GAM RUN 17-025 MAG: MODELED AVAILABLE GROUNDWATER FOR THE GULF COAST AQUIFER SYSTEM IN GROUNDWATER MANAGEMENT AREA 16

Rohit Raj Goswami, Ph.D., P.E. Texas Water Development Board Groundwater Division Groundwater Availability Modeling Section (512) 463-0495 May 19, 2017

This page is intentionally left blank.

Rohit Raj Goswami, Ph.D., P.E. Texas Water Development Board Groundwater Division Groundwater Availability Modeling Section (512) 463-0495 May 19, 2017

EXECUTIVE SUMMARY:

The modeled available groundwater for Groundwater Management Area 16 (Figure 1) for the Gulf Coast Aquifer System is summarized by decade for the groundwater conservation districts and counties (Table 1) and for use in the regional water planning process (Table 2). The modeled available groundwater estimates range from approximately 233,000 acrefeet per year in 2020 to 312,000 acre-feet per year in 2060 (Tables 1 and 2). The estimates were extracted from results of a model run using the alternative groundwater availability model for Groundwater Management Area 16 (version 1.01). The model run files, which meet the desired future conditions of Groundwater Management Area 16, were submitted to the Texas Water Development Board (TWDB) as part of the Desired Future Conditions Explanatory Report for Groundwater Management Area 16. The explanatory report and other materials submitted to the TWDB were determined to be administratively complete on April 19, 2017.

REQUESTOR:

Mr. David O'Rourke, consultant for Groundwater Management Area 16.

DESCRIPTION OF REQUEST:

In a letter dated January 25, 2017, Mr. David O'Rourke, consultant for Groundwater Management Area 16, provided the TWDB with the desired future conditions of the Gulf Coast Aquifer System adopted by the groundwater conservation district representatives in Groundwater Management Area 16. All other aquifers in Groundwater Management Area 16 (Carrizo-Wilcox and Yegua-Jackson) were declared non-relevant for joint planning purposes. The Gulf Coast Aquifer System includes the Chicot Aquifer, Evangeline Aquifer, and the Jasper Aquifer. Clarifications to the submitted materials were received by TWDB on April 4, 2017. The desired future conditions for the Gulf Coast Aquifer System, as described

Page 4 of 17

in Resolution No. 2017-01 and adopted January 17, 2017, by the groundwater conservation districts within Groundwater Management Area 16, are described below:

Groundwater Management Area 16 [all counties]

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 62 feet in December 2060 from estimated year 2010 conditions.

Bee Groundwater Conservation District

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 76 feet in December 2060 from estimated year 2010 conditions.

Live Oak Underground Water Conservation District

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 34 feet in December 2060 from estimated year 2010 conditions.

McMullen Groundwater Conservation District

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 9 feet in December 2060 from estimated year 2010 conditions.

Red Sands Groundwater Conservation District

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 40 feet in December 2060 from estimated year 2010 conditions.

Kenedy County Groundwater Conservation District

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 40 feet in December 2060 from estimated year 2010 conditions.

Brush Country Groundwater Conservation District

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 69 feet in December 2060 from estimated year 2010 conditions.

Duval County Groundwater Conservation District

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 104 feet in December 2060 from estimated year 2010 conditions.

Page 5 of 17

San Patricio County Groundwater Conservation District

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 48 feet in December 2060 from estimated year 2010 conditions.

Starr County Groundwater Conservation District

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 69 feet in December 2060 from estimated year 2010 conditions.

No District - Cameron County

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 70 feet in December 2060 from estimated year 2010 conditions.

No District - Hidalgo County

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 118 feet in December 2060 from estimated year 2010 conditions.

No District - Kleberg County

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 28 feet in December 2060 from estimated year 2010 conditions.

No District - Nueces County

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 21 feet in December 2060 from estimated year 2010 conditions.

No District - Webb County

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 113 feet in December 2060 from estimated year 2010 conditions.

No District - Willacy County

Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 40 feet in December 2060 from estimated year 2010 conditions.

METHODS:

The alternative groundwater availability model for Groundwater Management Area 16 (Hutchison and others, 2011) was run using the model files submitted with the explanatory report (O'Rourke, 2017). Model-calculated water levels were extracted for the years 2010

Page 6 of 17

and 2060, and drawdown was calculated as the difference between water levels at the beginning of 2010 and water levels at the end of 2060. Drawdown averages were calculated for the Gulf Coast Aquifer System by county, groundwater conservation districts, and the entire groundwater management area. As specified in the explanatory report (O'Rourke, 2017), drawdown for model cells that became dry during the simulation (water level dropped below the base of the cell) were excluded from the averaging. The calculated drawdown averages were compared with the desired future conditions to verify that the pumping scenario specified by the district representatives achieved the desired future conditions within a one-foot variance.

The modeled available groundwater values were determined by extracting pumping rates by decade from the model results using ZONEBUDGET Version 3.01 (Harbaugh, 2009). Table 1 presents the annual pumping rates by county and groundwater conservation district, subtotaled by groundwater conservation district, and then summed for Groundwater Management Area 16. Table 2 presents the annual pumping rates by county, river basin, regional water planning area, and groundwater conservation district within Groundwater Management Area 16.

Modeled Available Groