOR URBAN RECHARGE (SHARP AND OTHERS, 2009).</li> </ul>                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>(3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON CREEK (8).</li> <li>22</li> <li>FIGURE 10. REGRESSION MODEL DEVELOPED USING THE PRECIPITATION INDICES FOR THE MONTH OF OCTOBER AND THE RECHARGE QUANTITIES IN ZONE 3 (ONION CREEK) FROM THE SCANLON AND OTHERS MODEL (2001) 23</li> <li>FIGURE 11. A COMPARISON OF MONTHLY RECHARGE BASED ON THE REGRESSION MODELS WITH THAT USED IN THE SCANLON AND OTHERS (2001) MODEL (NOTED AS "BEG" IN THE LEGEND). TWO ANOMALIES (CIRCLED) ARE APPARENT.</li> <li>24</li> <li>TABLE 7. MAXIMUM RECHARGE RATES PER ZONE IN THE UPDATED MODEL.</li> <li>24</li> <li>TABLE 8. DRY THRESHOLDS, DRY FACTORS, WET THRESHOLDS, AND WET FACTORS FOR MONTHS 1 THROUGH 12 IN THE UPDATED MODEL.</li> <li>25</li> <li>TABLE 9. DECADAL RECHARGE FACTORS IN THE UPDATED MODEL. THESE QUANTITIES WERE USED TO ACCOUNT FOR URBAN RECHARGE (SHARP AND OTHERS, 2009).</li> <li>25</li> <li>FIGURE 12. LOCATION OF BARTON SPRINGS (LEFT) AND THE LOCATION OF THE 152 TARGET WELLS (RIGHT) USED TO</li> </ul>                                                                                                                                                                |
| <ul> <li>(3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON CREEK (8).</li> <li>22</li> <li>FIGURE 10. REGRESSION MODEL DEVELOPED USING THE PRECIPITATION INDICES FOR THE MONTH OF OCTOBER AND THE RECHARGE QUANTITIES IN ZONE 3 (ONION CREEK) FROM THE SCANLON AND OTHERS MODEL (2001) 23</li> <li>FIGURE 11. A COMPARISON OF MONTHLY RECHARGE BASED ON THE REGRESSION MODELS WITH THAT USED IN THE SCANLON AND OTHERS (2001) MODEL (NOTED AS "BEG" IN THE LEGEND). TWO ANOMALIES (CIRCLED) ARE APPARENT.</li> <li>24</li> <li>TABLE 7. MAXIMUM RECHARGE RATES PER ZONE IN THE UPDATED MODEL.</li> <li>24</li> <li>TABLE 8. DRY THRESHOLDS, DRY FACTORS, WET THRESHOLDS, AND WET FACTORS FOR MONTHS 1 THROUGH 12 IN THE UPDATED MODEL.</li> <li>25</li> <li>TABLE 9. DECADAL RECHARGE FACTORS IN THE UPDATED MODEL. THESE QUANTITIES WERE USED TO ACCOUNT FOR URBAN RECHARGE (SHARP AND OTHERS, 2009).</li> <li>25</li> <li>FIGURE 12. LOCATION OF BARTON SPRINGS (LEFT) AND THE LOCATION OF THE 152 TARGET WELLS (RIGHT) USED TO CALIBRATE THE GROUNDWATER FLOW MODEL.</li> </ul>                                                                                                                          |
| <ul> <li>(3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON CREEK (8).</li> <li>22</li> <li>FIGURE 10. REGRESSION MODEL DEVELOPED USING THE PRECIPITATION INDICES FOR THE MONTH OF OCTOBER AND THE RECHARGE QUANTITIES IN ZONE 3 (ONION CREEK) FROM THE SCANLON AND OTHERS MODEL (2001) 23</li> <li>FIGURE 11. A COMPARISON OF MONTHLY RECHARGE BASED ON THE REGRESSION MODELS WITH THAT USED IN THE SCANLON AND OTHERS (2001) MODEL (NOTED AS "BEG" IN THE LEGEND). TWO ANOMALIES (CIRCLED) ARE APPARENT.</li> <li>24</li> <li>TABLE 7. MAXIMUM RECHARGE RATES PER ZONE IN THE UPDATED MODEL.</li> <li>24</li> <li>TABLE 8. DRY THRESHOLDS, DRY FACTORS, WET THRESHOLDS, AND WET FACTORS FOR MONTHS 1 THROUGH 12 IN THE UPDATED MODEL.</li> <li>25</li> <li>TABLE 9. DECADAL RECHARGE FACTORS IN THE UPDATED MODEL. THESE QUANTITIES WERE USED TO ACCOUNT FOR URBAN RECHARGE (SHARP AND OTHERS, 2009).</li> <li>25</li> <li>FIGURE 12. LOCATION OF BARTON SPRINGS (LEFT) AND THE LOCATION OF THE 152 TARGET WELLS (RIGHT) USED TO CALIBRATE THE GROUNDWATER FLOW MODEL.</li> <li>28</li> <li>FIGURE 13. ESTIMATED/MEASURED DISCHARGES AT BARTON SPRINGS VERSUS SIMULATED DISCHARGES FROM JANUARY</li> </ul> |

| SIMULATED DISCHARGES DURING THE HISTORIC DROUGHT OF RECORD WHEN THE ESTIMATED MINIMUM DISCHARGES    |
|-----------------------------------------------------------------------------------------------------|
| OF 11 FT <sup>3</sup> /S OCCURRED IN JULY AND AUGUST OF 1956 (SLADE AND OTHERS, 1986)               |
| FIGURE 14. DISCHARGE HYDROGRAPHS FOR BARTON SPRINGS SHOWING ESTIMATED OR MEASURED DISCHARGES FOR    |
| Barton Springs (Slade and others, 1986) and simulated discharges using the Scanlon and others       |
| (2001) MODEL AND THE UPDATED MODEL                                                                  |
| TABLE 10. STATISTICAL SUMMARY OF SIMULATED DISCHARGES FOR BARTON SPRINGS IN THE UPDATED MODEL 31    |
| FIGURE 15 GRAPHICAL SUMMARY OF ESTIMATED OR MEASURED DISCHARGES VERSUS SIMULATED DISCHARGES USING   |
| THE UPDATED MODEL (TOP) AND A HISTOGRAM OF RESIDUALS WITHIN EACH BIN (BOTTOM)                       |
| FIGURE 16. TIME VERSUS DISCHARGE RESIDUALS, WHICH WERE CALCULATED USING MEASURED DISCHARGES MINUS   |
| SIMULATED DISCHARGES (BOTTOM)                                                                       |
| TABLE 11. STATISTICAL SUMMARY OF SIMULATED GROUNDWATER ELEVATIONS IN THE UPDATED MODEL              |
| FIGURE 17. GRAPHICAL SUMMARY OF MEASURED GROUNDWATER ELEVATIONS VERSUS SIMULATED GROUNDWATER        |
| ELEVATIONS USING THE UPDATED MODEL (TOP) AND HISTOGRAM OF RESIDUALS WITHIN EACH BIN (BOTTOM) 35     |
| FIGURE 18. LOCATION OF WELLS WITH A RELATIVELY POOR MATCH BETWEEN SIMULATED AND MEASURED            |
| GROUNDWATER ELEVATIONS                                                                              |
| FIGURE 19. GRAPHICAL SUMMARY OF MEASURED AND SIMULATED GROUNDWATER ELEVATIONS USING THE UPDATED     |
| MODEL MINUS THE 3 TARGET WELLS WITH A RELATIVELY POOR MATCH SHOWN IN FIGURE 17                      |
| FIGURE 20. MODEL ROW VERSUS THE RESIDUALS FOR THE 152 TARGET GROUNDWATER ELEVATIONS (TOP) AND MODEL |
| COLUMN VERSUS RESIDUALS FOR THE 152 TARGET GROUNDWATER ELEVATIONS (BOTTOM)                          |
| FIGURE 21. TEMPORAL DISTRIBUTION OF RESIDUALS FOR 152 TARGET WELLS USED TO CALIBRATE THE UPDATED    |
| GROUNDWATER FLOW MODEL. POSITIVE RESIDUALS INDICATE THAT THE MEASURED GROUNDWATER ELEVATION IS      |
| HIGHER THAN THE SIMULATED GROUNDWATER ELEVATION. NEGATIVE RESIDUALS INDICATE THAT THE MEASURED      |
| GROUNDWATER ELEVATION IS LOWER THAN THE SIMULATED GROUNDWATER ELEVATION                             |
| FIGURE 22. GROUNDWATER SYSTEM PRIOR TO DEVELOPMENT (AFTER ALLEY AND OTHERS, 1999)                   |
| FIGURE 23. GROUNDWATER SYSTEM AFTER INITIAL PUMPING (AFTER ALLEY AND OTHERS, 1999)                  |
| FIGURE 24. GROUNDWATER SYSTEM UNDER CONTINUED PUMPING-NEW EQUILIBRIUM CONDITION (AFTER ALLEY AND    |
| OTHERS, 1999)                                                                                       |
| FIGURE 25. GROUNDWATER SYSTEM UNDER ADDITIONAL INCREMENT OF INCREASED PUMPING (AFTER ALLEY AND      |
| OTHERS, 1999)                                                                                       |
| TABLE 12. ANNUAL AVERAGE GROUNDWATER BUDGET FOR SEVEN TIME PERIODS. ALL VALUES ARE IN ACRE-FEET PER |
| YEAR                                                                                                |
| TABLE A-1. INTERCEPTS, COEFFICIENTS, AND COEFFICIENTS OF DETERMINATION FOR THE TWELVE REGRESSION    |
| MODELS DEVELOPED FOR THE PERCENT OF RURAL PUMPING USING YEAR AND PRECIPITATION AS VARIABLES 49      |
| TABLE B-1. COEFFICIENTS, CONSTANTS, AND COEFFICIENTS OF DETERMINATION FOR THE 84 REGRESSION MODELS  |
| DEVELOPED USING THE QUANTITIES FOR EACH RECHARGE ZONE IN THE SCANLON AND OTHERS (2001) MODEL        |
| WITH THE PRECIPITATION INDICES                                                                      |
| TABLE C-1. MONTHLY ESTIMATED OR MEASURED DISCHARGES FOR BARTON SPRINGS PROVIDED BY THE BARTON       |
| SPRINGS/EDWARDS AQUIFER CONSERVATION DISTRICT, WITH SIMULATED DISCHARGES FOR BARTON SPRINGS         |
| USING THE NEW MODEL DURING THE TRANSIENT SIMULATION. RESIDUALS ARE CALCULATED USING THE ESTIMATED   |
| OR MEASURED DISCHARGES MINUS THE SIMULATED DISCHARGES.                                              |
| IABLE D-1. STATE WELL NUMBERS, MODEL ROW, MODEL COLUMN, NUMBER OF MEASUREMENTS, HIGHEST MEASURED    |
| GROUNDWATER ELEVATION, LOWEST MEASURED GROUNDWATER ELEVATION, DECIMAL YEAR OF EARLIEST              |
| MEASUREMENT, AND DECIMAL YEAR OF LATEST MEASUREMENT FOR THE TOZ TARGET WELLS USED TO CALIBRATE      |
| THE GROUNDWATER FLOW MODEL                                                                          |
| FIGURE E-1. ITTURUGRAPHS FUR 3D UF THE TOZ TARGET WELLS USED TO CALIBRATE THE GROUNDWATER FLOW      |
| MUDEL. ITTIKUGRAPHS SHUWN ARE FOR WELLS WITH 5 OR MORE DATA POINTS                                  |

# Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model

By William R. Hutchison, Ph.D., P.E., P.G.

and Melissa E. Hill, Ph.D., P.G.

Texas Water Development Board

June 2011

### EXECUTIVE SUMMARY

Groundwater Management Area 10 requested model runs associated with alternative Barton Springs flow conditions under drought conditions. Specifically, the request sought the amount of pumping that would result in specified springflows of 11, 9, 7, 5, and 3 cubic-feet per second under droughtof-record conditions. The existing groundwater availability model for the Barton Springs segment of the Edwards (Balcones Fault Zone) Aquifer (Scanlon and others, 2001) was calibrated based on data from 1989 to 1998. Thus, the calibration did not include the historic drought-of-record that lasted from 1950 through 1956, when the estimated minimum discharges of 11 cubic-feet per second (Slade and others, 1986) occurred for Barton Springs. Because the request focused on drought-of-record conditions, the confidence in the results from the existing model would be lower than results from a model that had been calibrated during the drought-of-record period. In order to develop results that would be more useful, the Scanlon and others (2001) model for the Barton Springs segment of the Edwards (Balcones Fault Zone) Aguifer was recalibrated for the period January 1943 to December 2004.

The updated model was calibrated using 744 estimated or measured discharges for Barton Springs (Slade and others, 1986) provided by the Barton Springs/Edwards Aquifer Groundwater Conservation District. Additionally, 152 target wells from the Texas Water Development Board's groundwater database Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 7 of 115

were used. These target wells had at least one groundwater elevation measurement during the calibration period. The total number of groundwater elevation measurements was 2,246. Simulated discharges at Barton Springs, using the updated model, include satisfactory agreement with the minimum estimated discharges of 11 cubic-feet per second that occurred in July and August of 1956 during the historic drought-of-record.

# 1.0 INTRODUCTION AND PURPOSE FOR GROUNDWATER FLOW MODEL

Groundwater Management Area 10 requested model runs associated with alternative Barton Springs flow conditions under a drought-of-record recurrence. Specifically, the request sought the amount of pumping that would result in specified springflows of 11, 9, 7, 5, and 3 cubic-feet per second under drought-of-record conditions. The existing groundwater availability model for the Barton Springs segment of the Edwards (Balcones Fault Zone) Aquifer (Scanlon and others, 2001) was calibrated based on data from 1989 to 1998. Thus, the calibration did not include the historic drought-ofrecord that lasted from 1950 through 1956, when the estimated minimum discharges of 11 cubic-feet per second occurred for Barton Springs. Because the request focused on drought-of-record conditions, the confidence in the results from the existing model would be lower than results from a model that had been calibrated during the drought-of-record period. In order to develop results that would be more useful, the Scanlon and others (2001) model for the Barton Springs segment of the Edwards (Balcones Fault Zone) Aquifer was recalibrated for the period January 1943 to December 2004.

The existing MODFLOW-96 (Harbaugh and McDonald, 1996) packages used by Scanlon and others (2001) were converted to MODFLOW-2000 (Harbaugh and others, 2000). MODFLOW-2000 was used with the Geometric Multigrid (GMG) solver (Wilson and Naff, 2004). The updated model included the Basic, Discretization, Layer-Property Flow, Well, Drain, Horizontal Flow Barrier, and Recharge packages. As with Scanlon and others (2001), this model consists of a single layer and conceptualized equivalent porous medium continuum. This conceptualization treats the matrix and conduit network as one continuum, thereby simulating the bulk hydraulic properties for the matrix and conduit network. Conduit networks are traditionally incorporated into equivalent continua models by assigning high hydraulic conductivity values to model cells at suspected conduit locations.

Conversely, conduits are explicitly incorporated into dual-porosity groundwater flow models where they are known to exist. Moreover, dual-porosity models use groundwater flow simulators that handle flow through the matrix and conduit networks separately. For example, the U.S. Geological Survey MODFLOW-2005 Conduit Flow Process, when operated in Mode 1, uses the Darcy-Weisbach equation to simulate turbulent flow in the conduit network and the Hagen-Poiseuille equation to simulate laminar flow in the conduit network, which differs from the governing groundwater flow equation used to simulate laminar flow in the rock matrix. Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 8 of 115

Additionally, fluid exchange between the matrix and conduit network is considered with an iterative head-dependent flux between the conduit network and rock matrix (Shoemaker and others, 2008). Application of dual-porosity models with the MODFLOW-2005 Conduit Flow Process operated in Mode 1 introduces new model parameters that require extensive characterization beyond that typically required for laminar equivalent continua models used with MODFLOW-2000.

In a previous comparison between the performances of a laminar-turbulent, dualporosity model with a comparable laminar equivalent continuum model in a multiporosity karst aquifer, improvements (12 to 40%) in the overall average match between simulated and measured discharges were observed by accounting for fluid exchange between the matrix and conduit network coupled with changes in hydraulic conductivity values. However, it was observed that during drought conditions, or low recharge periods, both the equivalent continuum model and the dual-porosity model underestimated discharges at a first magnitude spring. It was noted that the performance of both models during drought conditions may have improved had antecedent rainfall conditions been accounted for in the recharge estimates (Hill and others, 2010).

## 2.0 MODEL OVERVIEW

The existing MODFLOW-96 (Harbaugh and McDonald, 1996) packages used by Scanlon and others (2001) were converted to MODFLOW-2000 (Harbaugh and others, 2000). MODFLOW-2000 was used with the Geometric Multigrid (GMG) solver (Wilson and Naff, 2004). The updated model included the Basic, Discretization, Layer-Property Flow, Well, Drain, Horizontal Flow Barrier, and Recharge packages.

#### 2.1 Model Packages

The MODFLOW-2000 packages used in the updated model and their input filenames are listed in Table 1. MODFLOW output files and their names are listed in Table 2.

### 2.11 Basic Package

The Basic Package specifies the status of each cell (active or inactive), the assigned head for inactive cells (999), and specifications of starting heads. The Basic Package also reads the name file which contains the input and output files that will be invoked during a simulation using MODFLOW-2000 (Harbaugh and others, 2000).

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 9 of 115

#### TABLE 1. SUMMARY OF MODEL INPUT PACKAGES AND FILENAMES.

| MODFLOW-2000                     | Input Filename |
|----------------------------------|----------------|
| Basic (BAS)                      | bseacd.bas     |
| Name (NAM)                       | bseacd.nam     |
| Discretization (DIS)             | bseacd.dis     |
| Zone Array File (ZONE)           | bseacd.zone    |
| Layer-Property FLOW (LPF)        | bseacd.lpf     |
| Well (WEL)                       | bseacd.wel     |
| Drain (DRN)                      | bseacd.drn     |
| Recharge (RCH)                   | bseacd.rch     |
| Horizontal Flow Barrier (HFB)    | bseacd.hfb     |
| Output Control (OC)              | bseacd.oc      |
| Geometric Multigrid Solver (GMG) | bseacd.gmg     |

#### TABLE 2. SUMMARY OF MODEL OUTPUT FILES AND THEIR NAMES.

| MODFLOW-2000                                                    | Output Filename |
|-----------------------------------------------------------------|-----------------|
| Global output                                                   | bseacd.glo      |
| List output                                                     | bseacd.lst      |
| Cell-by-cell output data for the Layer-Property Flow<br>Package | bseacd.cbb      |
| Cell-by-cell output data for Well Package                       | bseacd.cbw      |
| Cell-by-cell output data for Recharge Package                   | bseacd.crc      |
| Head output                                                     | bseacd.hds      |
| Drawdown output                                                 | bseacd.ddn      |

#### 2.12 Discretization Package

The Discretization Package specifies the spatial and temporal discretization of the model. The model consists of a single layer with 120 rows and 120 columns. The cell length is 1,000 feet and the cell width is 500 feet. The time period for the model is days, and the distance unit for the model is feet. The combined steady-state/transient model defines 745 stress periods. The first stress period is specified as

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 10 of 115

steady-state and was used to provide a stable head distribution at the start of the transient calibration period. The next 744 stress periods are transient, each with a length of 30 days (1 month). The transient stress periods represent January 1943 through December 2004.

The same active model domain and model boundaries used by Scanlon and others (2001), as shown in Figure 1, was used in the updated model. Two previous dye-trace studies conducted in the eastern and confined portions of the aquifer during different flow conditions indicate that the groundwater divide separating the Barton Springs segment of the Edwards (Balcones Fault Zone) Aquifer may fluctuate according to hydraulic head conditions (Hunt and others, 2006). The use of an alternate boundary condition along this portion of the study area is an item that may be addressed in future updates to the model. Similar to Scanlon and others (2001), the updated model does not account for flows from the Trinity Aquifer.

Minor corrections were made to the hydrogeologic framework (top and bottom elevations of the aquifer) used by Scanlon and others (2001). Elevations for the top and bottom of the Edwards (Balcones Fault Zone) Aquifer used in the updated model are shown in Figure 2.

#### 2.13 Zone Array File

The zone array file is used to specify the cells in a layer variable that are associated with a parameter (Harbaugh and others, 2000). Zones for hydraulic conductivity, storativity, and recharge can be specified in the zone array file.

### 2.14 Layer-Property Flow Package

The Layer-Property Flow Package specifies the hydraulic conductivity (in both the xand y-directions) and the storativity values for each cell in the model domain (Harbaugh and others, 2000). LAYTYP was set equal to zero, which assumes a constant transmissivity condition throughout the simulation. As a result of this specification, the only storage value required is specific storage. That is, MODFLOW-2000 will not read them (item 14; specific yield), even if written to the Layer Property Flow Package, when LAYTYP=0 (Harbaugh and others, 2000). By assuming a constant transmissivity condition, (LAYTYP=0) there is no occurrence of cells converting to dry during the simulation. LAYAVG was set equal to zero (interblock transmissivity is based on a harmonic mean) and CHANI equal to -1, which means that horizontal anisotropy is assigned on a cell-to-cell basis. Hydraulic conductivity is read and multiplied by the saturated thickness at the beginning of the simulation to estimate aquifer transmissivity. Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 11 of 115



FIGURE 1. ACTIVE MODEL CELLS WITHIN THE MODEL DOMAIN FOR THE EDWARDS (BALCONES FAULT ZONE)-BARTON SPRINGS SEGMENT-GROUNDWATER AVAILABILITY MODEL (FROM SCANLON AND OTHERS, 2001). Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 12 of 115



FIGURE 2. TOP AND BOTTOM ELEVATIONS FOR THE EDWARDS (BALCONES FAULT ZONE) AQUIFER IN THE UPDATED MODEL.

In order to facilitate calibration, the Layer-Property Flow Package was written using a pre-processor program (*lpf.exe*) written in FORTRAN. In summary, the *lpf.exe* pre-processor reads a file of aquifer parameter zone numbers (*kszone.dat*) and two database files, one for hydraulic conductivity (*kdb.dat*) and one for specific storage (*sdb.dat*), and writes a new Layer-Property Flow data file that can be read by MODFLOW-2000.

The hydraulic conductivity file (*kdb.dat*) contains estimates for hydraulic conductivity in the x-, y-, and z-directions. The hydraulic conductivity in the x-direction is used for the MODFLOW-2000 variable HK (hydraulic conductivity in the x-direction). The hydraulic conductivity in the y-direction is used in the pre-processor to calculate the MODFLOW-2000 variable HANI (ratio of hydraulic conductivity along columns to hydraulic conductivity along rows). Although the hydraulic conductivity database contains a value for vertical hydraulic conductivity and the MODFLOW-2000 input file requires specification of the vertical hydraulic conductivity, these values have no meaning since this is a one-layer model. The pre-processor program also uses the aquifer parameter zonation file (*kszone.dat*) with the specific storage database file (*sdb.dat*) to write specific storage estimates for each cell.

The same hydraulic conductivity zonation used by Scanlon and others (2001) was used in the updated model. The nine hydraulic conductivity zones (1, 3, 4, 5, 6, 7, 8, 9, and 10) in the active area of the model domain are shown in Figure 3. Zone 2

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 13 of 115

represents the inactive area of the model domain, and therefore is not shown in Figure 3.

Figure 4 is a bar graph with hydraulic conductivity values from the updated model and those from the Scanlon and others (2001) model. One apparent difference is that in the previous model, hydraulic conductivity is isotropic, whereas in the new model hydraulic conductivity is anisotropic. Table 3 summarizes the model zones, hydraulic conductivity values in the x- and y-directions, and the anisotropy ratios. Hydraulic conductivity values for each zone in the Scanlon and others (2001) model are provided for comparison. Table 4 lists the specific storage values for each zone in the active model domain.



FIGURE 3. HYDRAULIC CONDUCTIVITY ZONES (FROM SCANLON AND OTHERS, 2001). ARROWS SHOW THE GENERAL TREND IN ANISOTROPY. ZONE 2 IS NOT LISTED AS IT REPRESENTS THE INACTIVE AREAS OF THE MODEL.

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 14 of 115



- FIGURE 4. BAR GRAPH OF HYDRAULIC CONDUCTIVITY VALUES IN THE UPDATED MODEL AND THOSE USED BY SCANLON AND OTHERS (2001). HYDRAULIC CONDUCTIVITY IS ANISOTROPIC IN THE UPDATED MODEL AND ISOTROPIC IN THE SCANLON AND OTHERS (2001) MODEL. ZONE 2 IS NOT LISTED AS IT REPRESENTS THE INACTIVE AREAS OF THE MODEL. HYDRAULIC CONDUCTIVITY VALUES IN THE X-DIRECTION FOR ZONES 3 AND 4 IN THE UPDATED MODEL ARE 0.1 FT/DAY (SEE TABLE 3) AND THEREFORE, ARE NOT VISIBLE IN FIGURE 4.
- TABLE 3. HYDRAULIC CONDUCTIVITY VALUES IN THE UPDATED MODEL (ANISOTROPIC) COMPARED TO THOSE USED BY SCANLON AND OTHERS (2001) WHICH ARE ISOTROPIC. ZONE 2 IS NOT LISTED AS IT REPRESENTS THE INACTIVE AREAS OF THE MODEL.

| Zone |               | New Model     | Scanlon and others (2001) |                  |
|------|---------------|---------------|---------------------------|------------------|
|      | Kx (feet/day) | Ky (feet/day) | Kx/Ky                     | Kx=Ky (feet/day) |
| 1    | 0.2           | 0.3           | 0.7                       | 1                |
| 3    | 0.1           | 7.2           | 0.01                      | 3                |
| 4    | 0.1           | 15.0          | 0.01                      | 3.5              |
| 5    | 1.3           | 4.1           | 0.3                       | 4.5              |
| 6    | 52.2          | 5.0           | 10                        | 39               |
| 7    | 176.0         | 85.8          | 2                         | 93               |
| 8    | 20.0          | 27.3          | 0.7                       | 100              |
| 9    | 172.0         | 227.0         | 0.8                       | 320              |
| 10   | 1,855.9       | 2,000.0       | 0.9                       | 1,236            |

#### TABLE 4. SPECIFIC STORAGE VALUES FOR EACH ZONE IN THE ACTIVE AREA OF THE UPDATED MODEL. ZONE 2 IS NOT LISTED AS IT REPRESENTS THE INACTIVE AREAS OF THE MODEL.

| Zone | Ss(feet <sup>-1</sup> ) |
|------|-------------------------|
| 1    | 1.7×10 <sup>-5</sup>    |
| 3    | 7.2×10 <sup>-5</sup>    |
| 4    | 3.2×10 <sup>-6</sup>    |
| 5    | 1.3×10 <sup>-5</sup>    |
| 6    | 2.2×10 <sup>-7</sup>    |
| 7    | 1.1×10 <sup>-5</sup>    |
| 8    | 1.7×10 <sup>-4</sup>    |
| 9    | 8.7×10 <sup>-8</sup>    |
| 10   | 1.2×10 <sup>-3</sup>    |

#### 2.15 Well Package

The Well Package was used to simulate pumping from domestic (rural) and nondomestic or point withdrawals. For the updated transient model, monthly groundwater withdrawal estimates from 1947 through 2004 were provided by the Barton Springs/Edwards Aquifer Conservation District. Groundwater withdrawal quantities from 1943 through 1946 were assumed to be comparable to 1947 withdrawal quantities. Domestic (rural) pumpage quantities were distributed uniformly throughout the active model domain. Non-domestic, or point withdrawals, were distributed using the same monthly distributions applied in the Scanlon and others (2001) Barton Springs segment of the Edwards (Balcones Fault Zone) Aquifer groundwater availability model. Domestic (rural) and non-domestic (point) withdrawal quantities were extrapolated backward (1943 through 1988) and forward (1999 through 2004). The extrapolations involved separating out the number of nondomestic or point wells and the percent of domestic or rural pumping. Figure 5 shows the number of non-domestic or point wells in the Scanlon and others (2001) model and the percent of non-domestic or rural pumping.

Twelve regression models were developed using the percentage of domestic pumping in the Scanlon and others (2001) model with year and precipitation as the independent variables for the months of January through December. Figure 6 shows an example of the percent of rural pumping in the Scanlon and others (2001) model with the regression model developed for the month of June. The intercepts, coefficients, and coefficients of determination are listed in Table A-1 of Appendix A for the twelve regression models. Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 16 of 115



Nondomestic (Point) Wells

FIGURE 5. NUMBER OF NON-DOMESTIC OR POINT WELLS IN SCANLON AND OTHERS (2001) MODEL (TOP) AND PERCENT OF DOMESTIC OR RURAL PUMPING IN SCANLON AND OTHERS (2001) MODEL (BOTTOM). THE TOTAL NUMBER OF WELLS (NON-DOMESTIC PLUS DOMESTIC) IS 7,037.

1994

Year

1996

2000

1998

1990

1992

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 17 of 115



FIGURE 6. PERCENT OF RURAL PUMPING FOR THE MONTH OF JUNE BASED ON THE REGRESSION MODEL RELATIVE TO THAT IN THE SCANLON AND OTHERS (2001) MODEL.

A pre-processor program (*pumping.exe*) written in FORTRAN was used to develop the well package and to facilitate calibration. In summary, *pumping.exe* reads an input file (*kszone.dat*) and several database files (*pcpindex.dat*, *begpumpaf.dat*, *pumpcoef.dat*, *begwel.dat*, *minmaxpumpyear.dat*, *welcount.dat*, *pumpfac.dat*, *pump43to04.dat*) and writes a new well file (*newpump.wel*) that is read by MODFLOW-2000 and one summary file (*newpumpsum.dat*).

The pumping zonation in the new model honors the zonation used for aquifer properties (shown in Figure 3). The pre-processor reads the zones from *kszone.dat*. *Begpumpaf.dat* contains the domestic and non-domestic pumping quantities separately, as well as the composite of the two quantities in acre-feet per month that were used by Scanlon and others (2001). The database file *pumpcoef.dat* contains the intercepts, and coefficients for the year and precipitation variables for the twelve regression equations. *Begwel.dat* contains the well file from the Scanlon and others (2001) model, whereas *minmaxpumpyear.dat* contains the minimum and maximum pumping year for the months of January through December in the Scanlon and others (2001) model. *Welcount.dat* contains the number of point or non-domestic wells for each of the monthly stress periods in the Scanlon and others (2001) model. *Pumpfac.dat* contains the decadal pumping factors (or for the subset of years for periods that did not span the full decade, as is the case for 1943 through 1949 and 2000 through 2004) for each zone. *Pump43to04.dat* contains the monthly pumping form 1943 to 2004 based on the extrapolations.

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 18 of 115

Annual average pumping per zone in the new model is summarized in Table 5. A comparison of annual average pumping in the updated model and pumping estimates provided by the Barton Springs/Edwards Aquifer Conservation District is summarized in Table 6.

| TABLE 5. S | SUMMARY OF | ANNUAL A  | VERAGE  | E PUMPINO | FOR EACH  | MODEL ZO  | ONE DURIN | IG THE    |     |
|------------|------------|-----------|---------|-----------|-----------|-----------|-----------|-----------|-----|
|            | RESPECTIVE | TIME FRAM | AE. ALL | PUMPING   | QUANTITIE | S REPORTE | D ARE IN  | ACRE-FEET | PER |
|            | YEAR.      |           |         |           |           |           |           |           |     |

|                                                   | Pumping       | Pumping       | Pumping       | Pumping       | Pumping   | Pumping   | Pumping   |
|---------------------------------------------------|---------------|---------------|---------------|---------------|-----------|-----------|-----------|
| Zone                                              | 1943-<br>1949 | 1950-<br>1959 | 1960-<br>1969 | 1970-<br>1979 | 1980-1989 | 1990-1999 | 2000-2004 |
| 1                                                 | 0.69          | 24.24         | 43.26         | 63.14         | 44.45     | 52.22     | 50.55     |
| 3                                                 | 0.01          | 45.88         | 105.40        | 110.69        | 109.74    | 49.19     | 67.58     |
| 4                                                 | 2.33          | 81.41         | 172.39        | 147.88        | 299.80    | 178.09    | 214.48    |
| 5                                                 | 4.73          | 38.60         | 43.22         | 94.61         | 81.05     | 49.91     | 89.11     |
| 6                                                 | 19.19         | 228.83        | 591.32        | 850.66        | 1,281.18  | 1,271.09  | 2,214.33  |
| 7                                                 | 3.53          | 368.66        | 430.27        | 673.81        | 1,839.55  | 1,435.77  | 2,058.36  |
| 8                                                 | 2.38          | 15.31         | 25.72         | 20.25         | 33.70     | 15.59     | 13.07     |
| 9                                                 | 13.26         | 131.67        | 312.97        | 203.26        | 397.90    | 459.68    | 529.11    |
| 10                                                | 1.10          | 6.20          | 14.01         | 8.75          | 13.71     | 10.17     | 6.82      |
| Average annual<br>pumping (acre-feet<br>per year) | 47.22         | 940.79        | 1,738.56      | 2,173.04      | 4,101.10  | 3,521.71  | 5,243.42  |

#### TABLE 6. ANNUAL AVERAGE PUMPING IN THE UPDATED MODEL VERSUS PUMPAGE ESTIMATES PROVIDED BY THE BARTON SPRINGS/EDWARDS AQUIFER CONSERVATION DISTRICT. ALL PUMPING QUANTITIES REPORTED ARE IN ACRE-FEET PER YEAR.

| Period    | Pumping Updated Model<br>(acre-feet per year) | Barton Springs/ Edwards<br>Aquifer Conservation<br>District*<br>Estimates (acre-feet per<br>year) |
|-----------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|
| 1943-1949 | 47.22                                         | 74.10**                                                                                           |
| 1950-1959 | 940.79                                        | 363.61                                                                                            |
| 1960-1969 | 1,738.56                                      | 1,299.32                                                                                          |
| 1970-1979 | 2,173.04                                      | 2,265.78                                                                                          |
| 1980-1989 | 4,101.10                                      | 3,214.64                                                                                          |
| 1990-1999 | 3,521.71                                      | 3,963.70                                                                                          |
| 2000-2004 | 5,243.42                                      | 5,810.44                                                                                          |

\* Estimates provided by Barton Springs/Edwards Aquifer Conservation District range from January 1947 through December 2004.

\*\* 1947 through 1949

Figure 7 shows a graphical summary of monthly pumping and annual average pumping in the updated model relative to estimates provided by the Barton Springs/Edwards Aquifer Conservation District. Figure 8 shows the monthly pumping (domestic and nondomestic) quantities with the monthly individual non-domestic and domestic pumping quantities in the updated model.

Pumpage estimates provided by the Barton Springs/Edwards Aquifer Conservation District were used to loosely constrain pumpage quantities in the groundwater flow model. During model calibration, pumpage was adjusted by decade (for the 1950's, 1960's, 1970's, 1980's, and 1990's), or for the subset of years for periods that did not span the full decade, as is the case for 1943 through 1949 and 2000 through 2004.

The largest differences between pumpage quantities used in the updated model and the estimates provided by the Barton Springs/Edwards Aquifer Conservation District occur during the simulated historic drought of record (1950s) and the 1980's (Table 6 and Figure 7). During the simulated historic drought of record, pumpage quantities in the updated model are generally higher than pumpage estimates provided by the Barton Springs/Edwards Aquifer Conservation District by a factor of 2.6. During the 1980's, the pumpage quantities in the updated model are generally higher than pumpage estimates provided by the Barton Springs/Edwards Aquifer Conservation District by a factor of 2.6. During the 1980's, the pumpage quantities in the updated model are generally higher than pumpage estimates provided by the Barton Springs/Edwards Aquifer Conservation District by a factor of 1.3.

**Monthly Pumping** 



FIGURE 7. PLOT WITH MONTHLY PUMPING ESTIMATES PROVIDED BY THE BARTON SPRINGS/EDWARDS AQUIFER CONSERVATION DISTRICT (BSEACD) VERSUS MONTHLY PUMPING IN THE UPDATED MODEL (TOP) AND ANNUAL AVERAGE PUMPING ESTIMATES PROVIDED BY THE BARTON SPRINGS/EDWARDS AQUIFER CONSERVATION DISTRICT (BSEACD) VERSUS ANNUAL AVERAGE PUMPING IN THE UPDATED MODEL (BOTTOM).

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 21 of 115



## FIGURE 8. MONTHLY PUMPING (DOMESTIC PLUS NON-DOMESTIC) QUANTITIES WITH MONTHLY INDIVIDUAL NON-DOMESTIC AND DOMESTIC QUANTITIES IN THE UPDATED MODEL.

### 2.16 Drain Package

The Drain Package was used to simulate discharge from Barton and Cold springs. Drain conductances were varied during model calibration. The conductance values in the new calibrated model ( $3 \times 10^6$  feet-squared per day for Barton and  $1 \times 10^6$  feet-squared per day for Cold Springs) are comparable to those used in the Scanlon and others (2001) model ( $1 \times 10^6$  feet-squared per day for Barton and Cold Springs).

### 2.17 Recharge Package

The seven (7) recharge zones applied in the Scanlon and others (2001) model which roughly correlate to the various sub watersheds that occur where the Edwards (Balcones Fault Zone) Aquifer is exposed at land surface were also used in the updated model. These zones include both focused recharge at karst features along Onion, Little Bear, Bear, Slaughter, Williamson, and Barton Creeks, in addition to distributed rainfall falling on the outcrop area (Figure 9).

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 22 of 115



FIGURE 9. SEVEN RECHARGE ZONES. ZONES 2 THROUGH 8 ARE SHOWN. ZONE 1 IS THE CONFINED AREA OF THE EDWARDS (BALCONES FAULT ZONE) AQUIFER (WHITE) ZONE. DISTRIBUTED OUTCROP AREA (2), ONION CREEK (3), LITTLE BEAR CREEK (4), BEAR CREEK (5), SLAUGHTER CREEK (6), WILLIAMSON CREEK (7) AND BARTON CREEK (8).

Recharge estimates for the updated model were extrapolated as follows: 84 regression relationships were developed for each month (12 total) and recharge zone (7 total) using the recharge for each zone in the Scanlon and others (2001) model and a precipitation index. The precipitation index accounts for antecedent rainfall and was developed by taking the average monthly rainfall recorded at San Marcos and Austin Airport rainfall gages for the month of interest, plus half of the previous month of interest, plus one fourth of the month prior to the previous month of interest as shown in equation 1:

$$PI = m_i + \frac{1}{2}m_{i-1} + \frac{1}{4}m_{i-2}$$
 (equation 1)

where:

PI = precipitation index,

 $m_i$  = month of interest,

Figure 10 provides an example of the regression model developed using the precipitation index versus recharge for zone 3 (Onion Creek) in the Scanlon and others (2001) model for the month of October. The coefficients, constants, and the coefficients of determination for the eighty-four regression models developed for each month and zone are summarized in Table B-1 of Appendix B.



October - Zone 3

FIGURE 10. REGRESSION MODEL DEVELOPED USING THE PRECIPITATION INDICES FOR THE MONTH OF OCTOBER AND THE RECHARGE QUANTITIES IN ZONE 3 (ONION CREEK) FROM THE SCANLON AND OTHERS MODEL (2001).

Figure 11 summarizes the results of applying the regression approach to estimate recharge for the entire calibration period. Please note that strict application of this approach yielded two anomalies (circled areas in Figure 11) where recharge appears unacceptably high. In an effort to avoid this type of condition during model calibration, such as that shown in Figure 11, the maximum recharge rate was capped for each zone.

During model calibration the following adjustments were made to the regressionbased estimates: 1) the maximum recharge rate by zone, 2) wet threshold and wet factor by month, 3) dry threshold and dry factor by month, and 4) decadal adjustments for the 1950's, 1960's, 1970's, 1980's, and 1990's, or for the subset of years for periods that did not span the full decade, as is the case for 1943 through 1949 and 2000 through 2004. Decadal adjustments to recharge were tested to account for reported changes in recharge resulting from urbanization (Sharp and others, 2009), but proved to be insensitive. Maximum recharge rates for the calibrated model are listed in Table 7. Dry month thresholds and factors, wet month thresholds and factors, and the decadal factors are listed in Tables 8 and 9. Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 24 of 115

90000 80000 70000 Recharge (AF/mo) 60000 50000 40000 30000 20000 10000 0 1940 1950 1960 1970 1980 1990 2000 Date Regression Result • BEG

FIGURE 11. A COMPARISON OF MONTHLY RECHARGE BASED ON THE REGRESSION MODELS WITH THAT USED IN THE SCANLON AND OTHERS (2001) MODEL (NOTED AS "BEG" IN THE LEGEND). TWO ANOMALIES (CIRCLED) ARE APPARENT.

TABLE 7. MAXIMUM RECHARGE RATES PER ZONE IN THE UPDATED MODEL.

| Zone | Maximum Recharge Rate (feet/day) |
|------|----------------------------------|
| 2    | 2.00×10 <sup>-3</sup>            |
| 3    | 2.00×10 <sup>-1</sup>            |
| 4    | 5.00×10 <sup>-2</sup>            |
| 5    | 1.97×10 <sup>-1</sup>            |
| 6    | 6.26×10 <sup>-2</sup>            |
| 7    | 3.01×10 <sup>-2</sup>            |
| 8    | 1.80×10 <sup>-1</sup>            |

**Recharge Comparison** 

#### TABLE 8. DRY THRESHOLDS, DRY FACTORS, WET THRESHOLDS, AND WET FACTORS FOR MONTHS 1 THROUGH 12 IN THE UPDATED MODEL.

| Month | Dry Threshold | Factor | Wet Threshold | Factor |
|-------|---------------|--------|---------------|--------|
| 1     | 4             | 0.143  | 6             | 9.500  |
| 2     | 4             | 0.100  | 7             | 0.700  |
| 3     | 4             | 0.100  | 8             | 0.700  |
| 4     | 5             | 0.100  | 6             | 6.700  |
| 5     | 4             | 0.100  | 9             | 6.500  |
| 6     | 6             | 0.100  | 8             | 0.700  |
| 7     | 4             | 0.100  | 7             | 4.500  |
| 8     | 4             | 0.100  | 6             | 9.000  |
| 9     | 4             | 0.100  | 8             | 10.500 |
| 10    | 7             | 0.100  | 7             | 8.500  |
| 11    | 6             | 0.100  | 9             | 10.500 |
| 12    | 5             | 0.100  | 9             | 2.500  |

## TABLE 9. DECADAL RECHARGE FACTORS IN THE UPDATED MODEL. THESE QUANTITIES WERE USED TO ACCOUNT FOR URBAN RECHARGE (SHARP AND OTHERS, 2009).

| Decade    | Factor |
|-----------|--------|
| 1943-1950 | 0.50   |
| 1950-1960 | 0.65   |
| 1961-1970 | 0.99   |
| 1971-1980 | 1.10   |
| 1981-1990 | 1.13   |
| 1991-2000 | 1.14   |
| 2001-2004 | 1.15   |

To summarize, the precipitation index was calculated using equation 1 for each month of the transient calibration (744 total). Recharge was then estimated by substituting the precipitation index into the (x) variable from the regression models developed for each month and recharge zone. Once an initial estimate for monthly recharge was obtained additional conditions were applied as follows. If the recharge zone equaled 2 and the estimated recharge was less than 0, then recharge was set equal to the minimum recharge. If the zone number was greater than 2 (zones 3-8;

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 26 of 115

creeks) and the estimated recharge was less for a given month than that for zone 2, then the recharge was set equal to that for zone 2. Additionally, wet thresholds and wet factors were set for each month (12 total). Similarly, dry thresholds and dry factors were set for each month (12 total). If the estimated recharge for a given month exceeded the wet threshold then the estimated recharge was multiplied by the wet factor. If the estimated recharge for a given month was less than the dry threshold, then the estimated recharge was multiplied by the dry factor. An additional factor was also added to the recharge estimates to account for urban recharge. Lastly, if the estimated recharge for a given month exceeded the maximum recharge, then the recharge was set to the maximum recharge.

As previously stated, the maximum recharge rate was capped, however values below the set capped value were determined for each zone during calibration. Similarly, values for the wet threshold, wet factor, dry threshold, dry factor, and the urban recharge factors were determined during calibration.

In order to facilitate calibration, the Recharge Package was written using a preprocessor program (*rech.exe*) written in FORTRAN. In summary, the *rech.exe* preprocessor reads an input file with the number of cells in each recharge zone (*rzcount.dat*) and several database files that contain the lowermost bounds for the maximum recharge rates for the months of January through December (*minmaxrech.dat*), the precipitation indices (see equation 1) for each stress period in the new model (*pcpindex.dat*), the coefficients based on the 84 regression relationships (*rechcoeff.dat*), the dry threshold, dry factors, wet threshold, and wet factors (*rechfactors.dat*), and the recharge decadal factors (*rechdecfac.dat*). The pre-processor then writes a new recharge file that can be read by MODFLOW-2000.

#### 2.18 Horizontal Flow Barrier Package

The Horizontal Flow Barrier Package was used to simulate faults that are inferred restrictions to horizontal groundwater flow. The Horizontal Flow Barrier Package used in the Scanlon and others (2001) model was applied in the updated model without modification.

#### 2.19 Output Control Package

The Output Control Package contains specifications for how output is written. This particular version of the file specifies saving heads, drawdowns, and cell-by-cell flows for each stress period.

#### 2.20 Geometric Multigrid Solver

The Geometric Multigrid Solver (Wilson and Naff, 2004) contains specifications for the chosen solver package. Note that in this particular implementation the head closure criterion is  $1.0 \times 10^{-3}$ , and the residual closure criterion is 1.00.

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 27 of 115

## 3.0 MODEL CALIBRATION AND RESULTS

The model was calibrated using a combination of automated adjustments using PEST, an industry-standard inverse modeling software package (Watermark Numerical Computing, 2004) and trial-and-error. Calibration of the model was primarily evaluated based on the match between simulated and estimated or measured discharges for Barton Springs and secondly, on the match between simulated and measured groundwater elevations. Calibration was accomplished by adjusting various parameters until simulated discharges and groundwater elevations were in reasonable agreement with estimated or measured discharges and groundwater elevations. Parameter adjustments generally focused on wet and dry factors, wet and dry precipitation triggers (i.e. what constitutes a "wet" month or a "dry" month), maximum recharge rates, and decadal recharge factors. Decadal adjustments were also made to pumpage. Additionally, hydraulic conductivity in the x- and y-directions, specific storage, and drain conductances were varied.

The calibration period was January 1943 through December 2004 (744 monthly stress periods), with a steady-state stress period (stress period 1) preceding the transient simulation for a total of 745 stress periods. The steady-state stress period was useful in that it provided a stable initial head solution that was used to initialize the transient simulation.

The model was calibrated with 744 estimated or measured discharges for Barton Springs provided by the Barton Springs/Edwards Aquifer Conservation District. Additionally, data from 152 target wells from the Texas Water Development Board's groundwater database were used. These target wells had at least one groundwater elevation measurement during the calibration period and thirty-five of the 152 wells had 5 or more measurements. The location for Barton Springs and the 152 wells that were used in the calibration are shown in Figure 12.

The total number of monthly discharge measurements was 744 and the total number of groundwater elevation measurements was 2,246. Because estimated or measured discharges for Barton Springs were used, as well as measured groundwater elevations for targets, target discharges were divided by 10,000 in the PEST control file in order to numerically weight the residuals of each type of target value. Using this approach, equal numerical weight was applied to both the target discharges and the target groundwater elevations. The 744 estimated or measured discharges for Barton Springs, along with the simulated discharges for Barton Spring are listed in Table C-1 of Appendix C. Table D-1 of Appendix D summarizes the number of groundwater elevation measurements, the highest and lowest measured groundwater elevations, and the decimal years for the earliest and latest measurements. Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 28 of 115



## FIGURE 12. LOCATION OF BARTON SPRINGS (LEFT) AND THE LOCATION OF THE 152 TARGET WELLS (RIGHT) USED TO CALIBRATE THE GROUNDWATER FLOW MODEL.

# **3.1** Model Simulated Discharges at Barton Springs versus Estimated or Measured Discharges

As previously stated, calibration of the model was primarily evaluated based on the match between simulated and estimated or measured discharges from Barton Springs. Particular emphasis was placed on the match between simulated and estimated or measured discharges during the historic drought-of-record, which lasted from 1950 through 1956. Slade and others (1986) estimate that a minimum average monthly discharge of 11 cubic-feet per second occurred at Barton Springs during July and August of 1956. The estimated monthly discharge values for 1917 through February 1978 were estimated using: 1) discrete discharge measurements, and 2) rainfall quantities, which were used to estimate discharge between discrete measurements. Since March 1978, monthly mean discharges have been based on gauged values of daily mean discharge (Slade and others, 1986).

Given the collective effect of potential errors in discharge estimates and/or other model parameters, the updated model satisfactorily simulates the minimum estimated discharges of 11 cubic-feet per second that occurred during the historic

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 29 of 115

drought-of-record in July and August of 1956 (Figure 13). Discharge hydrographs with estimated or measured discharges for Barton Springs versus simulated discharges using the Scanlon and others (2001) model and the updated model during the same time frame are shown in Figure 14.

A statistical summary of the minimum residual, maximum residual, and the absolute residual mean for simulated discharges in the updated model are presented in Table 10. The residual is the difference between estimated or measured discharges and simulated discharges. If the residual is positive, the estimated or measured discharge is higher than the simulated discharge. If the residual is negative, the estimated or measured discharge is lower than the simulated discharge. The standard deviation of the residuals and the range of estimated or measured discharges are also provided in Table 10. A common statistical test to examine calibration is the standard deviation of the residuals (the difference between measured and simulated values) divided by the range of measured values. Rumbaugh (2004) suggests that a good calibration yields a value less than 10 to 15 percent or (0.10 to 0.15). The standard deviation of the residuals divided by the range of measured discharges for the updated model is 0.136.

The summary also includes the value of the sum of squared residuals, which was used as the objective function during parameter estimation. Finally, the summary includes the frequency of residuals within 10, 25, and 50 cubic-feet per second. A graphical summary showing the match between measured and simulated discharges and a histogram of the residuals is shown in Figure 15. Fifty percent of the simulated discharges are within  $\pm$  10 cubic-feet per second of the estimated or measured discharges, 85 percent are within  $\pm$  25 cubic-feet per second, while 99 percent are within  $\pm$  50 cubic-feet per second.

The temporal calibration fit for simulated discharges at Barton Springs is shown in Figure 16, which presents a plot of year versus residual. This plot is useful for identifying any obvious bias in specific years relative to other years.

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 30 of 115



FIGURE 13. ESTIMATED/MEASURED DISCHARGES AT BARTON SPRINGS VERSUS SIMULATED DISCHARGES FROM JANUARY 1943 TO DECEMBER 2004 USING THE UPDATED MODEL (TOP). BOTTOM PLOT RESCALED TO HIGHLIGHT SIMULATED DISCHARGES DURING THE HISTORIC DROUGHT OF RECORD WHEN THE ESTIMATED MINIMUM DISCHARGES OF 11 FT<sup>3</sup>/S OCCURRED IN JULY AND AUGUST OF 1956 (SLADE AND OTHERS, 1986). Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 31 of 115

Barton Springs



- FIGURE 14. DISCHARGE HYDROGRAPHS FOR BARTON SPRINGS SHOWING ESTIMATED OR MEASURED DISCHARGES FOR BARTON SPRINGS (SLADE AND OTHERS, 1986) AND SIMULATED DISCHARGES USING THE SCANLON AND OTHERS (2001) MODEL AND THE UPDATED MODEL.
- TABLE 10. STATISTICAL SUMMARY OF SIMULATED DISCHARGES FOR BARTON SPRINGS IN THE UPDATED MODEL.

| Calibration Statistic                                               | Calibrated Model Value |
|---------------------------------------------------------------------|------------------------|
| Minimum Residual (feet <sup>3</sup> /second)                        | -51.08                 |
| Maximum Residual (feet <sup>3</sup> /second)                        | 64.83                  |
| Absolute Residual Mean (feet <sup>3</sup> /second)                  | 13.39                  |
| Standard Deviation of Residuals                                     | 16.85                  |
| Range of Measured Groundwater Discharge (feet <sup>3</sup> /second) | 124                    |
| Standard Deviation/Range                                            | 0.136                  |
| Absolute Residual Mean/Range*100                                    | 11                     |
| Sum of Squared Residuals                                            | 2.29 × 10 <sup>5</sup> |
| Percent of residuals within:                                        |                        |
| ± 10 feet <sup>3</sup> /second                                      | 50                     |
| ± 25 feet <sup>3</sup> /second                                      | 85                     |
| ± 50 feet <sup>3</sup> /second                                      | 99                     |



Measured vs. Simulated Discharges at Barton Springs



#### FIGURE 15 GRAPHICAL SUMMARY OF ESTIMATED OR MEASURED DISCHARGES VERSUS SIMULATED DISCHARGES USING THE UPDATED MODEL (TOP) AND A HISTOGRAM OF RESIDUALS WITHIN EACH BIN (BOTTOM).

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 33 of 115



Discharge Residuals for Barton Springs

FIGURE 16. TIME VERSUS DISCHARGE RESIDUALS, WHICH WERE CALCULATED USING MEASURED DISCHARGES MINUS SIMULATED DISCHARGES (BOTTOM).

# **3.2 Model Simulated Groundwater Elevations versus Measured Groundwater Elevations**

Calibration of the model was also evaluated in terms of the match between measured and simulated groundwater elevations from 152 wells. A statistical summary of the minimum residual, maximum residual, and the absolute residual mean are presented in Table 11. The residual is the difference between measured groundwater elevations and simulated groundwater elevations. If the residual is positive, the measured groundwater elevation is higher than the simulated groundwater elevation. If the residual is negative, the measured groundwater elevation is lower than the simulated groundwater elevation. The standard deviation of the residuals and the range of measured groundwater elevations are also provided in Table 11. The standard deviation of the residuals divided by the range of measured groundwater elevations for the updated model is 0.096.

## TABLE 11. STATISTICAL SUMMARY OF SIMULATED GROUNDWATER ELEVATIONS IN THE UPDATED MODEL.

| Calibration Statistic                           | Calibrated Model Value |
|-------------------------------------------------|------------------------|
| Minimum Residual (feet)                         | -191.74                |
| Maximum Residual (feet)                         | 259.21                 |
| Absolute Residual Mean (feet)                   | 31.48                  |
| Standard Deviation of Residuals                 | 44.69                  |
| Range of Measured Groundwater Elevations (feet) | 464.20                 |
| Standard Deviation/Range                        | 0.096                  |
| Absolute Residual Mean/Range*100                | 7%                     |
| Sum of Squared Residuals                        | 4.51 × 10 <sup>6</sup> |
| Percent of residuals within:                    |                        |
| ± 10 ft                                         | 28                     |
| ± 25 ft                                         | 57                     |
| ± 50 ft                                         | 79                     |

The summary also includes the value of the sum of squared residuals, which was used as the objective function during parameter estimation. Finally, the summary includes the frequency of residuals within 10, 25, and 50 feet. A graphical summary showing the match between measured and simulated groundwater elevations and a histogram of the residuals is shown in Figure 17. Twenty-eight percent of the simulated groundwater elevations are within  $\pm$  10 feet of the measured groundwater elevations, fifty-seven percent are within  $\pm$  25 feet, while seventy-nine percent are within  $\pm$  50 feet.

Figure 17 shows that for the most part, simulated groundwater elevations favorably match measured groundwater elevations. A departure in the match between simulated and measured groundwater elevations however is visible (circled area in Figure 17). The locations for these wells with a relatively poor match between simulated and measured groundwater elevations are shown in Figure 18. These 3 wells are located in the outcrop area. The less favorable match between simulated and measured groundwater elevations (LAYTYP=0) which utilizes specific storage rather than specific yield values. The performance of the model in the outcrop area shown in Figure 18 indicates that the updated model may be an inappropriate tool if used for purposes other than that described in section *1.0 Introduction and Purpose for Groundwater Flow Model* of this report.

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 35 of 115



Measured Groundwater Elevation (ft MSL) Minus Simulated Groundwater Elevation (ft MSL)

#### FIGURE 17. GRAPHICAL SUMMARY OF MEASURED GROUNDWATER ELEVATIONS VERSUS SIMULATED GROUNDWATER ELEVATIONS USING THE UPDATED MODEL (TOP) AND HISTOGRAM OF RESIDUALS WITHIN EACH BIN (BOTTOM).

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 36 of 115



## FIGURE 18. LOCATION OF WELLS WITH A RELATIVELY POOR MATCH BETWEEN SIMULATED AND MEASURED GROUNDWATER ELEVATIONS.

Figure 19 is a graphical summary of measured and simulated groundwater elevations minus the three wells with a relatively poor match shown in Figure 17. The removal of the three wells from the graphical summary shows simulated groundwater elevations for the remaining 149 target wells agree favorably for the most part with measured groundwater elevations.

The calibration fit for the updated model spatially and temporally in Figures 20 and 21, which show the residuals for the simulated groundwater elevations versus the model rows and layers. These plots permit inspection of potential spatial trends in residuals northwest (low model row number) to the southeast (high model row number) as well as southwest (low column number) to the northeast (high column number).
Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 37 of 115



FIGURE 19. GRAPHICAL SUMMARY OF MEASURED AND SIMULATED GROUNDWATER ELEVATIONS USING THE UPDATED MODEL MINUS THE 3 TARGET WELLS WITH A RELATIVELY POOR MATCH SHOWN IN FIGURE 17.

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 38 of 115



FIGURE 20. MODEL ROW VERSUS THE RESIDUALS FOR THE 152 TARGET GROUNDWATER ELEVATIONS (TOP) AND MODEL COLUMN VERSUS RESIDUALS FOR THE 152 TARGET GROUNDWATER ELEVATIONS (BOTTOM).

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 39 of 115



#### FIGURE 21. TEMPORAL DISTRIBUTION OF RESIDUALS FOR 152 TARGET WELLS USED TO CALIBRATE THE UPDATED GROUNDWATER FLOW MODEL. POSITIVE RESIDUALS INDICATE THAT THE MEASURED GROUNDWATER ELEVATION IS HIGHER THAN THE SIMULATED GROUNDWATER ELEVATION. NEGATIVE RESIDUALS INDICATE THAT THE MEASURED GROUNDWATER ELEVATION IS LOWER THAN THE SIMULATED GROUNDWATER ELEVATION.

The temporal calibration fit shown in Figure 21 presents a plot of year versus residual. This plot is useful for identifying any obvious bias in specific years relative to other years. Figure 21 shows that from the late-1940s through the mid-1960s groundwater elevations are generally underestimated.

Hydrographs showing the match between measured and simulated groundwater elevations for thirty-five of the 152 target wells are provided in Figure E-1 of Appendix E. These thirty-five wells have 5 or more groundwater elevation measurements that were used to calibrate the groundwater flow model.

In summary, the comparison between estimated or measured discharges and simulated discharges for Barton Springs, coupled with the residual analysis for simulated and measured groundwater elevations, suggests that the calibration is satisfactory for the purposes of this updated groundwater flow model.

## 3.3 Water Budget

Groundwater budgets, or groundwater inventories, are developed by quantifying all inflows to a system, all outflows from a system, and the storage change of the system over a specified period of time. Literature on the development of groundwater

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 40 of 115

budgets dates back to at least the 1930s with the work of Meinzer (1932). Tolman (1937) noted that, at the time, methods to develop groundwater budgets had not reached the accuracy necessary to be accepted by all investigators. This was largely due to extensive data collection requirements and the lengthy time needed to observe the range of hydraulic conditions.

Bredehoeft (2002) reviewed the evolution of analysis of groundwater systems. The earliest methods in the 1940s and 1950s revolved around the analysis of flow to a single well. Understanding groundwater flow on an aquifer or basin scale became possible with the analog model in the 1950s. Improvements in computer technology in the 1960s and 1970s led to the development of digital computer models or numerical models of groundwater flow. By 1980, Bredehoeft (2002) reported that numerical models had replaced analog models in the investigations of aquifer dynamics. The principle objective of such models is to understand the impacts of pumping on the system.

A groundwater system in near steady-state (or near equilibrium) prior to development (prior to groundwater pumping for irrigation or other human use) is shown in Figure 22. In this condition, groundwater inflow equals groundwater outflow and no change in storage occurs over time. For the updated Barton Springs model, inflows include recharge and outflows include discharge from springs and pumping.



Equilibrium: Inflow = Outflow

### FIGURE 22. GROUNDWATER SYSTEM PRIOR TO DEVELOPMENT (AFTER ALLEY AND OTHERS, 1999).

Development of groundwater resources (i.e. pumping of wells) results in three "impacts" to the system that is in "near steady-state": 1) storage decline (manifested in the form of lowered groundwater levels), 2) induced flow (generally manifested by increased surface water recharge, and 3) captured natural outflow (generally manifested in decreased springflows).

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 41 of 115

The initial response to pumping is a lowering of the groundwater level or a "cone of depression" around the well, which results in a decline in storage. The cone of depression deepens and extends radially with time. As the cone of depression expands, it causes groundwater to move toward the well thereby increasing the inflow to the area around the well.

The cone of depression can also cause a decrease of natural groundwater outflow from the area adjacent to the well and acts to "capture" this natural outflow. If the cone of depression causes water levels to decline in an area of shallow groundwater, evapotranspiration is reduced and the pumping is said to capture the evapotranspiration. At some point, the induced inflow and captured outflow (collectively the capture of the well) can cause the cone of depression to stabilize or equilibrate.

Figure 23 illustrates the case of a groundwater system after pumping begins. Note that the groundwater storage is decreased, inflow is increased, and outflow is decreased in response to the pumping. The inflow does not equal the total outflow (natural outflow plus pumping). The system is not in equilibrium and groundwater storage is decreasing.





#### FIGURE 23. GROUNDWATER SYSTEM AFTER INITIAL PUMPING (AFTER ALLEY AND OTHERS, 1999).

If the hydraulic conductivity is sufficiently large and the initial pumping rate is relatively constant, the inflow and natural outflow will adjust to a new near steady-state condition in response to the pumping. Groundwater storage is decreased from the predevelopment level. This reduction in storage is the result of the new near steady-state condition of the system because the location and the nature of the outflow have changed (i.e. pumping wells). Figure 24 presents a diagram of this new near steady-state or new equilibrium condition.

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 42 of 115



New Equilibrium: Inflow = Outflow

# FIGURE 24. GROUNDWATER SYSTEM UNDER CONTINUED PUMPING-NEW EQUILIBRIUM CONDITION (AFTER ALLEY AND OTHERS, 1999).

If pumping were to increase after this new near steady-state condition was established, the system inflow increases again, the natural outflow decreases again, and groundwater storage is further decreased. Figure 25 depicts this condition.





# FIGURE 25. GROUNDWATER SYSTEM UNDER ADDITIONAL INCREMENT OF INCREASED PUMPING (AFTER ALLEY AND OTHERS, 1999).

In response to this new increase in pumping, inflow would continue to increase, outflow would continue to decrease, and storage would continue to decrease as the system is equilibrating. If the pumping is relatively constant, it is possible for a groundwater basin to exhibit stable groundwater levels at a lower level than had been Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 43 of 115

previously observed. Stable groundwater levels are an indication that a new near steady-state condition has been reached.

Pumping can increase to the point where no new near steady-state condition is possible. In this condition, inflow can be induced no further and/or natural outflow can be decreased no further. From an outflow perspective, this condition would be reached once all springs have ceased to flow (no more springflow to "capture") or the water table has declined to the point that shallow groundwater evapotranspiration has ceased.

In summary, groundwater pumping dynamically alters the direction and magnitude of hydraulic gradients, induces inflow, decreases natural discharge from the system (e.g springflows, evapotranspiration) and affects fluxes between hydraulically connected aquifer systems. Bredehoeft (2002) noted that understanding the dynamic response of a groundwater system under pumping stress distills down to understanding the rate and nature of "capture" attributable to pumping, which is the sum of the change in recharge and the change in discharge caused by pumping. A calibrated numerical groundwater model of a region is an ideal tool in meeting the objective of understanding capture. Output from the model includes estimates of the various components of the water budget.

There are four main components to the water budget in the updated Barton Springs model: recharge, pumpage, discharge to springs, and storage change. Recharge (inflows) includes both focused recharge at karst features along Onion, Little Bear, Bear, Slaughter, Williamson, and Barton creeks, in addition to distributed rainfall falling on the outcrop area (see Figure 9). Pumpage (outflows) refers to both domestic (rural) and non-domestic (point) groundwater well withdrawals. Discharge (outflows) refers to springflows at Barton and Cold springs. In the updated model, discharge is the larger component of outflows relative to pumpage. Storage change refers to the difference between inflows (recharge) and outflows (pumpage and discharge). Negative values indicate water is being removed from storage, whereas positive values indicate water is being added to storage. Recharge is the largest component of the water budget, followed by discharge (springflows), pumpage, and storage change in descending order. The annual average groundwater budget for the updated model is summarized for seven time periods in Table 12. Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 44 of 115

# TABLE 12. ANNUAL AVERAGE GROUNDWATER BUDGET FOR SEVEN TIME PERIODS. ALL VALUES ARE IN ACRE-FEET PER YEAR.

|          | 1943-<br>1949 | 1950-<br>1959 | 1960-<br>1969 | 1970-<br>1979 | 1980-<br>1989 | 1990-<br>1999 | 2000-<br>2004 |
|----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Inflow   |               |               |               |               |               |               |               |
| Recharge | 35,969        | 29,933        | 32,899        | 55,064        | 37,373        | 54,957        | 65,367        |

| Outflow          |        |        |        |        |        |        |        |
|------------------|--------|--------|--------|--------|--------|--------|--------|
| Pumping          | 47     | 941    | 1,739  | 2,173  | 4,101  | 3,522  | 5,243  |
| Discharge        | 38,537 | 28,226 | 31,369 | 50,235 | 37,688 | 49,609 | 50,507 |
| Total<br>Outflow | 38,584 | 29,167 | 33,107 | 52,408 | 41,789 | 53,130 | 55,750 |

| In-Out -2,615 766 -209 2,656 -4,416 1,826 9,61 | 7 |
|------------------------------------------------|---|
|------------------------------------------------|---|

| Storage<br>Change | -2,509 | 852 | -129 | 2,811 | -4,313 | 1,976 | 9,800 |
|-------------------|--------|-----|------|-------|--------|-------|-------|
|-------------------|--------|-----|------|-------|--------|-------|-------|

# 4.0 MODEL LIMITATIONS

Numerical groundwater flow models are approximations of aquifer systems (Anderson and Woessner, 2002). Similar to analytical models, numerical models require some assumptions and have some limitations. These limitations are usually associated with the purpose for the groundwater flow model, our extent of understanding the aquifer(s), the quantity and quality of data needed to constrain parameters in the groundwater flow model, and assumptions made during model development.

As previously stated, the purpose for this modeling effort was to fulfill a specific request by Groundwater Management Area 10 for model runs that included specified springflows of 11, 9, 7, 5, and 3 cubic-feet per second under a drought-of-record recurrence using a groundwater flow model calibrated to the historic 1950 through 1956 drought-of-record. Because the purpose for this updated groundwater flow model is narrow in scope, it may not be an appropriate tool for other applications.

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 45 of 115

## **5.0 REFERENCES**

- Alley, W.M., Reilly, T.E., and Franke, O.L., 1999, Sustainability of groundwater resources, U.S. Geological Survey Circular 1186, 79 p.
- Anderson, M.P. and Woessner, W.W., 2002, Applied groundwater modeling simulation of flow and advective transport, Academic Press, Inc., 381 p.
- Bredehoeft, J. and Durbin, T., 2009, Ground water development-the time to full capture problem: *Ground Water*, vol. 47, no. 4, p. 506-514.
- Bredehoeft, J.D., 2002, The water budget myth revisited: why hydrogeologists model: *Ground Water*: vol. 40, no. 4, p. 340-345.
- Brune, G. and Duffin, G.L., 1983, Occurrence, availability, and quality of ground water in Travis, County, Texas, Texas Department of Water Resources, Report 276, 103 p.
- Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-2000, The U.S. Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process: U.S. Geological Survey Open-File Report 00-92, 121 p.
- Harbaugh, A.W. and McDonald, M.G., 1996, User's documentation for MODFLOW-96, an update to the U.S. Geological Survey Modular Finite-Difference Groundwater Flow Model, U.S. Geological Survey Open-File Report 96-485, 56 p.
- Hill, M.E., Stewart, M.T., and Martin, A., 2010, Evaluation of the MODFLOW-2005 Conduit Flow Process: *Ground Water*, vol. 48, no. 4, p. 549-559.
- Holland, K., 2010, Written communication, September 1, Austin, Texas.
- Hunt, B.B., Smith, B.A., and Beery, J., 2006, Summary of the 2005 Groundwater dye tracing, Barton Springs segment of the Edwards Aquifer, Hays and Travis Counties, Central Texas, BSEACD Report of Investigations 2006-0530, 19 p.
- Meinzer, O.E., 1932, Outline of methods for estimating ground-water supplies, U.S. Geological Survey Water-Supply Paper 638-C, p. 99-144.
- Rumbaugh, J.O. and Rumbaugh, D.B., 2004, Guide to using Groundwater Vistas version 4, Environmental Simulations, Inc., 358 p.
- Scanlon, B.R., Mace, R.E., Smith, B., Hovorka, S., Dutton, A.R., and Reedy, R., 2001, Groundwater availability of the Barton Springs segment of the Edwards aquifer, Texas: Numerical simulations through 2050: Bureau of Economic Geology, 36 p.

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 46 of 115

- Sharp, J.M. Jr., Llado, L.E., and Budge, T.J., 2009, Urbanization-induced trends in spring discharge from a karstic aquifer-Barton Springs, Austin, Texas, USA, Proceedings of the 15<sup>th</sup> International Congress of Speleology, vol.2, p. 1211-1216.
- Shoemaker, W.B., Kuniansky, E.L., Birk, S., Bauer, S., and Swain, E.D., 2008, Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005, U.S. Geological Survey Techniques and Methods, Book 6, Chapter A24, 50 p.
- Slade, R.M. Jr., Dorsey, M.E., and Stewart, S.L., 1986, Hydrology and water quality of the Edwards Aquifer associated with Barton Springs in the Austin area, Texas, U.S. Geological Survey Water-Resources Investigations Report 86-4036, 117 p.

Tolman, C.F., 1937, Ground Water, McGraw-Hill, New York, 593 p.

- Watermark Numerical Computing, 2004, PEST Model-Independent Parameter Estimation User Manual: 5<sup>th</sup> Edition, variously p.
- Wilson, J.D. and Naff, R.L., 2004, The U.S. Geological Survey modular ground-water model-GMG linear equation solver package documentation: U.S. Geological Survey Open-File Report 2004-1261, 47 p.

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 47 of 115

# APPENDICES

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 48 of 115

# APPENDIX A: Regression Models Developed for the Percent of Rural Pumping

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 49 of 115

TABLE A-1. INTERCEPTS, COEFFICIENTS, AND COEFFICIENTS OF DETERMINATION FOR THE TWELVE REGRESSION MODELS DEVELOPED FOR THE PERCENT OF RURAL PUMPING USING YEAR AND PRECIPITATION AS VARIABLES.

| Month     | Intercept | Coefficient_1 | Coefficient_2 | R <sup>2</sup> |
|-----------|-----------|---------------|---------------|----------------|
| January   | 1788.168  | -0.887        | 0.222         | 0.82           |
| February  | 1845.853  | -0.916        | 0.161         | 0.77           |
| March     | 2977.460  | -1.483        | -0.083        | 0.86           |
| April     | 2484.771  | -1.238        | 0.436         | 0.85           |
| May       | 2575.147  | -1.284        | 0.470         | 0.82           |
| June      | 1922.330  | -0.959        | 0.493         | 0.81           |
| July      | 2232.493  | -1.114        | 0.086         | 0.88           |
| August    | 1507.182  | -0.751        | 0.438         | 0.85           |
| September | 3060.417  | -1.529        | 0.617         | 0.84           |
| October   | 1704.724  | -0.847        | 0.059         | 0.83           |
| November  | 2421.622  | -1.205        | 0.050         | 0.95           |
| December  | 1541.247  | -0.764        | 0.090         | 0.77           |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 50 of 115

# APPENDIX B:Regression Models Using Precipitation Indices and Recharge Zones

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 51 of 115

TABLE B-1. COEFFICIENTS, CONSTANTS, AND COEFFICIENTS OF DETERMINATION FOR THE 84 REGRESSION MODELS DEVELOPED USING THE QUANTITIES FOR EACH RECHARGE ZONE IN THE SCANLON AND OTHERS (2001) MODEL WITH THE PRECIPITATION INDICES.

| Month | Zone | <b>x</b> <sup>4</sup> | X <sup>3</sup> | x <sup>2</sup> | X         | С         | R <sup>2</sup> |
|-------|------|-----------------------|----------------|----------------|-----------|-----------|----------------|
| 1     | 2    | 0.00E+00              | 2.59E-06       | -5.58E-05      | 4.96E-04  | -6.87E-04 | 8.02E-01       |
| 1     | 3    | 0.00E+00              | 4.53E-04       | -1.03E-02      | 8.66E-02  | -1.17E-01 | 7.13E-01       |
| 1     | 4    | 0.00E+00              | 8.31E-05       | -1.47E-03      | 1.31E-02  | -1.88E-02 | 8.44E-01       |
| 1     | 5    | 0.00E+00              | 1.22E-04       | -2.15E-03      | 1.91E-02  | -2.75E-02 | 8.43E-01       |
| 1     | 6    | 0.00E+00              | 3.31E-05       | -5.85E-04      | 8.48E-03  | -1.37E-02 | 8.93E-01       |
| 1     | 7    | 0.00E+00              | -4.89E-05      | 1.21E-03       | -4.02E-03 | 3.24E-03  | 9.94E-01       |
| 1     | 8    | 0.00E+00              | 3.60E-04       | -8.05E-03      | 7.12E-02  | -9.69E-02 | 7.95E-01       |
|       |      |                       |                |                |           |           |                |
| 2     | 2    | 0.00E+00              | 0.00E+00       | -2.99E-06      | 2.78E-04  | -4.90E-04 | 7.85E-01       |
| 2     | 3    | 0.00E+00              | 0.00E+00       | -1.98E-03      | 5.42E-02  | -8.94E-02 | 6.38E-01       |
| 2     | 4    | 0.00E+00              | 0.00E+00       | 3.37E-04       | 6.12E-03  | -1.37E-02 | 8.30E-01       |
| 2     | 5    | 0.00E+00              | 0.00E+00       | 4.99E-04       | 8.93E-03  | -2.01E-02 | 8.29E-01       |
| 2     | 6    | 0.00E+00              | 0.00E+00       | -1.56E-04      | 1.01E-02  | -1.99E-02 | 6.34E-01       |
| 2     | 7    | 0.00E+00              | 0.00E+00       | 2.71E-05       | 4.63E-03  | -1.05E-02 | 8.75E-01       |
| 2     | 8    | 0.00E+00              | 0.00E+00       | 7.60E-04       | 2.44E-02  | -4.05E-02 | 8.90E-01       |
|       |      |                       |                |                |           |           |                |
| 3     | 2    | 0.00E+00              | 0.00E+00       | 8.54E-06       | 1.23E-04  | 0.00E+00  | 6.09E-01       |
| 3     | 3    | 0.00E+00              | 0.00E+00       | 4.14E-04       | 2.37E-02  | 0.00E+00  | 5.00E-01       |
| 3     | 4    | 0.00E+00              | 0.00E+00       | 7.25E-04       | 1.37E-03  | 0.00E+00  | 7.03E-01       |
| 3     | 5    | 0.00E+00              | 0.00E+00       | 1.06E-03       | 1.99E-03  | 0.00E+00  | 7.03E-01       |
| 3     | 6    | 0.00E+00              | 0.00E+00       | 2.16E-04       | 3.20E-03  | 0.00E+00  | 3.66E-01       |
| 3     | 7    | 0.00E+00              | 0.00E+00       | 4.26E-04       | -1.60E-04 | 0.00E+00  | 7.77E-01       |
| 3     | 8    | 0.00E+00              | 0.00E+00       | 1.07E-03       | 1.80E-02  | 0.00E+00  | 6.88E-01       |

#### Table B-1 continued.

| Month | Zone | <b>x</b> <sup>4</sup> | X <sup>3</sup> | x <sup>2</sup> | X         | С        | R <sup>2</sup> |
|-------|------|-----------------------|----------------|----------------|-----------|----------|----------------|
| 4     | 2    | 0.00E+00              | 9.14E-07       | 7.49E-06       | 8.33E-05  | 0.00E+00 | 4.96E-01       |
| 4     | 3    | 0.00E+00              | 1.82E-04       | 1.25E-04       | 1.82E-02  | 0.00E+00 | 3.96E-01       |
| 4     | 4    | 0.00E+00              | -1.27E-04      | 2.38E-03       | -3.97E-03 | 0.00E+00 | 5.08E-01       |
| 4     | 5    | 0.00E+00              | -1.87E-04      | 3.50E-03       | -5.88E-03 | 0.00E+00 | 5.08E-01       |
| 4     | 6    | 0.00E+00              | 0.00E+00       | 5.52E-04       | 8.14E-04  | 0.00E+00 | 3.27E-01       |
| 4     | 7    | 0.00E+00              | 0.00E+00       | 2.22E-04       | 6.22E-04  | 0.00E+00 | 2.10E-01       |
| 4     | 8    | 0.00E+00              | 7.33E-04       | -6.20E-03      | 2.98E-02  | 0.00E+00 | 6.37E-01       |
|       |      |                       |                |                |           |          |                |
| 5     | 2    | 0.00E+00              | -2.03E-07      | 7.89E-06       | 6.83E-05  | 0.00E+00 | 5.70E-01       |
| 5     | 3    | 0.00E+00              | -1.55E-04      | 2.15E-03       | 1.03E-02  | 0.00E+00 | 3.72E-01       |
| 5     | 4    | 0.00E+00              | 1.31E-05       | 1.88E-04       | 1.30E-03  | 0.00E+00 | 7.04E-01       |
| 5     | 5    | 0.00E+00              | 0.00E+00       | 6.00E-04       | 6.00E-04  | 0.00E+00 | 7.04E-01       |
| 5     | 6    | 0.00E+00              | 5.73E-05       | -2.03E-04      | 1.17E-03  | 0.00E+00 | 7.60E-01       |
| 5     | 7    | 0.00E+00              | 0.00E+00       | 3.85E-05       | 1.86E-03  | 0.00E+00 | 3.14E-01       |
| 5     | 8    | 0.00E+00              | 0.00E+00       | 9.78E-04       | 9.33E-03  | 0.00E+00 | 6.70E-01       |
|       |      |                       |                |                |           |          |                |
| 6     | 2    | 0.00E+00              | 0.00E+00       | 1.62E-05       | -3.32E-05 | 0.00E+00 | 8.70E-01       |
| 6     | 3    | 0.00E+00              | 0.00E+00       | 1.01E-03       | 5.37E-03  | 0.00E+00 | 7.02E-01       |
| 6     | 4    | 0.00E+00              | 8.25E-05       | -4.70E-04      | 1.02E-03  | 0.00E+00 | 9.57E-01       |
| 6     | 5    | 0.00E+00              | 1.24E-04       | -7.17E-04      | 1.58E-03  | 0.00E+00 | 9.58E-01       |
| 6     | 6    | 0.00E+00              | -1.69E-05      | 1.01E-03       | -3.58E-03 | 0.00E+00 | 6.39E-01       |
| 6     | 7    | 0.00E+00              | 0.00E+00       | 1.28E-04       | 2.27E-04  | 0.00E+00 | 6.81E-01       |
| 6     | 8    | 0.00E+00              | 0.00E+00       | 2.32E-03       | -4.26E-03 | 0.00E+00 | 8.96E-01       |

#### Table B-1 continued.

| Month | Zone | <b>x</b> <sup>4</sup> | x <sup>3</sup> | <b>x</b> <sup>2</sup> | X         | c        | R <sup>2</sup> |
|-------|------|-----------------------|----------------|-----------------------|-----------|----------|----------------|
| 7     | 2    | 0.00E+00              | 2.57E-06       | -2.12E-05             | 7.87E-05  | 0.00E+00 | 4.76E-01       |
| 7     | 3    | 0.00E+00              | 5.65E-04       | -4.91E-03             | 1.64E-02  | 0.00E+00 | 4.78E-01       |
| 7     | 4    | 0.00E+00              | 1.08E-04       | -1.02E-03             | 3.02E-03  | 0.00E+00 | 4.34E-01       |
| 7     | 5    | 0.00E+00              | 1.59E-04       | -1.50E-03             | 4.43E-03  | 0.00E+00 | 4.34E-01       |
| 7     | 6    | 0.00E+00              | 8.80E-05       | -8.08E-04             | 2.26E-03  | 0.00E+00 | 3.92E-01       |
| 7     | 7    | 0.00E+00              | 0.00E+00       | 7.47E-05              | -1.32E-04 | 0.00E+00 | 3.93E-01       |
| 7     | 8    | 0.00E+00              | 4.22E-05       | 3.19E-04              | 3.97E-03  | 0.00E+00 | 4.57E-01       |
|       |      |                       |                |                       |           |          |                |
| 8     | 2    | 0.00E+00              | 0.00E+00       | 0.00E+00              | 0.00E+00  | 5.96E-05 |                |
| 8     | 3    | 0.00E+00              | 0.00E+00       | 0.00E+00              | 0.00E+00  | 1.01E-02 |                |
| 8     | 4    | 0.00E+00              | 0.00E+00       | 0.00E+00              | 0.00E+00  | 9.88E-04 |                |
| 8     | 5    | 0.00E+00              | 0.00E+00       | 0.00E+00              | 0.00E+00  | 1.43E-03 |                |
| 8     | 6    | 0.00E+00              | 0.00E+00       | 0.00E+00              | 0.00E+00  | 1.20E-03 |                |
| 8     | 7    | 0.00E+00              | 0.00E+00       | 0.00E+00              | 0.00E+00  | 7.50E-04 |                |
| 8     | 8    | 0.00E+00              | 0.00E+00       | 0.00E+00              | 0.00E+00  | 9.48E-03 |                |
|       |      |                       |                |                       |           |          |                |
| *9    | 2    | 3.29E-07              | -5.45E-06      | 2.73E-05              | -3.70E-05 | 1.79E-05 | 9.73E-01       |
| 9     | 3    | 1.44E-04              | -2.59E-03      | 1.46E-02              | -2.61E-02 | 1.32E-02 | 9.61E-01       |
| 9     | 4    | 0.00E+00              | -2.47E-06      | 4.59E-05              | -1.57E-04 | 1.93E-04 | 2.48E-01       |
| 9     | 5    | 0.00E+00              | -2.44E-06      | 3.97E-05              | -5.54E-05 | 0.00E+00 | 2.12E-01       |
| 9     | 6    | 0.00E+00              | 0.00E+00       | -8.59E-07             | 2.91E-05  | 0.00E+00 | 5.58E-01       |
| 9     | 7    | 0.00E+00              | 2.56E-06       | -4.40E-05             | 2.30E+05  | 0.00E+00 | 2.13E-01       |
| 9     | 8    | 0.00E+00              | 2.33E-06       | -9.81E-06             | 6.53E-04  | 0.00E+00 | 2.88E-01       |

#### Table B-1 continued.

| Month | Zone | <b>x</b> <sup>4</sup> | X <sup>3</sup> | <b>x</b> <sup>2</sup> | X         | C         | R <sup>2</sup> |
|-------|------|-----------------------|----------------|-----------------------|-----------|-----------|----------------|
| 10    | 2    | 0.00E+00              | 0.00E+00       | 3.13E-06              | -1.33E-06 | 0.00E+00  | 9.81E-01       |
| 10    | 3    | 0.00E+00              | 0.00E+00       | 3.12E-04              | 3.02E-04  | 0.00E+00  | 9.54E-01       |
| 10    | 4    | 0.00E+00              | 0.00E+00       | 2.85E-04              | -1.47E-03 | 0.00E+00  | 9.91E-01       |
| 10    | 5    | 0.00E+00              | 0.00E+00       | 4.21E-04              | -2.18E-03 | 0.00E+00  | 9.91E-01       |
| 10    | 6    | 0.00E+00              | 0.00E+00       | -1.57E-05             | 1.08E-03  | 0.00E+00  | 4.28E-01       |
| 10    | 7    | 0.00E+00              | 0.00E+00       | 1.46E-05              | 2.79E-04  | 0.00E+00  | 8.88E-01       |
| 10    | 8    | 0.00E+00              | 0.00E+00       | 3.10E-04              | 1.50E-03  | 0.00E+00  | 9.53E-01       |
|       |      |                       |                |                       |           |           |                |
| 11    | 2    | 0.00E+00              | 0.00E+00       | 9.84E-06              | -2.45E-05 | 0.00E+00  | 9.44E-01       |
| 11    | 3    | 0.00E+00              | 0.00E+00       | 1.43E-03              | -3.39E-03 | 0.00E+00  | 9.44E-01       |
| 11    | 4    | 0.00E+00              | 0.00E+00       | 4.77E-04              | -1.99E-03 | 0.00E+00  | 9.83E-01       |
| 11    | 5    | 0.00E+00              | 0.00E+00       | 7.03E-04              | -2.94E-03 | 0.00E+00  | 9.83E-01       |
| 11    | 6    | 0.00E+00              | 0.00E+00       | 3.78E-04              | -1.16E-03 | 0.00E+00  | 8.94E-01       |
| 11    | 7    | 0.00E+00              | 0.00E+00       | 8.29E-05              | -1.74E-04 | 0.00E+00  | 9.25E-01       |
| 11    | 8    | 0.00E+00              | 0.00E+00       | 9.38E-04              | -2.18E-04 | 0.00E+00  | 8.71E-01       |
|       |      |                       |                |                       |           |           |                |
| 12    | 2    | 0.00E+00              | 0.00E+00       | 7.65E-06              | 3.68E-05  | 0.00E+00  | 9.43E-01       |
| 12    | 3    | 0.00E+00              | 0.00E+00       | -5.11E-04             | 1.82E-02  | 0.00E+00  | 4.98E-01       |
| 12    | 4    | 0.00E+00              | 9.62E-05       | -8.78E-04             | 5.31E-03  | -8.29E-03 | 9.97E-01       |
| 12    | 5    | 0.00E+00              | 1.42E-04       | -1.31E-03             | 7.88E-03  | -1.32E-02 | 9.97E-01       |
| 12    | 6    | 0.00E+00              | 0.00E+00       | 2.45E-04              | 4.16E-04  | 0.00E+00  | 8.14E-01       |
| 12    | 7    | 0.00E+00              | 4.12E-06       | 7.35E-05              | -1.69E-04 | 0.00E+00  | 9.75E-01       |
| 12    | 8    | 0.00E+00              | -8.75E-05      | 2.59E-03              | -1.97E-03 | 0.00E+00  | 9.66E-01       |

\*no September 1991

## APPENDIX C: Estimated or Measured Discharges Versus Simulated Discharges at Barton Springs

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 56 of 115

TABLE C-1. MONTHLY ESTIMATED OR MEASURED DISCHARGES FOR BARTON SPRINGS PROVIDED BY THE BARTON SPRINGS/EDWARDS AQUIFER CONSERVATION DISTRICT, WITH SIMULATED DISCHARGES FOR BARTON SPRINGS USING THE NEW MODEL DURING THE TRANSIENT SIMULATION. RESIDUALS ARE CALCULATED USING THE ESTIMATED OR MEASURED DISCHARGES MINUS THE SIMULATED DISCHARGES.

| Decimal<br>Year | Estimated/Measured<br>Discharge for<br>Barton Springs<br>(feet <sup>3</sup> /second) | Simulated<br>Discharge for<br>Barton Springs<br>(feet <sup>3</sup> /second) | Residual<br>(feet <sup>3</sup> /second) |
|-----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|
| 1943.08         | 49                                                                                   | 54.320                                                                      | -5.320                                  |
| 1943.17         | 40                                                                                   | 49.935                                                                      | -9.935                                  |
| 1943.25         | 38                                                                                   | 46.032                                                                      | -8.032                                  |
| 1943.33         | 48                                                                                   | 42.440                                                                      | 5.560                                   |
| 1943.42         | 42                                                                                   | 43.031                                                                      | -1.031                                  |
| 1943.50         | 42                                                                                   | 39.735                                                                      | 2.265                                   |
| 1943.58         | 43                                                                                   | 38.510                                                                      | 4.490                                   |
| 1943.67         | 32                                                                                   | 35.588                                                                      | -3.588                                  |
| 1943.75         | 28                                                                                   | 33.136                                                                      | -5.136                                  |
| 1943.83         | 32                                                                                   | 30.760                                                                      | 1.240                                   |
| 1943.92         | 28                                                                                   | 28.620                                                                      | -0.620                                  |
| 1944.00         | 23                                                                                   | 26.711                                                                      | -3.711                                  |
| 1944.08         | 38                                                                                   | 45.045                                                                      | -7.045                                  |
| 1944.17         | 64                                                                                   | 51.341                                                                      | 12.659                                  |
| 1944.25         | 83                                                                                   | 56.746                                                                      | 26.254                                  |
| 1944.33         | 79                                                                                   | 53.142                                                                      | 25.858                                  |
| 1944.42         | 86                                                                                   | 69.280                                                                      | 16.720                                  |
| 1944.50         | 85                                                                                   | 68.828                                                                      | 16.172                                  |
| 1944.58         | 70                                                                                   | 64.821                                                                      | 5.179                                   |
| 1944.67         | 51                                                                                   | 59.807                                                                      | -8.807                                  |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 57 of 115

|         | Estimated/Measured                    | Simulated                   |                             |
|---------|---------------------------------------|-----------------------------|-----------------------------|
| Decimal | Discharge for                         | Discharge for               | Residual                    |
| Year    | Barton Springs                        | Barton Springs              | (feet <sup>3</sup> /second) |
|         | (feet <sup>3</sup> /second)           | (feet <sup>3</sup> /second) | · · · · ·                   |
|         | · · · · · · · · · · · · · · · · · · · |                             |                             |
| 1944.75 | 45                                    | 54.717                      | -9.717                      |
| 1944.83 | 38                                    | 49.869                      | -11.869                     |
|         |                                       |                             |                             |
| 1944.92 | 30                                    | 47.248                      | -17.248                     |
| 1945.00 | 45                                    | 47.474                      | -2.474                      |
| 1945.08 | 81                                    | 63.680                      | 17.320                      |
| 1945.17 | 83                                    | 67.811                      | 15.189                      |
| 1945.25 | 82                                    | 70.763                      | 11.237                      |
| 1945.33 | 93                                    | 85.462                      | 7.538                       |
| 1945.42 | 104                                   | 82.493                      | 21.507                      |
| 1945.50 | 85                                    | 79.767                      | 5.233                       |
| 1945.58 | 77                                    | 74.241                      | 2.759                       |
| 1945.67 | 64                                    | 67.993                      | -3.993                      |
| 1945.75 | 51                                    | 61.977                      | -10.977                     |
| 1945.83 | 40                                    | 56.467                      | -16.467                     |
| 1945.92 | 44                                    | 51.474                      | -7.474                      |
| 1946.00 | 44                                    | 47.122                      | -3.122                      |
| 1946.08 | 52                                    | 48.002                      | 3.998                       |
| 1946.17 | 65                                    | 48.422                      | 16.578                      |
| 1946.25 | 81                                    | 50.538                      | 30.462                      |
| 1946.33 | 76                                    | 66.919                      | 9.081                       |
| 1946.42 | 90                                    | 83.096                      | 6.904                       |
| 1946.50 | 83                                    | 83.641                      | -0.641                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 58 of 115

| Decimal  | Decimal Estimated/Measured Simulated Discharge |                             | Residual                    |
|----------|------------------------------------------------|-----------------------------|-----------------------------|
| Year     | Discharge for Barton                           | for Barton Springs          | (feet <sup>3</sup> /second) |
| rear     | Springs (feet <sup>3</sup> /second)            | (feet <sup>3</sup> /second) |                             |
| 10.11.50 |                                                | 70.070                      | 12.0(0                      |
| 1946.58  | 66                                             | 79.268                      | -13.268                     |
| 1946 67  | 52                                             | 76 449                      | -74 449                     |
| 1710107  | 52                                             |                             | 2                           |
| 1946.75  | 47                                             | 76.227                      | -29.227                     |
| 1946.83  | 64                                             | 80.980                      | -16.980                     |
| 1946.92  | 85                                             | 78.214                      | 6.786                       |
| 1947.00  | 74                                             | 74.439                      | -0.439                      |
| 1947.08  | 80                                             | 88.342                      | -8.342                      |
| 1947.17  | 83                                             | 82.352                      | 0.648                       |
| 1947.25  | 90                                             | 80.839                      | 9.161                       |
| 1947.33  | 95                                             | 74.315                      | 20.685                      |
| 1947.42  | 82                                             | 73.075                      | 8.925                       |
| 1947.50  | 70                                             | 66.757                      | 3.243                       |
| 1947.58  | 56                                             | 61.055                      | -5.055                      |
| 1947.67  | 35                                             | 56.215                      | -21.215                     |
| 1947.75  | 37                                             | 51.579                      | -14.579                     |
| 1947.83  | 48                                             | 47.342                      | 0.658                       |
| 1947.92  | 29                                             | 43.544                      | -14.544                     |
| 1948.00  | 27                                             | 40.193                      | -13.193                     |
| 1948.08  | 26                                             | 37.166                      | -11.166                     |
| 1948.17  | 24                                             | 34.784                      | -10.784                     |
| 1948.25  | 23                                             | 32.612                      | -9.612                      |
| 1948.33  | 21                                             | 30.626                      | -9.626                      |
| 1948.42  | 20                                             | 31.758                      | -11.758                     |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 59 of 115

| Decimal | Estimated/Measured     | Simulated Discharge         | Residual                    |
|---------|------------------------|-----------------------------|-----------------------------|
| Year    | Discharge for Barton   | for Barton Springs          | (feet <sup>3</sup> /second) |
|         | Springs (feet-/second) | (feet <sup>®</sup> /second) | , , ,                       |
| 1948.50 | 19                     | 29.832                      | -10.832                     |
| 1948.58 | 25                     | 28.104                      | -3.104                      |
| 1948.67 | 19                     | 26.435                      | -7.435                      |
| 1948.75 | 23                     | 24.847                      | -1.847                      |
| 1948.83 | 27                     | 23.419                      | 3.581                       |
| 1948.92 | 19                     | 22.089                      | -3.089                      |
| 1949.00 | 19                     | 20.908                      | -1.908                      |
| 1949.08 | 20                     | 24.433                      | -4.433                      |
| 1949.17 | 20                     | 28.658                      | -8.658                      |
| 1949.25 | 24                     | 31.901                      | -7.901                      |
| 1949.33 | 52                     | 50.231                      | 1.769                       |
| 1949.42 | 45                     | 51.295                      | -6.295                      |
| 1949.50 | 40                     | 48.461                      | -8.461                      |
| 1949.58 | 32                     | 45.011                      | -13.011                     |
| 1949.67 | 23                     | 41.428                      | -18.428                     |
| 1949.75 | 20                     | 38.143                      | -18.143                     |
| 1949.83 | 20                     | 48.813                      | -28.813                     |
| 1949.92 | 19                     | 44.508                      | -25.508                     |
| 1950.00 | 18                     | 40.987                      | -22.987                     |
| 1950.08 | 18                     | 37.592                      | -19.592                     |
| 1950.17 | 26                     | 39.126                      | -13.126                     |
| 1950.25 | 30                     | 36.264                      | -6.264                      |
| 1950.33 | 35                     | 53.604                      | -18.604                     |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 60 of 115

| Decimal | Estimated/Measured     | Simulated Discharge | Residual                    |
|---------|------------------------|---------------------|-----------------------------|
| Year    | Discharge for Barton   | for Barton Springs  | (feet <sup>3</sup> /second) |
|         | springs (reet /second) | (leet /second)      |                             |
| 1950.42 | 55                     | 55.358              | -0.358                      |
| 1950.50 | 51                     | 54.722              | -3.722                      |
| 1950.58 | 39                     | 50.579              | -11.579                     |
| 1950.67 | 29                     | 46.444              | -17.444                     |
| 1950.75 | 25                     | 42.614              | -17.614                     |
| 1950.83 | 20                     | 38.998              | -18.998                     |
| 1950.92 | 23                     | 35.705              | -12.705                     |
| 1951.00 | 23                     | 32.750              | -9.750                      |
| 1951.08 | 17                     | 30.108              | -13.108                     |
| 1951.17 | 17                     | 28.066              | -11.066                     |
| 1951.25 | 17                     | 33.041              | -16.041                     |
| 1951.33 | 18                     | 30.988              | -12.988                     |
| 1951.42 | 20                     | 33.776              | -13.776                     |
| 1951.50 | 38                     | 36.625              | 1.375                       |
| 1951.58 | 16                     | 35.386              | -19.386                     |
| 1951.67 | 15                     | 32.760              | -17.760                     |
| 1951.75 | 20                     | 33.626              | -13.626                     |
| 1951.83 | 16                     | 30.790              | -14.790                     |
| 1951.92 | 16                     | 28.310              | -12.310                     |
| 1952.00 | 16                     | 26.041              | -10.041                     |
| 1952.08 | 13                     | 23.968              | -10.968                     |
| 1952.17 | 13                     | 22.229              | -9.229                      |
| 1952.25 | 15                     | 21.010              | -6.010                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 61 of 115

| Decimal | Estimated/Measured                  | Simulated Discharge         | Residual                    |
|---------|-------------------------------------|-----------------------------|-----------------------------|
| Year    | Discharge for Barton                | for Barton Springs          | (feet <sup>3</sup> /second) |
|         | Springs (feet <sup>2</sup> /second) | (feet <sup>®</sup> /second) | · · · ·                     |
| 1952.33 | 30                                  | 39.643                      | -9.643                      |
| 1952.42 | 29                                  | 44.580                      | -15.580                     |
| 1952.50 | 27                                  | 42.229                      | -15.229                     |
| 1952.58 | 22                                  | 39.345                      | -17.345                     |
| 1952.67 | 18                                  | 36.233                      | -18.233                     |
| 1952.75 | 30                                  | 33.440                      | -3.440                      |
| 1952.83 | 34                                  | 30.597                      | 3.403                       |
| 1952.92 | 33                                  | 31.413                      | 1.587                       |
| 1953.00 | 34                                  | 32.945                      | 1.055                       |
| 1953.08 | 50                                  | 31.017                      | 18.983                      |
| 1953.17 | 52                                  | 28.876                      | 23.124                      |
| 1953.25 | 48                                  | 26.903                      | 21.097                      |
| 1953.33 | 50                                  | 44.933                      | 5.067                       |
| 1953.42 | 52                                  | 46.552                      | 5.448                       |
| 1953.50 | 38                                  | 43.819                      | -5.819                      |
| 1953.58 | 21                                  | 40.604                      | -19.604                     |
| 1953.67 | 17                                  | 37.776                      | -20.776                     |
| 1953.75 | 47                                  | 34.745                      | 12.255                      |
| 1953.83 | 36                                  | 48.669                      | -12.669                     |
| 1953.92 | 63                                  | 44.346                      | 18.654                      |
| 1954.00 | 70                                  | 44.426                      | 25.574                      |
| 1954.08 | 64                                  | 41.078                      | 22.922                      |
| 1954.17 | 50                                  | 37.507                      | 12.493                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 62 of 115

| Decimal | Estimated/Measured     | Simulated Discharge | Residual                    |
|---------|------------------------|---------------------|-----------------------------|
| Year    | Discharge for Barton   | for Barton Springs  | (feet <sup>3</sup> /second) |
|         | springs (reet /second) | (leet /second)      |                             |
| 1954.25 | 37                     | 34.195              | 2.805                       |
| 1954.33 | 31                     | 31.370              | -0.370                      |
| 1954.42 | 30                     | 28.889              | 1.111                       |
| 1954.50 | 24                     | 26.452              | -2.452                      |
| 1954.58 | 19                     | 24.320              | -5.320                      |
| 1954.67 | 18                     | 22.435              | -4.435                      |
| 1954.75 | 16                     | 20.699              | -4.699                      |
| 1954.83 | 21                     | 19.179              | 1.821                       |
| 1954.92 | 22                     | 17.786              | 4.214                       |
| 1955.00 | 21                     | 16.551              | 4.449                       |
| 1955.08 | 21                     | 15.602              | 5.398                       |
| 1955.17 | 20                     | 24.879              | -4.879                      |
| 1955.25 | 20                     | 29.240              | -9.240                      |
| 1955.33 | 15                     | 27.687              | -12.687                     |
| 1955.42 | 21                     | 29.852              | -8.852                      |
| 1955.50 | 19                     | 27.920              | -8.920                      |
| 1955.58 | 16                     | 27.352              | -11.352                     |
| 1955.67 | 14                     | 25.109              | -11.109                     |
| 1955.75 | 16                     | 23.006              | -7.006                      |
| 1955.83 | 15                     | 21.074              | -6.074                      |
| 1955.92 | 15                     | 19.309              | -4.309                      |
| 1956.00 | 14                     | 17.763              | -3.763                      |
| 1956.08 | 16                     | 16.612              | -0.612                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 63 of 115

| Decimal | Estimated/Measured     | Simulated Discharge | Residual                    |
|---------|------------------------|---------------------|-----------------------------|
| Year    | Discharge for Barton   | for Barton Springs  | (feet <sup>3</sup> /second) |
|         | springs (reet /second) | (leet /secolid)     |                             |
| 1956.17 | 14                     | 15.519              | -1.519                      |
| 1956.25 | 14                     | 14.503              | -0.503                      |
| 1956.33 | 12                     | 13.604              | -1.604                      |
| 1956.42 | 13                     | 12.847              | 0.153                       |
| 1956.50 | 12                     | 11.981              | 0.019                       |
| 1956.58 | 11                     | 11.221              | -0.221                      |
| 1956.67 | 11                     | 10.542              | 0.458                       |
| 1956.75 | 12                     | 9.854               | 2.146                       |
| 1956.83 | 13                     | 9.259               | 3.741                       |
| 1956.92 | 15                     | 8.718               | 6.282                       |
| 1957.00 | 12                     | 8.377               | 3.623                       |
| 1957.08 | 15                     | 8.154               | 6.846                       |
| 1957.17 | 15                     | 8.084               | 6.916                       |
| 1957.25 | 14                     | 16.256              | -2.256                      |
| 1957.33 | 19                     | 35.291              | -16.291                     |
| 1957.42 | 53                     | 54.162              | -1.162                      |
| 1957.50 | 77                     | 61.200              | 15.800                      |
| 1957.58 | 50                     | 58.641              | -8.641                      |
| 1957.67 | 32                     | 53.491              | -21.491                     |
| 1957.33 | 19                     | 35.291              | -16.291                     |
| 1957.42 | 53                     | 54.162              | -1.162                      |
| 1957.50 | 77                     | 61.200              | 15.800                      |
| 1957.58 | 50                     | 58.641              | -8.641                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 64 of 115

| Decimal<br>Year | Estimated/Measured<br>Discharge for<br>Barton Springs<br>(feet <sup>3</sup> /second) | Simulated Discharge<br>for Barton Springs<br>(feet <sup>3</sup> /second) | Residual<br>(feet <sup>3</sup> /second) |
|-----------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|
| 1957.67         | 32                                                                                   | 53.491                                                                   | -21.491                                 |
| 1957.75         | 70                                                                                   | 52.062                                                                   | 17.938                                  |
| 1957.83         | 50                                                                                   | 66.858                                                                   | -16.858                                 |
| 1957.92         | 70                                                                                   | 81.911                                                                   | -11.911                                 |
| 1958.00         | 91                                                                                   | 79.617                                                                   | 11.383                                  |
| 1958.08         | 75                                                                                   | 79.122                                                                   | -4.122                                  |
| 1958.17         | 88                                                                                   | 81.206                                                                   | 6.794                                   |
| 1958.25         | 123                                                                                  | 83.141                                                                   | 39.859                                  |
| 1958.33         | 95                                                                                   | 81.734                                                                   | 13.266                                  |
| 1958.42         | 75                                                                                   | 79.516                                                                   | -4.516                                  |
| 1958.50         | 90                                                                                   | 72.292                                                                   | 17.708                                  |
| 1958.58         | 84                                                                                   | 67.598                                                                   | 16.402                                  |
| 1958.67         | 62                                                                                   | 60.946                                                                   | 1.054                                   |
| 1958.75         | 58                                                                                   | 59.251                                                                   | -1.251                                  |
| 1958.83         | 65                                                                                   | 71.699                                                                   | -6.699                                  |
| 1958.92         | 83                                                                                   | 65.808                                                                   | 17.192                                  |
| 1959.00         | 80                                                                                   | 60.304                                                                   | 19.696                                  |
| 1959.08         | 80                                                                                   | 54.780                                                                   | 25.220                                  |
| 1959.17         | 70                                                                                   | 50.035                                                                   | 19.965                                  |
| 1959.25         | 60                                                                                   | 45.542                                                                   | 14.458                                  |
| 1959.33         | 70                                                                                   | 48.640                                                                   | 21.360                                  |
| 1959.42         | 70                                                                                   | 51.392                                                                   | 18.608                                  |
| 1959.50         | 62                                                                                   | 53.140                                                                   | 8.860                                   |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 65 of 115

| Decimal | Estimated/Measured                                          | Simulated Discharge                               | Residual                    |
|---------|-------------------------------------------------------------|---------------------------------------------------|-----------------------------|
| Year    | Discharge for Barton<br>Springs (feet <sup>3</sup> /second) | for Barton Springs<br>(feet <sup>3</sup> /second) | (feet <sup>3</sup> /second) |
|         |                                                             |                                                   |                             |
| 1959.58 | 57                                                          | 50.699                                            | 6.301                       |
| 1959.67 | 34                                                          | 51.248                                            | -17.248                     |
| 1959.75 | 43                                                          | 46.829                                            | -3.829                      |
| 1959.83 | 65                                                          | 61.426                                            | 3.574                       |
| 1959.92 | 55                                                          | 59.707                                            | -4.707                      |
| 1960.00 | 50                                                          | 55.280                                            | -5.280                      |
| 1960.08 | 62                                                          | 51.019                                            | 10.981                      |
| 1960.17 | 78                                                          | 46.712                                            | 31.288                      |
| 1960.25 | 70                                                          | 42.758                                            | 27.242                      |
| 1960.33 | 65                                                          | 39.263                                            | 25.737                      |
| 1960.42 | 57                                                          | 35.907                                            | 21.093                      |
| 1960.50 | 55                                                          | 38.762                                            | 16.238                      |
| 1960.58 | 46                                                          | 37.170                                            | 8.830                       |
| 1960.67 | 50                                                          | 34.474                                            | 15.526                      |
| 1960.75 | 52                                                          | 31.466                                            | 20.534                      |
| 1960.83 | 46                                                          | 48.873                                            | -2.873                      |
| 1960.92 | 105                                                         | 50.516                                            | 54.484                      |
| 1961.00 | 92                                                          | 53.549                                            | 38.451                      |
| 1961.08 | 89                                                          | 50.373                                            | 38.627                      |
| 1961.17 | 97                                                          | 56.458                                            | 40.542                      |
| 1961.25 | 99                                                          | 52.477                                            | 46.523                      |
| 1961.33 | 96                                                          | 48.533                                            | 47.467                      |
| 1961.42 | 88                                                          | 44.432                                            | 43.568                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 66 of 115

| Decimal | Estimated/Measured     | Simulated Discharge         | Residual                    |
|---------|------------------------|-----------------------------|-----------------------------|
| Year    | Discharge for Barton   | for Barton Springs          | (feet <sup>3</sup> /second) |
|         | Springs (feet?/second) | (feet <sup>3</sup> /second) | · · · ·                     |
| 1961.50 | 79                     | 51.549                      | 27.451                      |
|         |                        |                             |                             |
| 1961.58 | 130                    | 66.993                      | 63.007                      |
| 1961.67 | 135                    | 70.169                      | 64.831                      |
| 1961.75 | 118                    | 64.628                      | 53.372                      |
| 1961.83 | 107                    | 59.139                      | 47.861                      |
| 1961.92 | 93                     | 53.863                      | 39.137                      |
| 1962.00 | 78                     | 48.963                      | 29.037                      |
| 1962.08 | 54                     | 44.631                      | 9.369                       |
| 1962.17 | 58                     | 40.543                      | 17.457                      |
| 1962.25 | 58                     | 37.295                      | 20.705                      |
| 1962.33 | 60                     | 34.821                      | 25.179                      |
| 1962.42 | 56                     | 32.255                      | 23.745                      |
| 1962.50 | 49                     | 39.188                      | 9.812                       |
| 1962.58 | 38                     | 36.093                      | 1.907                       |
| 1962.67 | 40                     | 34.135                      | 5.865                       |
| 1962.75 | 46                     | 31.741                      | 14.259                      |
| 1962.83 | 41                     | 29.319                      | 11.681                      |
| 1962.92 | 36                     | 27.016                      | 8.984                       |
| 1963.00 | 36                     | 25.208                      | 10.792                      |
| 1963.08 | 47                     | 23.646                      | 23.354                      |
| 1963.17 | 50                     | 22.461                      | 27.539                      |
| 1963.25 | 47                     | 21.148                      | 25.852                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 67 of 115

| Decimal | Estimated/Measured                                          | Simulated Discharge                               | Posidual                    |
|---------|-------------------------------------------------------------|---------------------------------------------------|-----------------------------|
| Year    | Discharge for Barton<br>Springs (feet <sup>3</sup> /second) | for Barton Springs<br>(feet <sup>3</sup> /second) | (feet <sup>3</sup> /second) |
| 1963.33 | 62                                                          | 20.225                                            | 41.775                      |
| 1963.42 | 55                                                          | 19.072                                            | 35.928                      |
| 1963.50 | 41                                                          | 17.921                                            | 23.079                      |
| 1963.58 | 40                                                          | 16.804                                            | 23.196                      |
| 1963.67 | 33                                                          | 15.776                                            | 17.224                      |
| 1963.75 | 24                                                          | 14.735                                            | 9.265                       |
| 1963.83 | 21                                                          | 13.851                                            | 7.149                       |
| 1963.92 | 20                                                          | 13.050                                            | 6.950                       |
| 1964.00 | 19                                                          | 12.401                                            | 6.599                       |
| 1964.08 | 20                                                          | 12.638                                            | 7.362                       |
| 1964.17 | 21                                                          | 12.403                                            | 8.597                       |
| 1964.25 | 22                                                          | 12.366                                            | 9.634                       |
| 1964.33 | 26                                                          | 12.165                                            | 13.835                      |
| 1964.42 | 21                                                          | 18.193                                            | 2.807                       |
| 1964.50 | 21                                                          | 25.481                                            | -4.481                      |
| 1964.58 | 20                                                          | 26.161                                            | -6.161                      |
| 1964.67 | 19                                                          | 24.221                                            | -5.221                      |
| 1964.75 | 18                                                          | 22.587                                            | -4.587                      |
| 1964.83 | 19                                                          | 20.770                                            | -1.770                      |
| 1964.92 | 19                                                          | 19.121                                            | -0.121                      |
| 1965.00 | 19                                                          | 17.567                                            | 1.433                       |
| 1965.08 | 55                                                          | 26.112                                            | 28.888                      |
| 1965.17 | 69                                                          | 39.090                                            | 29.910                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 68 of 115

| Decimal | Estimated/Measured                                          | Simulated Discharge                               | Posidual                    |
|---------|-------------------------------------------------------------|---------------------------------------------------|-----------------------------|
| Year    | Discharge for Barton<br>Springs (feet <sup>3</sup> /second) | for Barton Springs<br>(feet <sup>3</sup> /second) | (feet <sup>3</sup> /second) |
|         |                                                             |                                                   |                             |
| 1965.25 | 66                                                          | 48.544                                            | 17.456                      |
| 1965.33 | 63                                                          | 45.521                                            | 17.479                      |
| 1965.42 | 80                                                          | 61.951                                            | 18.049                      |
| 1965.50 | 95                                                          | 64.238                                            | 30.762                      |
| 1965.58 | 84                                                          | 61.075                                            | 22.925                      |
| 1965.67 | 75                                                          | 55.557                                            | 19.443                      |
| 1965.75 | 78                                                          | 50.455                                            | 27.545                      |
| 1965.83 | 86                                                          | 45.622                                            | 40.378                      |
| 1965.92 | 85                                                          | 41.284                                            | 43.716                      |
| 1966.00 | 82                                                          | 47.337                                            | 34.663                      |
| 1966.08 | 82                                                          | 53.228                                            | 28.772                      |
| 1966.17 | 80                                                          | 60.917                                            | 19.083                      |
| 1966.25 | 78                                                          | 56.805                                            | 21.195                      |
| 1966.33 | 77                                                          | 52.835                                            | 24.165                      |
| 1966.42 | 75                                                          | 54.445                                            | 20.555                      |
| 1966.50 | 71                                                          | 49.684                                            | 21.316                      |
| 1966.58 | 60                                                          | 45.194                                            | 14.806                      |
| 1966.67 | 47                                                          | 48.517                                            | -1.517                      |
| 1966.75 | 44                                                          | 44.182                                            | -0.182                      |
| 1966.83 | 39                                                          | 40.235                                            | -1.235                      |
| 1966.92 | 30                                                          | 36.513                                            | -6.513                      |
| 1967.00 | 25                                                          | 33.153                                            | -8.153                      |
| 1967.08 | 28                                                          | 30.115                                            | -2.115                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 69 of 115

| Decimal | Estimated/Measured                                          | Simulated Discharge                               | Posidual                    |
|---------|-------------------------------------------------------------|---------------------------------------------------|-----------------------------|
| Year    | Discharge for Barton<br>Springs (feet <sup>3</sup> /second) | for Barton Springs<br>(feet <sup>3</sup> /second) | (feet <sup>3</sup> /second) |
| 1967.17 | 28                                                          | 27.454                                            | 0.546                       |
| 1967.25 | 28                                                          | 25.331                                            | 2.669                       |
| 1967.33 | 30                                                          | 23.704                                            | 6.296                       |
| 1967.42 | 27                                                          | 29.252                                            | -2.252                      |
| 1967.50 | 21                                                          | 26.939                                            | -5.939                      |
| 1967.58 | 15                                                          | 24.983                                            | -9.983                      |
| 1967.67 | 22                                                          | 23.073                                            | -1.073                      |
| 1967.75 | 38                                                          | 26.368                                            | 11.632                      |
| 1967.83 | 61                                                          | 42.673                                            | 18.327                      |
| 1967.92 | 48                                                          | 45.202                                            | 2.798                       |
| 1968.00 | 42                                                          | 46.535                                            | -4.535                      |
| 1968.08 | 76                                                          | 63.088                                            | 12.912                      |
| 1968.17 | 100                                                         | 73.390                                            | 26.610                      |
| 1968.25 | 97                                                          | 78.068                                            | 18.932                      |
| 1968.33 | 87                                                          | 72.300                                            | 14.700                      |
| 1968.42 | 89                                                          | 78.937                                            | 10.063                      |
| 1968.50 | 86                                                          | 80.329                                            | 5.671                       |
| 1968.58 | 89                                                          | 76.033                                            | 12.967                      |
| 1968.67 | 85                                                          | 68.679                                            | 16.321                      |
| 1968.75 | 77                                                          | 62.145                                            | 14.855                      |
| 1968.83 | 68                                                          | 56.000                                            | 12.000                      |
| 1968.92 | 59                                                          | 53.389                                            | 5.611                       |
| 1969.00 | 54                                                          | 48.486                                            | 5.514                       |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 70 of 115

| Decimal<br>Year | Estimated/Measured<br>Discharge for Barton<br>Springs<br>(feet <sup>3</sup> /second) | Simulated<br>Discharge for<br>Barton Springs<br>(feet <sup>3</sup> /second) | Residual<br>(feet <sup>3</sup> /second) |
|-----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|
| 1969.08         | 50                                                                                   | 44.561                                                                      | 5.439                                   |
| 1969.17         | 64                                                                                   | 49.056                                                                      | 14.944                                  |
| 1969.25         | 74                                                                                   | 56.666                                                                      | 17.334                                  |
| 1969.33         | 73                                                                                   | 72.203                                                                      | 0.797                                   |
| 1969.42         | 78                                                                                   | 80.153                                                                      | -2.153                                  |
| 1969.50         | 73                                                                                   | 79.495                                                                      | -6.495                                  |
| 1969.58         | 67                                                                                   | 72.824                                                                      | -5.824                                  |
| 1969.67         | 61                                                                                   | 67.005                                                                      | -6.005                                  |
| 1969.75         | 56                                                                                   | 60.526                                                                      | -4.526                                  |
| 1969.83         | 51                                                                                   | 54.725                                                                      | -3.725                                  |
| 1969.92         | 46                                                                                   | 49.472                                                                      | -3.472                                  |
| 1970.00         | 43                                                                                   | 50.656                                                                      | -7.656                                  |
| 1970.08         | 47                                                                                   | 54.451                                                                      | -7.451                                  |
| 1970.17         | 82                                                                                   | 65.533                                                                      | 16.467                                  |
| 1970.25         | 111                                                                                  | 72.225                                                                      | 38.775                                  |
| 1970.33         | 110                                                                                  | 67.264                                                                      | 42.736                                  |
| 1970.42         | 103                                                                                  | 81.849                                                                      | 21.151                                  |
| 1970.50         | 98                                                                                   | 76.396                                                                      | 21.604                                  |
| 1970.58         | 93                                                                                   | 70.311                                                                      | 22.689                                  |
| 1970.67         | 88                                                                                   | 63.983                                                                      | 24.017                                  |
| 1970.75         | 84                                                                                   | 58.203                                                                      | 25.797                                  |
| 1970.83         | 78                                                                                   | 69.752                                                                      | 8.248                                   |
| 1970.92         | 65                                                                                   | 63.201                                                                      | 1.799                                   |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 71 of 115

|         | Estimated/Measured          | Simulated                   |                             |
|---------|-----------------------------|-----------------------------|-----------------------------|
| Decimal | Discharge for Barton        | Discharge for               | Residual                    |
| Year    | Springs                     | Barton Springs              | (feet <sup>3</sup> /second) |
|         | (feet <sup>3</sup> /second) | (feet <sup>3</sup> /second) |                             |
| 1971.00 | 51                          | 57.475                      | -6.475                      |
| 1971.08 | 39                          | 52.153                      | -13.153                     |
| 1971.17 | 35                          | 47.304                      | -12.304                     |
| 1971.25 | 32                          | 43.148                      | -11.148                     |
| 1971.33 | 28                          | 39.598                      | -11.598                     |
| 1971.42 | 31                          | 36.426                      | -5.426                      |
| 1971.50 | 33                          | 33.451                      | -0.451                      |
| 1971.58 | 20                          | 30.778                      | -10.778                     |
| 1971.67 | 35                          | 36.730                      | -1.730                      |
| 1971.75 | 67                          | 34.067                      | 32.933                      |
| 1971.83 | 71                          | 31.735                      | 39.265                      |
| 1971.92 | 73                          | 29.520                      | 43.480                      |
| 1972.00 | 77                          | 36.027                      | 40.973                      |
| 1972.08 | 100                         | 42.546                      | 57.454                      |
| 1972.17 | 96                          | 39.686                      | 56.314                      |
| 1972.25 | 90                          | 36.955                      | 53.045                      |
| 1972.33 | 86                          | 34.313                      | 51.687                      |
| 1972.42 | 84                          | 51.590                      | 32.410                      |
| 1972.50 | 88                          | 57.457                      | 30.543                      |
| 1972.58 | 85                          | 57.205                      | 27.795                      |
| 1972.67 | 81                          | 53.332                      | 27.668                      |
| 1972.75 | 80                          | 48.595                      | 31.405                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 72 of 115

| Decimal | Estimated/Measured                     | Simulated                                     | Pesidual                    |
|---------|----------------------------------------|-----------------------------------------------|-----------------------------|
| Year    | Springs<br>(feet <sup>3</sup> /second) | Barton Springs<br>(feet <sup>3</sup> /second) | (feet <sup>3</sup> /second) |
| 1972.83 | 80                                     | 44.258                                        | 35.742                      |
| 1972.92 | 77                                     | 40.350                                        | 36.650                      |
| 1973.00 | 74                                     | 36.806                                        | 37.194                      |
| 1973.08 | 71                                     | 43.233                                        | 27.767                      |
| 1973.17 | 69                                     | 50.340                                        | 18.660                      |
| 1973.25 | 68                                     | 59.873                                        | 8.127                       |
| 1973.33 | 65                                     | 67.136                                        | -2.136                      |
| 1973.42 | 64                                     | 62.902                                        | 1.098                       |
| 1973.50 | 74                                     | 68.745                                        | 5.255                       |
| 1973.58 | 87                                     | 81.544                                        | 5.456                       |
| 1973.67 | 89                                     | 76.061                                        | 12.939                      |
| 1973.75 | 87                                     | 75.755                                        | 11.245                      |
| 1973.83 | 98                                     | 88.663                                        | 9.337                       |
| 1973.92 | 108                                    | 86.981                                        | 21.019                      |
| 1974.00 | 99                                     | 79.864                                        | 19.136                      |
| 1974.08 | 95                                     | 73.498                                        | 21.502                      |
| 1974.17 | 93                                     | 66.548                                        | 26.453                      |
| 1974.25 | 90                                     | 60.569                                        | 29.431                      |
| 1974.33 | 93                                     | 55.202                                        | 37.798                      |
| 1974.42 | 95                                     | 64.034                                        | 30.966                      |
| 1974.50 | 89                                     | 58.396                                        | 30.604                      |
| 1974.58 | 82                                     | 53.436                                        | 28.564                      |
| 1974.67 | 73                                     | 57.073                                        | 15.927                      |
Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 73 of 115

| Docimal | Estimated/Measured          | Simulated                   | Posidual                    |
|---------|-----------------------------|-----------------------------|-----------------------------|
| Year    | Springs                     | Barton Springs              | (feet <sup>3</sup> /second) |
|         | (feet <sup>3</sup> /second) | (feet <sup>3</sup> /second) |                             |
| 1974.75 | 66                          | 52.223                      | 13.777                      |
| 1974.83 | 65                          | 47.818                      | 17.182                      |
| 1974.92 | 74                          | 63.682                      | 10.318                      |
| 1975.00 | 98                          | 68.172                      | 29.828                      |
| 1975.08 | 96                          | 71.910                      | 24.090                      |
| 1975.17 | 97                          | 76.260                      | 20.740                      |
| 1975.25 | 96                          | 71.007                      | 24.993                      |
| 1975.33 | 95                          | 85.269                      | 9.731                       |
| 1975.42 | 97                          | 99.289                      | -2.289                      |
| 1975.50 | 113                         | 111.514                     | 1.486                       |
| 1975.58 | 118                         | 122.054                     | -4.054                      |
| 1975.67 | 112                         | 120.905                     | -8.905                      |
| 1975.75 | 99                          | 110.646                     | -11.646                     |
| 1975.83 | 90                          | 100.576                     | -10.576                     |
| 1975.92 | 82                          | 90.922                      | -8.922                      |
| 1976.00 | 73                          | 82.264                      | -9.264                      |
| 1976.08 | 64                          | 74.708                      | -10.708                     |
| 1976.17 | 58                          | 67.661                      | -9.661                      |
| 1976.25 | 55                          | 61.936                      | -6.936                      |
| 1976.33 | 70                          | 76.423                      | -6.423                      |
| 1976.42 | 113                         | 91.220                      | 21.780                      |
| 1976.50 | 106                         | 94.072                      | 11.928                      |
| 1976.58 | 100                         | 106.348                     | -6.348                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 74 of 115

| Decimal<br>Year | Estimated/Measured<br>Discharge for Barton<br>Springs<br>(feet <sup>3</sup> /second) | Simulated<br>Discharge for<br>Barton Springs<br>(feet <sup>3</sup> /second) | Residual<br>(feet <sup>3</sup> /second) |
|-----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|
| 1976.67         | 93                                                                                   | 99.351                                                                      | -6.351                                  |
| 1976.75         | 88                                                                                   | 91.512                                                                      | -3.512                                  |
| 1976.83         | 90                                                                                   | 103.414                                                                     | -13.414                                 |
| 1976.92         | 97                                                                                   | 100.565                                                                     | -3.565                                  |
| 1977.00         | 98                                                                                   | 97.491                                                                      | 0.509                                   |
| 1977.08         | 98                                                                                   | 98.127                                                                      | -0.127                                  |
| 1977.17         | 99                                                                                   | 98.400                                                                      | 0.600                                   |
| 1977.25         | 100                                                                                  | 91.105                                                                      | 8.895                                   |
| 1977.33         | 103                                                                                  | 103.498                                                                     | -0.498                                  |
| 1977.42         | 106                                                                                  | 105.084                                                                     | 0.916                                   |
| 1977.50         | 101                                                                                  | 96.980                                                                      | 4.020                                   |
| 1977.58         | 94                                                                                   | 88.744                                                                      | 5.256                                   |
| 1977.67         | 88                                                                                   | 80.843                                                                      | 7.157                                   |
| 1977.75         | 80                                                                                   | 73.440                                                                      | 6.560                                   |
| 1977.83         | 72                                                                                   | 66.798                                                                      | 5.202                                   |
| 1977.92         | 62                                                                                   | 60.902                                                                      | 1.098                                   |
| 1978.00         | 50                                                                                   | 55.657                                                                      | -5.657                                  |
| 1978.08         | 39                                                                                   | 50.979                                                                      | -11.979                                 |
| 1978.17         | 42                                                                                   | 47.141                                                                      | -5.141                                  |
| 1978.25         | 38                                                                                   | 43.912                                                                      | -5.912                                  |
| 1978.33         | 31                                                                                   | 41.019                                                                      | -10.019                                 |
| 1978.42         | 31                                                                                   | 47.910                                                                      | -16.910                                 |
| 1978.50         | 31                                                                                   | 44.863                                                                      | -13.863                                 |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 75 of 115

| Decimal<br>Year | Estimated/Measured<br>Discharge for Barton<br>Springs<br>(feet <sup>3</sup> /second) | Simulated<br>Discharge for<br>Barton Springs<br>(feet <sup>3</sup> /second) | Residual<br>(feet <sup>3</sup> /second) |
|-----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|
| 1978.58         | 21                                                                                   | 41.904                                                                      | -20.904                                 |
| 1978.67         | 22                                                                                   | 38.936                                                                      | -16.936                                 |
| 1978.75         | 25                                                                                   | 36.440                                                                      | -11.440                                 |
| 1978.83         | 24                                                                                   | 33.841                                                                      | -9.841                                  |
| 1978.92         | 33                                                                                   | 38.855                                                                      | -5.855                                  |
| 1979.00         | 36                                                                                   | 43.642                                                                      | -7.642                                  |
| 1979.08         | 64                                                                                   | 61.007                                                                      | 2.993                                   |
| 1979.17         | 79                                                                                   | 72.760                                                                      | 6.240                                   |
| 1979.25         | 84                                                                                   | 85.850                                                                      | -1.850                                  |
| 1979.33         | 95                                                                                   | 99.929                                                                      | -4.929                                  |
| 1979.42         | 103                                                                                  | 107.040                                                                     | -4.040                                  |
| 1979.50         | 106                                                                                  | 98.921                                                                      | 7.079                                   |
| 1979.58         | 98                                                                                   | 110.456                                                                     | -12.456                                 |
| 1979.67         | 93                                                                                   | 110.097                                                                     | -17.097                                 |
| 1979.75         | 84                                                                                   | 100.777                                                                     | -16.777                                 |
| 1979.83         | 69                                                                                   | 91.628                                                                      | -22.628                                 |
| 1979.92         | 55                                                                                   | 82.981                                                                      | -27.981                                 |
| 1980.00         | 46                                                                                   | 75.350                                                                      | -29.350                                 |
| 1980.08         | 38                                                                                   | 69.060                                                                      | -31.060                                 |
| 1980.17         | 37                                                                                   | 63.254                                                                      | -26.254                                 |
| 1980.25         | 35                                                                                   | 66.856                                                                      | -31.856                                 |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 76 of 115

| Decimal<br>Year | Estimated/Measured<br>Discharge for Barton<br>Springs<br>(feet <sup>3</sup> /second) | Simulated<br>Discharge for<br>Barton Springs<br>(feet <sup>3</sup> /second) | Residual<br>(feet <sup>3</sup> /second) |
|-----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|
| 1980.33         | 52                                                                                   | 61.793                                                                      | -9.793                                  |
| 1980.42         | 62                                                                                   | 71.554                                                                      | -9.554                                  |
| 1980.50         | 71                                                                                   | 65.833                                                                      | 5.167                                   |
| 1980.58         | 57                                                                                   | 60.554                                                                      | -3.554                                  |
| 1980.67         | 42                                                                                   | 55.465                                                                      | -13.465                                 |
| 1980.75         | 37                                                                                   | 51.037                                                                      | -14.037                                 |
| 1980.83         | 46                                                                                   | 46.727                                                                      | -0.727                                  |
| 1980.92         | 43                                                                                   | 43.061                                                                      | -0.061                                  |
| 1981.00         | 50                                                                                   | 39.714                                                                      | 10.286                                  |
| 1981.08         | 48                                                                                   | 37.443                                                                      | 10.557                                  |
| 1981.17         | 53                                                                                   | 34.764                                                                      | 18.236                                  |
| 1981.25         | 66                                                                                   | 33.005                                                                      | 32.995                                  |
| 1981.33         | 64                                                                                   | 31.124                                                                      | 32.876                                  |
| 1981.42         | 58                                                                                   | 42.103                                                                      | 15.897                                  |
| 1981.50         | 81                                                                                   | 58.947                                                                      | 22.053                                  |
| 1981.58         | 102                                                                                  | 75.879                                                                      | 26.121                                  |
| 1981.67         | 94                                                                                   | 80.407                                                                      | 13.593                                  |
| 1981.75         | 86                                                                                   | 74.660                                                                      | 11.340                                  |
| 1981.83         | 86                                                                                   | 86.417                                                                      | -0.417                                  |
| 1981.92         | 83                                                                                   | 79.154                                                                      | 3.846                                   |
| 1982.00         | 74                                                                                   | 72.280                                                                      | 1.720                                   |
| 1982.08         | 60                                                                                   | 65.511                                                                      | -5.511                                  |
| 1982.17         | 52                                                                                   | 59.262                                                                      | -7.262                                  |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 77 of 115

|         | Estimated/Measured          | Simulated                   |                             |
|---------|-----------------------------|-----------------------------|-----------------------------|
| Decimal | Discharge for Barton        | Discharge for               | Residual                    |
| Year    | Springs                     | Barton Springs              | (feet <sup>3</sup> /second) |
|         | (feet <sup>3</sup> /second) | (feet <sup>3</sup> /second) |                             |
| 1982 25 | 46                          | 53 996                      | -7 996                      |
| 1702.23 | 10                          | 33.770                      | 1.770                       |
| 1982.33 | 43                          | 49.722                      | -6.722                      |
| 1982.42 | 62                          | 60.205                      | 1.795                       |
| 1982.50 | 68                          | 63.213                      | 4.787                       |
| 1982.58 | 57                          | 57.923                      | -0.923                      |
| 1982.67 | 44                          | 52.967                      | -8.967                      |
| 1982.75 | 36                          | 48.107                      | -12.107                     |
| 1982.83 | 33                          | 43.724                      | -10.724                     |
| 1982.92 | 34                          | 39.879                      | -5.879                      |
| 1983.00 | 40                          | 36.676                      | 3.324                       |
| 1983.08 | 42                          | 34.637                      | 7.363                       |
| 1983.17 | 45                          | 32.519                      | 12.481                      |
| 1983.25 | 63                          | 47.943                      | 15.057                      |
| 1983.33 | 77                          | 45.190                      | 31.810                      |
| 1983.42 | 74                          | 53.892                      | 20.108                      |
| 1983.50 | 84                          | 60.249                      | 23.751                      |
| 1983.58 | 80                          | 60.397                      | 19.603                      |
| 1983.67 | 73                          | 56.037                      | 16.963                      |
| 1983.75 | 65                          | 51.336                      | 13.664                      |
| 1983.83 | 64                          | 46.689                      | 17.311                      |
| 1983.92 | 59                          | 42.504                      | 16.496                      |
| 1984.00 | 50                          | 38.663                      | 11.337                      |
| 1984.08 | 43                          | 35.696                      | 7.304                       |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 78 of 115

|         | Estimated/Measured          | Simulated                       |                |
|---------|-----------------------------|---------------------------------|----------------|
| Decimal | Discharge for Barton        | Discharge for<br>Barton Springs | Residual       |
| Teal    | (feet <sup>3</sup> /second) | (feet <sup>3</sup> /second)     | (leet /second) |
|         | (reet /second)              | (icce / second)                 |                |
| 1984.17 | 36                          | 32.612                          | 3.388          |
| 1984.25 | 34                          | 30.545                          | 3.455          |
| 1984.33 | 32                          | 28.265                          | 3.735          |
| 1984.42 | 29                          | 26.092                          | 2.908          |
| 1984.50 | 28                          | 23.871                          | 4.129          |
| 1984.58 | 26                          | 21.910                          | 4.090          |
| 1984.67 | 26                          | 20.142                          | 5.858          |
| 1984.75 | 25                          | 18.438                          | 6.562          |
| 1984.83 | 38                          | 37.064                          | 0.936          |
| 1984.92 | 46                          | 40.547                          | 5.453          |
| 1985.00 | 54                          | 46.507                          | 7.493          |
| 1985.08 | 71                          | 44.158                          | 26.842         |
| 1985.17 | 76                          | 41.381                          | 34.619         |
| 1985.25 | 81                          | 38.642                          | 42.358         |
| 1985.33 | 79                          | 35.883                          | 43.117         |
| 1985.42 | 72                          | 33.022                          | 38.978         |
| 1985.50 | 70                          | 38.545                          | 31.455         |
| 1985.58 | 69                          | 40.131                          | 28.869         |
| 1985.67 | 59                          | 36.470                          | 22.530         |
| 1985.75 | 49                          | 33.490                          | 15.510         |
| 1985.83 | 54                          | 30.626                          | 23.374         |
| 1985.92 | 59                          | 47.909                          | 11.091         |
| 1986.00 | 79                          | 52.861                          | 26.139         |

|         | Estimated/Measured          | Simulated                   |                             |
|---------|-----------------------------|-----------------------------|-----------------------------|
| Decimal | Discharge for Barton        | Discharge for               | Residual                    |
| Year    | Springs                     | Barton Springs              | (feet <sup>3</sup> /second) |
|         | (feet <sup>3</sup> /second) | (feet <sup>3</sup> /second) |                             |
| 1986.08 | 77                          | 50.276                      | 26.724                      |
| 1986.17 | 75                          | 46.335                      | 28.665                      |
| 1986.25 | 71                          | 42.526                      | 28.474                      |
| 1986.33 | 63                          | 38.895                      | 24.105                      |
| 1986.42 | 72                          | 55.239                      | 16.761                      |
| 1986.50 | 79                          | 60.339                      | 18.661                      |
| 1986.58 | 72                          | 57.988                      | 14.012                      |
| 1986.67 | 59                          | 52.726                      | 6.274                       |
| 1986.75 | 55                          | 47.962                      | 7.038                       |
| 1986.83 | 62                          | 63.179                      | -1.179                      |
| 1986.92 | 73                          | 62.566                      | 10.434                      |
| 1987.00 | 78                          | 76.948                      | 1.052                       |
| 1987.08 | 78                          | 81.345                      | -3.345                      |
| 1987.17 | 79                          | 88.283                      | -9.283                      |
| 1987.25 | 106                         | 81.835                      | 24.165                      |
| 1987.33 | 102                         | 74.997                      | 27.003                      |
| 1987.42 | 96                          | 87.925                      | 8.075                       |
| 1987.50 | 106                         | 100.730                     | 5.270                       |
| 1987.58 | 103                         | 113.271                     | -10.271                     |
| 1987.67 | 107                         | 105.801                     | 1.199                       |
| 1987.75 | 98                          | 96.934                      | 1.066                       |
| 1987.83 | 91                          | 87.713                      | 3.287                       |

|         | Estimated/Measured          | Simulated                   |                             |
|---------|-----------------------------|-----------------------------|-----------------------------|
| Decimal | Discharge for Barton        | Discharge for               | Residual                    |
| Year    | Springs                     | Barton Springs              | (feet <sup>3</sup> /second) |
|         | (feet <sup>3</sup> /second) | (feet <sup>3</sup> /second) |                             |
| 1987.92 | 82                          | 79.142                      | 2.858                       |
| 1988.00 | 76                          | 71.415                      | 4.585                       |
| 1988.08 | 70                          | 64.522                      | 5.478                       |
| 1988.17 | 62                          | 58.233                      | 3.767                       |
| 1988.25 | 55                          | 53.376                      | 1.624                       |
| 1988.33 | 52                          | 49.062                      | 2.938                       |
| 1988.42 | 49                          | 53.109                      | -4.109                      |
| 1988.50 | 47                          | 48.628                      | -1.628                      |
| 1988.58 | 44                          | 47.488                      | -3.488                      |
| 1988.67 | 43                          | 43.226                      | -0.226                      |
| 1988.75 | 40                          | 39.333                      | 0.667                       |
| 1988.83 | 28                          | 35.822                      | -7.822                      |
| 1988.92 | 25                          | 32.661                      | -7.661                      |
| 1989.00 | 25                          | 29.906                      | -4.906                      |
| 1989.08 | 26                          | 37.150                      | -11.150                     |
| 1989.17 | 28                          | 34.646                      | -6.646                      |
| 1989.25 | 25                          | 32.935                      | -7.935                      |
| 1989.33 | 29                          | 31.202                      | -2.202                      |
| 1989.42 | 54                          | 41.874                      | 12.126                      |
| 1989.50 | 66                          | 45.646                      | 20.354                      |
| 1989.58 | 50                          | 41.959                      | 8.041                       |
| 1989.67 | 34                          | 38.418                      | -4.418                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 81 of 115

| Decimal | Estimated/Measured<br>Discharge for Barton | Simulated<br>Discharge for                    | Residual                    |
|---------|--------------------------------------------|-----------------------------------------------|-----------------------------|
| Year    | Springs<br>(feet <sup>3</sup> /second)     | Barton Springs<br>(feet <sup>3</sup> /second) | (feet <sup>3</sup> /second) |
| 1989.75 | 26                                         | 34.837                                        | -8.837                      |
| 1989.83 | 19                                         | 31.623                                        | -12.623                     |
| 1989.92 | 21                                         | 28.748                                        | -7.748                      |
| 1990.00 | 18                                         | 26.192                                        | -8.192                      |
| 1990.08 | 16                                         | 24.122                                        | -8.122                      |
| 1990.17 | 17                                         | 31.154                                        | -14.154                     |
| 1990.25 | 22                                         | 40.595                                        | -18.595                     |
| 1990.33 | 28                                         | 48.224                                        | -20.224                     |
| 1990.42 | 55                                         | 55.163                                        | -0.163                      |
| 1990.50 | 44                                         | 51.304                                        | -7.304                      |
| 1990.58 | 34                                         | 65.423                                        | -31.423                     |
| 1990.67 | 26                                         | 60.195                                        | -34.195                     |
| 1990.75 | 22                                         | 55.528                                        | -33.528                     |
| 1990.83 | 21                                         | 50.585                                        | -29.585                     |
| 1990.92 | 24                                         | 49.344                                        | -25.344                     |
| 1991.00 | 20                                         | 44.825                                        | -24.825                     |
| 1991.08 | 67                                         | 60.821                                        | 6.179                       |
| 1991.17 | 85                                         | 74.816                                        | 10.184                      |
| 1991.25 | 85                                         | 80.998                                        | 4.002                       |
| 1991.33 | 96                                         | 87.052                                        | 8.948                       |
| 1991.42 | 96                                         | 91.369                                        | 4.631                       |
| 1991.50 | 91                                         | 92.584                                        | -1.584                      |
| 1991.58 | 82                                         | 88.728                                        | -6.728                      |

|         | Estimated/Measured          | Simulated                   |                             |
|---------|-----------------------------|-----------------------------|-----------------------------|
| Decimal | Discharge for Barton        | Discharge for               | Residual                    |
| Year    | Springs                     | Barton Springs              | (feet <sup>3</sup> /second) |
|         | (feet <sup>3</sup> /second) | (feet <sup>3</sup> /second) |                             |
| 1991.67 | 72                          | 81.315                      | -9.315                      |
| 1991.75 | 69                          | 73.885                      | -4.885                      |
| 1991.83 | 63                          | 66.790                      | -3.790                      |
| 1991.92 | 59                          | 60.303                      | -1.303                      |
| 1992.00 | 79                          | 74.586                      | 4.414                       |
| 1992.08 | 88                          | 89.193                      | -1.193                      |
| 1992.17 | 120                         | 103.032                     | 16.968                      |
| 1992.25 | 103                         | 114.453                     | -11.453                     |
| 1992.33 | 103                         | 125.834                     | -22.834                     |
| 1992.42 | 100                         | 136.560                     | -36.560                     |
| 1992.50 | 91                          | 142.079                     | -51.079                     |
| 1992.58 | 99                          | 133.786                     | -34.786                     |
| 1992.67 | 127                         | 121.013                     | 5.987                       |
| 1992.75 | 123                         | 108.928                     | 14.072                      |
| 1992.83 | 116                         | 97.881                      | 18.119                      |
| 1992.92 | 103                         | 88.211                      | 14.789                      |
| 1993.00 | 98                          | 79.950                      | 18.050                      |
| 1993.08 | 97                          | 83.434                      | 13.566                      |
| 1993.17 | 105                         | 88.677                      | 16.323                      |
| 1993.25 | 106                         | 93.292                      | 12.708                      |
| 1993.33 | 108                         | 86.590                      | 21.410                      |
| 1993.42 | 108                         | 93.286                      | 14.714                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 83 of 115

|          | Estimated/Measured          | Simulated                   |                             |
|----------|-----------------------------|-----------------------------|-----------------------------|
| Decimal  | Discharge for Barton        | Discharge for               | Residual                    |
| Year     | Springs                     | Barton Springs              | (feet <sup>3</sup> /second) |
|          | (feet <sup>3</sup> /second) | (feet <sup>3</sup> /second) |                             |
|          |                             |                             |                             |
| 1993.50  | 102                         | 96.254                      | 5.746                       |
| 1993 58  | 95                          | 87 952                      | 7 048                       |
| 1775.50  | 75                          | 07.752                      | 7.010                       |
| 1993.67  | 83                          | 79.992                      | 3.008                       |
| 4002 75  | 74                          | 70.440                      | 4.440                       |
| 1993.75  | /1                          | 72.440                      | -1.440                      |
| 1993.83  | 66                          | 65.689                      | 0.311                       |
|          |                             |                             |                             |
| 1993.92  | 59                          | 59.664                      | -0.664                      |
| 1004.00  | F2                          | F 4 44 4                    |                             |
| 1994.00  | 53                          | 54.411                      | -1.411                      |
| 1994.08  | 52                          | 50.036                      | 1.964                       |
|          |                             |                             |                             |
| 1994.17  | 50                          | 46.317                      | 3.683                       |
| 100 1 25 | 10                          | 12.244                      | 4 ( 00                      |
| 1994.25  | 48                          | 43.311                      | 4.689                       |
| 1994.33  | 46                          | 40.545                      | 5.455                       |
|          |                             |                             |                             |
| 1994.42  | 44                          | 49.524                      | -5.524                      |
| 1004 50  | 42                          | 4/ 4/7                      | 2.47                        |
| 1994.50  | 43                          | 40.107                      | -3.107                      |
| 1994.58  | 37                          | 42.795                      | -5.795                      |
|          |                             |                             |                             |
| 1994.67  | 33                          | 48.132                      | -15.132                     |
| 1004 75  | 20                          | 44 592                      | 14 592                      |
| 1994.75  | 20                          | 44.302                      | -10.362                     |
| 1994.83  | 37                          | 61.183                      | -24.183                     |
|          |                             |                             |                             |
| 1994.92  | 53                          | 61.888                      | -8.888                      |
| 1995 00  | <u> </u>                    | 70 /30                      | -28 /30                     |
| 1773.00  | 72                          | 70.450                      | -20.430                     |
| 1995.08  | 39                          | 66.126                      | -27.126                     |
|          |                             |                             |                             |
| 1995.17  | 35                          | 61.371                      | -26.371                     |
| 1995 25  | 68                          | 56 973                      | 11 027                      |
| 1773.43  | 00                          | 50.775                      | 11.027                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 84 of 115

| Decimal<br>Year | Estimated/Measured<br>Discharge for Barton<br>Springs<br>(feet <sup>3</sup> /second) | Simulated<br>Discharge for<br>Barton Springs<br>(feet <sup>3</sup> /second) | Residual<br>(feet <sup>3</sup> /second) |
|-----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|
| 1995.33         | 83                                                                                   | 52.780                                                                      | 30.220                                  |
| 1995.42         | 87                                                                                   | 68.213                                                                      | 18.787                                  |
| 1995.50         | 99                                                                                   | 74.318                                                                      | 24.682                                  |
| 1995.58         | 90                                                                                   | 70.817                                                                      | 19.183                                  |
| 1995.67         | 80                                                                                   | 65.619                                                                      | 14.381                                  |
| 1995.75         | 69                                                                                   | 60.086                                                                      | 8.914                                   |
| 1995.83         | 51                                                                                   | 54.555                                                                      | -3.555                                  |
| 1995.92         | 50                                                                                   | 49.683                                                                      | 0.317                                   |
| 1996.00         | 39                                                                                   | 45.270                                                                      | -6.270                                  |
| 1996.08         | 32                                                                                   | 41.273                                                                      | -9.273                                  |
| 1996.17         | 27                                                                                   | 37.709                                                                      | -10.709                                 |
| 1996.25         | 24                                                                                   | 34.670                                                                      | -10.670                                 |
| 1996.33         | 25                                                                                   | 32.238                                                                      | -7.238                                  |
| 1996.42         | 21                                                                                   | 29.877                                                                      | -8.877                                  |
| 1996.50         | 26                                                                                   | 28.003                                                                      | -2.003                                  |
| 1996.58         | 21                                                                                   | 25.872                                                                      | -4.872                                  |
| 1996.67         | 22                                                                                   | 32.572                                                                      | -10.572                                 |
| 1996.75         | 33                                                                                   | 38.027                                                                      | -5.027                                  |
| 1996.83         | 31                                                                                   | 36.009                                                                      | -5.009                                  |
| 1996.92         | 31                                                                                   | 34.123                                                                      | -3.123                                  |
| 1997.00         | 34                                                                                   | 32.160                                                                      | 1.840                                   |
| 1997.08         | 36                                                                                   | 30.548                                                                      | 5.452                                   |
| 1997.17         | 47                                                                                   | 37.410                                                                      | 9.590                                   |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 85 of 115

|         | Estimated/Measured          | Simulated                   |                             |
|---------|-----------------------------|-----------------------------|-----------------------------|
| Decimal | Discharge for Barton        | Discharge for               | Residual                    |
| Year    | Springs                     | Barton Springs              | (feet <sup>3</sup> /second) |
|         | (feet <sup>3</sup> /second) | (feet <sup>3</sup> /second) |                             |
| 1997.25 | 58                          | 35.762                      | 22.238                      |
| 1997.33 | 74                          | 53.466                      | 20.534                      |
| 1997.42 | 87                          | 70.752                      | 16.248                      |
| 1997.50 | 102                         | 87.053                      | 14.947                      |
| 1997.58 | 112                         | 100.788                     | 11.212                      |
| 1997.67 | 105                         | 94.464                      | 10.536                      |
| 1997.75 | 93                          | 86.381                      | 6.619                       |
| 1997.83 | 90                          | 78.319                      | 11.681                      |
| 1997.92 | 81                          | 70.805                      | 10.195                      |
| 1998.00 | 74                          | 71.494                      | 2.506                       |
| 1998.08 | 85                          | 76.030                      | 8.970                       |
| 1998.17 | 93                          | 82.386                      | 10.614                      |
| 1998.25 | 98                          | 87.855                      | 10.145                      |
| 1998.33 | 97                          | 81.053                      | 15.947                      |
| 1998.42 | 92                          | 74.081                      | 17.919                      |
| 1998.50 | 85                          | 67.025                      | 17.975                      |
| 1998.58 | 75                          | 60.566                      | 14.434                      |
| 1998.67 | 63                          | 55.516                      | 7.484                       |
| 1998.75 | 58                          | 62.147                      | -4.147                      |
| 1998.83 | 84                          | 77.752                      | 6.248                       |
| 1998.92 | 104                         | 93.301                      | 10.699                      |
| 1999.00 | 105                         | 98.733                      | 6.267                       |
| 1999.08 | 102                         | 91.686                      | 10.314                      |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 86 of 115

| Decimal<br>Year | Estimated/Measured<br>Discharge for Barton<br>Springs<br>(feet <sup>3</sup> /second) | Simulated<br>Discharge for<br>Barton Springs<br>(feet <sup>3</sup> /second) | Residual<br>(feet <sup>3</sup> /second) |
|-----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|
| 1999.17         | 95                                                                                   | 84.034                                                                      | 10.966                                  |
| 1999.25         | 90                                                                                   | 77.127                                                                      | 12.873                                  |
| 1999.33         | 85                                                                                   | 70.336                                                                      | 14.664                                  |
| 1999.42         | 76                                                                                   | 71.039                                                                      | 4.961                                   |
| 1999.50         | 69                                                                                   | 72.214                                                                      | -3.214                                  |
| 1999.58         | 66                                                                                   | 71.448                                                                      | -5.448                                  |
| 1999.67         | 55                                                                                   | 64.946                                                                      | -9.946                                  |
| 1999.75         | 42                                                                                   | 58.962                                                                      | -16.962                                 |
| 1999.83         | 33                                                                                   | 53.433                                                                      | -20.433                                 |
| 1999.92         | 31                                                                                   | 48.417                                                                      | -17.417                                 |
| 2000.00         | 29                                                                                   | 43.998                                                                      | -14.998                                 |
| 2000.08         | 29                                                                                   | 41.019                                                                      | -12.019                                 |
| 2000.17         | 27                                                                                   | 38.228                                                                      | -11.228                                 |
| 2000.25         | 27                                                                                   | 35.891                                                                      | -8.891                                  |
| 2000.33         | 25                                                                                   | 33.642                                                                      | -8.642                                  |
| 2000.42         | 26                                                                                   | 41.759                                                                      | -15.759                                 |
| 2000.50         | 49                                                                                   | 48.350                                                                      | 0.650                                   |
| 2000.58         | 38                                                                                   | 47.673                                                                      | -9.673                                  |
| 2000.67         | 27                                                                                   | 43.498                                                                      | -16.498                                 |
| 2000.75         | 21                                                                                   | 39.469                                                                      | -18.469                                 |
| 2000.83         | 28                                                                                   | 53.769                                                                      | -25.769                                 |
| 2000.92         | 73                                                                                   | 69.401                                                                      | 3.599                                   |
| 2001.00         | 85                                                                                   | 75.019                                                                      | 9.981                                   |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 87 of 115

| Decimal<br>Year | Estimated/Measured<br>Discharge for Barton<br>Springs<br>(feet <sup>3</sup> /second) | Simulated<br>Discharge for<br>Barton Springs<br>(feet <sup>3</sup> /second) | Residual<br>(feet <sup>3</sup> /second) |
|-----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|
| 2001.08         | 93                                                                                   | 82.110                                                                      | 10.890                                  |
| 2001.17         | 100                                                                                  | 75.788                                                                      | 24.212                                  |
| 2001.25         | 101                                                                                  | 79.804                                                                      | 21.196                                  |
| 2001.33         | 103                                                                                  | 73.246                                                                      | 29.754                                  |
| 2001.42         | 103                                                                                  | 82.463                                                                      | 20.537                                  |
| 2001.50         | 96                                                                                   | 81.823                                                                      | 14.177                                  |
| 2001.58         | 88                                                                                   | 77.460                                                                      | 10.540                                  |
| 2001.67         | 76                                                                                   | 78.363                                                                      | -2.363                                  |
| 2001.75         | 77                                                                                   | 70.852                                                                      | 6.148                                   |
| 2001.83         | 68                                                                                   | 64.033                                                                      | 3.967                                   |
| 2001.92         | 80                                                                                   | 62.362                                                                      | 17.638                                  |
| 2002.00         | 106                                                                                  | 65.950                                                                      | 40.050                                  |
| 2002.08         | 112                                                                                  | 68.734                                                                      | 43.266                                  |
| 2002.17         | 109                                                                                  | 62.827                                                                      | 46.173                                  |
| 2002.25         | 102                                                                                  | 57.626                                                                      | 44.374                                  |
| 2002.33         | 98                                                                                   | 52.743                                                                      | 45.257                                  |
| 2002.42         | 91                                                                                   | 48.031                                                                      | 42.969                                  |
| 2002.50         | 80                                                                                   | 54.136                                                                      | 25.864                                  |
| 2002.58         | 97                                                                                   | 68.999                                                                      | 28.001                                  |
| 2002.67         | 101                                                                                  | 72.792                                                                      | 28.208                                  |
| 2002.75         | 92                                                                                   | 67.056                                                                      | 24.944                                  |
| 2002.83         | 86                                                                                   | 81.171                                                                      | 4.829                                   |
| 2002.92         | 98                                                                                   | 95.220                                                                      | 2.780                                   |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 88 of 115

| Decimal<br>Year | Estimated/Measured<br>Discharge for Barton<br>Springs<br>(feet <sup>3</sup> /second) | Simulated<br>Discharge for<br>Barton Springs<br>(feet <sup>3</sup> /second) | Residual<br>(feet <sup>3</sup> /second) |
|-----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|
| 2003.00         | 107                                                                                  | 108.504                                                                     | -1.504                                  |
| 2003.08         | 109                                                                                  | 111.446                                                                     | -2.446                                  |
| 2003.17         | 114                                                                                  | 113.267                                                                     | 0.733                                   |
| 2003.25         | 115                                                                                  | 104.232                                                                     | 10.768                                  |
| 2003.33         | 107                                                                                  | 94.991                                                                      | 12.009                                  |
| 2003.42         | 100                                                                                  | 85.699                                                                      | 14.301                                  |
| 2003.50         | 96                                                                                   | 77.397                                                                      | 18.603                                  |
| 2003.58         | 89                                                                                   | 72.376                                                                      | 16.624                                  |
| 2003.67         | 82                                                                                   | 64.908                                                                      | 17.092                                  |
| 2003.75         | 71                                                                                   | 65.398                                                                      | 5.602                                   |
| 2003.83         | 57                                                                                   | 59.340                                                                      | -2.340                                  |
| 2003.92         | 43                                                                                   | 54.166                                                                      | -11.166                                 |
| 2004.00         | 40                                                                                   | 49.365                                                                      | -9.365                                  |
| 2004.08         | 41                                                                                   | 46.059                                                                      | -5.059                                  |
| 2004.17         | 42                                                                                   | 51.487                                                                      | -9.487                                  |
| 2004.25         | 46                                                                                   | 57.159                                                                      | -11.159                                 |
| 2004.33         | 56                                                                                   | 53.638                                                                      | 2.362                                   |
| 2004.42         | 63                                                                                   | 56.469                                                                      | 6.531                                   |
| 2004.50         | 74                                                                                   | 70.455                                                                      | 3.545                                   |
| 2004.58         | 96                                                                                   | 83.315                                                                      | 12.685                                  |
| 2004.67         | 86                                                                                   | 77.852                                                                      | 8.148                                   |
| 2004.75         | 72                                                                                   | 71.726                                                                      | 0.274                                   |
| 2004.83         | 65                                                                                   | 85.385                                                                      | -20.385                                 |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 89 of 115

| Decimal<br>Year | Estimated/Measured<br>Discharge for Barton<br>Springs<br>(feet <sup>3</sup> /second) | Simulated<br>Discharge for<br>Barton Springs<br>(feet <sup>3</sup> /second) | Residual<br>(feet <sup>3</sup> /second) |
|-----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|
| 2004.92         | 82                                                                                   | 99.074                                                                      | -17.074                                 |
| 2005.00         | 102                                                                                  | 111.875                                                                     | -9.875                                  |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 90 of 115

## APPENDIX D: Wells Used for Measured Groundwater Elevations

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 91 of 115

#### TABLE D-1. STATE WELL NUMBERS, MODEL ROW, MODEL COLUMN, NUMBER OF MEASUREMENTS, HIGHEST MEASURED GROUNDWATER ELEVATION, LOWEST MEASURED GROUNDWATER ELEVATION, DECIMAL YEAR OF EARLIEST MEASUREMENT, AND DECIMAL YEAR OF LATEST MEASUREMENT FOR THE 152 TARGET WELLS USED TO CALIBRATE THE GROUNDWATER FLOW MODEL.

| State Well<br>Number | Model<br>Row | Model<br>Column | Number of<br>Measurements | Highest<br>Groundwater<br>Elevation<br>(feet MSL) | Lowest<br>Groundwater<br>Elevation<br>(feet MSL) | Decimal Year<br>of Earliest<br>Measurement | Decimal Year<br>of Latest<br>Measurement |
|----------------------|--------------|-----------------|---------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------|
| 5858101              | 92           | 46              | 429                       | 664.50                                            | 551.80                                           | 1943.33                                    | 2005.00                                  |
| 5850801              | 75           | 68              | 290                       | 630.10                                            | 504.25                                           | 1943.33                                    | 2005.00                                  |
| 5850301              | 52           | 92              | 281                       | 528.65                                            | 431.00                                           | 1949.58                                    | 2005.00                                  |
| 5842911              | 21           | 107             | 120                       | 443.20                                            | 426.73                                           | 1944.00                                    | 1981.08                                  |
| 5858123              | 79           | 53              | 113                       | 648.24                                            | 536.17                                           | 1985.17                                    | 2005.00                                  |
| 5850212              | 33           | 90              | 84                        | 510.18                                            | 415.75                                           | 1978.42                                    | 2005.00                                  |
| 5857201              | 40           | 30              | 83                        | 797.00                                            | 748.40                                           | 1951.00                                    | 2004.17                                  |
| 5842819              | 10           | 97              | 78                        | 494.23                                            | 420.00                                           | 1982.25                                    | 2005.00                                  |
| 5850216              | 36           | 95              | 66                        | 505.58                                            | 435.33                                           | 1978.75                                    | 2005.00                                  |
| 5850205              | 31           | 92              | 48                        | 475.60                                            | 430.88                                           | 1943.33                                    | 1950.00                                  |
| 5857509              | 64           | 26              | 42                        | 699.89                                            | 656.85                                           | 1988.67                                    | 2004.83                                  |
| 5858104              | 78           | 50              | 42                        | 635.26                                            | 553.94                                           | 1943.33                                    | 1997.00                                  |
| 5850411              | 35           | 71              | 39                        | 561.11                                            | 539.66                                           | 1978.50                                    | 2002.17                                  |
| 5842903              | 29           | 108             | 37                        | 441.50                                            | 427.36                                           | 1949.08                                    | 1960.42                                  |
| 5850702              | 45           | 55              | 36                        | 660.10                                            | 624.41                                           | 1949.58                                    | 1960.00                                  |
| 5850501              | 50           | 72              | 27                        | 568.62                                            | 477.40                                           | 1949.67                                    | 1958.58                                  |
| 5850413              | 34           | 65              | 24                        | 603.70                                            | 559.26                                           | 1980.50                                    | 2004.25                                  |
| 5849925              | 43           | 43              | 21                        | 648.29                                            | 636.07                                           | 1995.25                                    | 2005.00                                  |
| 5849926              | 43           | 42              | 21                        | 697.20                                            | 671.95                                           | 1995.25                                    | 2005.00                                  |
| 5850103              | 5            | 81              | 21                        | 765.23                                            | 763.81                                           | 1943.17                                    | 1947.25                                  |
| 5849309              | 7            | 69              | 17                        | 853.70                                            | 835.17                                           | 1969.25                                    | 1992.17                                  |
| 5857602              | 65           | 27              | 17                        | 707.86                                            | 652.67                                           | 1975.83                                    | 1998.17                                  |
| 5850211              | 14           | 90              | 15                        | 580.49                                            | 523.50                                           | 1971.92                                    | 2004.58                                  |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 92 of 115

| State Well<br>Number | Model<br>Row | Model<br>Column | Number of<br>Measurements | Highest<br>Groundwater<br>Elevation<br>(feet MSL) | Lowest<br>Groundwater<br>Elevation<br>(feet MSL) | Decimal Year<br>of Earliest<br>Measurement | Decimal Year<br>of Latest<br>Measurement |
|----------------------|--------------|-----------------|---------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------|
| 5850215              | 30           | 90              | 11                        | 517.80                                            | 389.50                                           | 1985.92                                    | 2003.42                                  |
| 5850217              | 27           | 96              | 10                        | 497.93                                            | 475.30                                           | 1981.08                                    | 2004.58                                  |
| 5850704              | 58           | 57              | 10                        | 585.24                                            | 514.29                                           | 1968.17                                    | 2001.50                                  |
| 5857303              | 55           | 42              | 10                        | 660.70                                            | 613.39                                           | 1978.08                                    | 1998.33                                  |
| 5842915              | 31           | 103             | 9                         | 443.70                                            | 392.69                                           | 1993.33                                    | 2003.42                                  |
| 5850204              | 33           | 83              | 9                         | 475.66                                            | 465.05                                           | 1943.33                                    | 1944.58                                  |
| 5850412              | 28           | 66              | 9                         | 657.53                                            | 647.57                                           | 1978.50                                    | 1994.33                                  |
| 5850805              | 59           | 68              | 9                         | 569.01                                            | 499.69                                           | 1943.33                                    | 1947.50                                  |
| 5850104              | 12           | 84              | 7                         | 541.43                                            | 526.82                                           | 1943.33                                    | 1946.25                                  |
| 5850408              | 33           | 64              | 7                         | 614.80                                            | 590.60                                           | 1981.08                                    | 2003.42                                  |
| 5850417              | 32           | 74              | 6                         | 545.67                                            | 524.75                                           | 2000.50                                    | 2004.58                                  |
| 5850123              | 5            | 79              | 5                         | 715.00                                            | 682.70                                           | 1998.67                                    | 2003.42                                  |
| 5842928              | 33           | 106             | 4                         | 499.00                                            | 472.76                                           | 1979.25                                    | 2004.50                                  |
| 5842931              | 23           | 109             | 4                         | 430.62                                            | 428.97                                           | 1997.25                                    | 2004.67                                  |
| 5849935              | 40           | 52              | 4                         | 675.80                                            | 530.00                                           | 1993.00                                    | 2003.42                                  |
| 5850201              | 42           | 92              | 4                         | 521.83                                            | 457.55                                           | 1981.08                                    | 2003.42                                  |
| 5850855              | 69           | 67              | 4                         | 592.75                                            | 538.80                                           | 1998.67                                    | 2003.42                                  |
| 5857307              | 66           | 41              | 4                         | 634.78                                            | 592.00                                           | 1985.08                                    | 2001.50                                  |
| 5857311              | 55           | 42              | 4                         | 655.35                                            | 627.00                                           | 1993.42                                    | 2003.42                                  |
| 5858423              | 93           | 39              | 4                         | 650.21                                            | 614.00                                           | 1998.67                                    | 2003.42                                  |
| 5858508              | 99           | 48              | 4                         | 618.06                                            | 593.82                                           | 1985.92                                    | 2001.50                                  |
| 5842814              | 13           | 105             | 3                         | 439.10                                            | 435.40                                           | 1978.25                                    | 1989.42                                  |
| 5842821              | 10           | 98              | 3                         | 499.10                                            | 477.80                                           | 1982.17                                    | 2004.67                                  |
| 5842913              | 22           | 106             | 3                         | 431.04                                            | 426.80                                           | 1981.08                                    | 2003.58                                  |
| 5850122              | 13           | 86              | 3                         | 545.72                                            | 539.34                                           | 1998.67                                    | 2004.67                                  |
| 5850214              | 42           | 87              | 3                         | 462.30                                            | 448.76                                           | 1978.33                                    | 1981.08                                  |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 93 of 115

| State Well<br>Number | Model<br>Row | Model<br>Column | Number of<br>Measurements | Highest<br>Groundwater<br>Elevation<br>(feet MSL) | Lowest<br>Groundwater<br>Elevation<br>(feet MSL) | Decimal Year<br>of Earliest<br>Measurement | Decimal Year<br>of Latest<br>Measurement |
|----------------------|--------------|-----------------|---------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------|
| 5850226              | 30           | 94              | 3                         | 488.61                                            | 465.00                                           | 1985.42                                    | 1993.58                                  |
| 5850227              | 29           | 94              | 3                         | 487.08                                            | 450.00                                           | 1985.42                                    | 1993.58                                  |
| 5850836              | 73           | 68              | 3                         | 623.10                                            | 542.70                                           | 1973.33                                    | 2004.67                                  |
| 5850837              | 69           | 68              | 3                         | 589.00                                            | 505.20                                           | 1973.67                                    | 1986.17                                  |
| 5858427              | 87           | 40              | 3                         | 654.45                                            | 615.80                                           | 2002.17                                    | 2004.58                                  |
| 5842812              | 10           | 99              | 2                         | 489.00                                            | 461.00                                           | 1948.75                                    | 1978.67                                  |
| 5842815              | 8            | 91              | 2                         | 585.50                                            | 552.74                                           | 1971.83                                    | 1978.25                                  |
| 5842817              | 8            | 98              | 2                         | 547.00                                            | 543.90                                           | 1978.50                                    | 1980.08                                  |
| 5842825              | 10           | 98              | 2                         | 495.82                                            | 494.77                                           | 2002.42                                    | 2003.42                                  |
| 5850206              | 26           | 92              | 2                         | 476.00                                            | 471.50                                           | 1969.50                                    | 1981.08                                  |
| 5850207              | 30           | 84              | 2                         | 475.60                                            | 460.24                                           | 1971.33                                    | 1978.33                                  |
| 5850228              | 28           | 95              | 2                         | 485.00                                            | 484.45                                           | 1985.42                                    | 1993.42                                  |
| 5850229              | 27           | 95              | 2                         | 470.00                                            | 467.64                                           | 1985.42                                    | 1993.58                                  |
| 5850231              | 50           | 89              | 2                         | 510.50                                            | 510.20                                           | 2003.67                                    | 2004.50                                  |
| 5850402              | 40           | 69              | 2                         | 536.10                                            | 516.90                                           | 1969.17                                    | 1981.08                                  |
| 5850506              | 59           | 74              | 2                         | 554.10                                            | 485.00                                           | 1970.50                                    | 1973.33                                  |
| 5850517              | 55           | 75              | 2                         | 583.00                                            | 520.10                                           | 1973.50                                    | 1981.08                                  |
| 5850701              | 61           | 59              | 2                         | 519.20                                            | 515.45                                           | 1949.58                                    | 1949.92                                  |
| 5850703              | 58           | 57              | 2                         | 583.50                                            | 535.10                                           | 1973.33                                    | 1978.33                                  |
| 5850705              | 61           | 61              | 2                         | 555.50                                            | 520.00                                           | 1965.92                                    | 1969.67                                  |
| 5850710              | 39           | 61              | 2                         | 555.30                                            | 554.60                                           | 1949.58                                    | 1978.25                                  |
| 5850714              | 57           | 62              | 2                         | 645.00                                            | 549.50                                           | 1969.75                                    | 1979.17                                  |
| 5850730              | 64           | 61              | 2                         | 565.80                                            | 551.42                                           | 1998.58                                    | 2003.67                                  |
| 5850810              | 80           | 66              | 2                         | 605.00                                            | 575.60                                           | 1969.58                                    | 1981.08                                  |
| 5850811              | 69           | 62              | 2                         | 537.00                                            | 506.70                                           | 1963.42                                    | 1978.33                                  |
| 5850817              | 67           | 63              | 2                         | 539.20                                            | 500.00                                           | 1955.92                                    | 1981.08                                  |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 94 of 115

| State Well<br>Number | Model<br>Row | Model<br>Column | Number of<br>Measurements | Highest<br>Groundwater<br>Elevation<br>(feet MSL) | Lowest<br>Groundwater<br>Elevation<br>(feet MSL) | Decimal Year<br>of Earliest<br>Measurement | Decimal Year<br>of Latest<br>Measurement |
|----------------------|--------------|-----------------|---------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------|
| 5850822              | 64           | 68              | 2                         | 559.50                                            | 524.05                                           | 1970.17                                    | 1981.08                                  |
| 5850827              | 71           | 67              | 2                         | 555.30                                            | 476.20                                           | 1973.67                                    | 1978.33                                  |
| 5850838              | 72           | 65              | 2                         | 610.80                                            | 524.60                                           | 1973.67                                    | 1978.33                                  |
| 5850852              | 62           | 71              | 2                         | 514.89                                            | 502.80                                           | 1998.67                                    | 2003.67                                  |
| 5857606              | 93           | 28              | 2                         | 639.71                                            | 625.00                                           | 2003.67                                    | 2004.58                                  |
| 5858202              | 83           | 63              | 2                         | 605.30                                            | 563.30                                           | 1969.67                                    | 1998.67                                  |
| 5858711              | 120          | 25              | 2                         | 604.77                                            | 592.64                                           | 2003.42                                    | 2004.67                                  |
| 5858712              | 109          | 26              | 2                         | 595.69                                            | 569.50                                           | 2003.67                                    | 2004.58                                  |
| 5842813              | 13           | 105             | 1                         | 432.10                                            | 432.10                                           | 1981.08                                    | 1981.08                                  |
| 5842901              | 19           | 109             | 1                         | 416.20                                            | 416.20                                           | 1955.25                                    | 1955.25                                  |
| 5842912              | 15           | 108             | 1                         | 436.30                                            | 436.30                                           | 1955.25                                    | 1955.25                                  |
| 5849910              | 46           | 48              | 1                         | 456.00                                            | 456.00                                           | 1974.50                                    | 1974.50                                  |
| 5849911              | 46           | 48              | 1                         | 629.00                                            | 629.00                                           | 1975.42                                    | 1975.42                                  |
| 5849916              | 45           | 50              | 1                         | 590.00                                            | 590.00                                           | 1987.58                                    | 1987.58                                  |
| 5849917              | 45           | 51              | 1                         | 582.00                                            | 582.00                                           | 1987.58                                    | 1987.58                                  |
| 5849918              | 44           | 50              | 1                         | 538.50                                            | 538.50                                           | 1980.58                                    | 1980.58                                  |
| 5849919              | 42           | 49              | 1                         | 565.00                                            | 565.00                                           | 1986.58                                    | 1986.58                                  |
| 5849922              | 45           | 52              | 1                         | 595.00                                            | 595.00                                           | 1984.42                                    | 1984.42                                  |
| 5849923              | 44           | 52              | 1                         | 594.00                                            | 594.00                                           | 1984.75                                    | 1984.75                                  |
| 5849924              | 44           | 52              | 1                         | 592.00                                            | 592.00                                           | 1984.75                                    | 1984.75                                  |
| 5849931              | 43           | 53              | 1                         | 545.00                                            | 545.00                                           | 1990.33                                    | 1990.33                                  |
| 5849933              | 43           | 53              | 1                         | 545.00                                            | 545.00                                           | 1990.33                                    | 1990.33                                  |
| 5849938              | 43           | 43              | 1                         | 719.60                                            | 719.60                                           | 2004.50                                    | 2004.50                                  |
| 5849939              | 35           | 50              | 1                         | 711.20                                            | 711.20                                           | 2004.67                                    | 2004.67                                  |
| 5850108              | 29           | 80              | 1                         | 530.00                                            | 530.00                                           | 1949.58                                    | 1949.58                                  |
| 5850112              | 26           | 78              | 1                         | 567.20                                            | 567.20                                           | 1970.83                                    | 1970.83                                  |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 95 of 115

| State Well<br>Number | Model<br>Row | Model<br>Column | Number of<br>Measurements | Highest<br>Groundwater<br>Elevation<br>(feet MSL) | Lowest<br>Groundwater<br>Elevation<br>(feet MSL) | Decimal Year<br>of Earliest<br>Measurement | Decimal Year<br>of Latest<br>Measurement |
|----------------------|--------------|-----------------|---------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------|
| 5850124              | 11           | 71              | 1                         | 612.48                                            | 612.48                                           | 2000.25                                    | 2000.25                                  |
| 5850208              | 29           | 85              | 1                         | 463.00                                            | 463.00                                           | 1955.17                                    | 1955.17                                  |
| 5850218              | 27           | 96              | 1                         | 441.00                                            | 441.00                                           | 1978.58                                    | 1978.58                                  |
| 5850230              | 32           | 90              | 1                         | 501.90                                            | 501.90                                           | 2003.42                                    | 2003.42                                  |
| 5850403              | 35           | 65              | 1                         | 650.00                                            | 650.00                                           | 1968.50                                    | 1968.50                                  |
| 5850405              | 35           | 75              | 1                         | 798.80                                            | 798.80                                           | 1970.83                                    | 1970.83                                  |
| 5850407              | 32           | 64              | 1                         | 605.00                                            | 605.00                                           | 1971.25                                    | 1971.25                                  |
| 5850505              | 56           | 76              | 1                         | 500.00                                            | 500.00                                           | 1963.17                                    | 1963.17                                  |
| 5850515              | 52           | 72              | 1                         | 495.00                                            | 495.00                                           | 1953.58                                    | 1953.58                                  |
| 5850602              | 53           | 88              | 1                         | 415.20                                            | 415.20                                           | 1971.42                                    | 1971.42                                  |
| 5850706              | 67           | 61              | 1                         | 495.00                                            | 495.00                                           | 1962.92                                    | 1962.92                                  |
| 5850708              | 65           | 63              | 1                         | 455.00                                            | 455.00                                           | 1968.50                                    | 1968.50                                  |
| 5850713              | 54           | 62              | 1                         | 558.20                                            | 558.20                                           | 1970.83                                    | 1970.83                                  |
| 5850717              | 68           | 60              | 1                         | 590.00                                            | 590.00                                           | 1970.33                                    | 1970.33                                  |
| 5850718              | 63           | 59              | 1                         | 526.00                                            | 526.00                                           | 1970.83                                    | 1970.83                                  |
| 5850724              | 64           | 62              | 1                         | 552.15                                            | 552.15                                           | 2003.67                                    | 2003.67                                  |
| 5850734              | 62           | 57              | 1                         | 544.00                                            | 544.00                                           | 1980.58                                    | 1980.58                                  |
| 5850735              | 62           | 57              | 1                         | 540.00                                            | 540.00                                           | 1978.00                                    | 1978.00                                  |
| 5850737              | 68           | 61              | 1                         | 548.62                                            | 548.62                                           | 2003.67                                    | 2003.67                                  |
| 5850738              | 60           | 57              | 1                         | 559.00                                            | 559.00                                           | 1985.83                                    | 1985.83                                  |
| 5850743              | 48           | 60              | 1                         | 565.88                                            | 565.88                                           | 2003.42                                    | 2003.42                                  |
| 5850745              | 56           | 59              | 1                         | 574.38                                            | 574.38                                           | 2004.58                                    | 2004.58                                  |
| 5850746              | 72           | 59              | 1                         | 585.84                                            | 585.84                                           | 2004.67                                    | 2004.67                                  |
| 5850803              | 72           | 68              | 1                         | 562.00                                            | 562.00                                           | 1943.33                                    | 1943.33                                  |
| 5850809              | 69           | 64              | 1                         | 535.00                                            | 535.00                                           | 1966.50                                    | 1966.50                                  |
| 5850812              | 69           | 64              | 1                         | 540.00                                            | 540.00                                           | 1965.83                                    | 1965.83                                  |

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 96 of 115

| State Well<br>Number | Model<br>Row | Model<br>Column | Number of<br>Measurements | Highest<br>Groundwater<br>Elevation<br>(feet MSL) | Lowest<br>Groundwater<br>Elevation<br>(feet MSL) | Decimal Year<br>of Earliest<br>Measurement | Decimal Year<br>of Latest<br>Measurement |
|----------------------|--------------|-----------------|---------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------|
| 5850819              | 75           | 64              | 1                         | 498.00                                            | 498.00                                           | 1949.58                                    | 1949.58                                  |
| 5850826              | 67           | 66              | 1                         | 515.00                                            | 515.00                                           | 1969.92                                    | 1969.92                                  |
| 5850828              | 72           | 63              | 1                         | 555.00                                            | 555.00                                           | 1972.42                                    | 1972.42                                  |
| 5850829              | 63           | 70              | 1                         | 545.00                                            | 545.00                                           | 1971.67                                    | 1971.67                                  |
| 5850830              | 63           | 71              | 1                         | 510.00                                            | 510.00                                           | 1971.67                                    | 1971.67                                  |
| 5850835              | 72           | 69              | 1                         | 415.00                                            | 415.00                                           | 1969.17                                    | 1969.17                                  |
| 5850846              | 77           | 63              | 1                         | 620.40                                            | 620.40                                           | 2003.42                                    | 2003.42                                  |
| 5850861              | 65           | 64              | 1                         | 462.70                                            | 462.70                                           | 2003.67                                    | 2003.67                                  |
| 5857210              | 57           | 30              | 1                         | 690.00                                            | 690.00                                           | 1995.33                                    | 1995.33                                  |
| 5857314              | 52           | 42              | 1                         | 633.98                                            | 633.98                                           | 2002.42                                    | 2002.42                                  |
| 5857315              | 66           | 40              | 1                         | 607.99                                            | 607.99                                           | 2003.67                                    | 2003.67                                  |
| 5857609              | 61           | 28              | 1                         | 630.00                                            | 630.00                                           | 1998.17                                    | 1998.17                                  |
| 5857610              | 95           | 28              | 1                         | 666.60                                            | 666.60                                           | 2003.67                                    | 2003.67                                  |
| 5858122              | 87           | 48              | 1                         | 602.55                                            | 602.55                                           | 2003.67                                    | 2003.67                                  |
| 5858127              | 61           | 48              | 1                         | 558.00                                            | 558.00                                           | 1990.42                                    | 1990.42                                  |
| 5858203              | 81           | 61              | 1                         | 578.10                                            | 578.10                                           | 1981.17                                    | 1981.17                                  |
| 5858204              | 78           | 61              | 1                         | 498.00                                            | 498.00                                           | 1962.83                                    | 1962.83                                  |
| 5858207              | 82           | 61              | 1                         | 485.00                                            | 485.00                                           | 1969.33                                    | 1969.33                                  |
| 5858208              | 85           | 60              | 1                         | 480.00                                            | 480.00                                           | 1971.58                                    | 1971.58                                  |
| 5858215              | 78           | 60              | 1                         | 505.00                                            | 505.00                                           | 1972.50                                    | 1972.50                                  |
| 5858416              | 102          | 34              | 1                         | 653.00                                            | 653.00                                           | 1977.67                                    | 1977.67                                  |
| 5858425              | 108          | 35              | 1                         | 603.40                                            | 603.40                                           | 1999.50                                    | 1999.50                                  |
| 5858426              | 83           | 40              | 1                         | 603.14                                            | 603.14                                           | 2003.58                                    | 2003.58                                  |
| 5858509              | 102          | 47              | 1                         | 592.80                                            | 592.80                                           | 2003.67                                    | 2003.67                                  |
| 5858710              | 119          | 27              | 1                         | 610.00                                            | 610.00                                           | 1999.00                                    | 1999.00                                  |

# APPENDIX E: Hydrographs for Target Wells

Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 98 of 115

#### FIGURE E-1. HYDROGRAPHS FOR 35 OF THE 152 TARGET WELLS USED TO CALIBRATE THE GROUNDWATER FLOW MODEL. HYDROGRAPHS SHOWN ARE FOR WELLS WITH 5 OR MORE DATA POINTS.





Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 99 of 115

## Figure E-1 continued





Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 100 of 115







Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 101 of 115





Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 102 of 115

## Figure E-1 continued





Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 103 of 115







Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 104 of 115







Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 105 of 115







Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 106 of 115

## Figure E-1 continued





Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 107 of 115







Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 108 of 115






Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 109 of 115

## Figure E-1 continued





Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 110 of 115







Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 111 of 115







Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 112 of 115







Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 113 of 115







Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer–Barton Springs Segment–Groundwater Flow Model June 2011 Page 114 of 115







Report: Recalibration of the Edwards (Balcones Fault Zone) Aquifer-Barton Springs Segment-Groundwater Flow Model June 2011 Page 115 of 115



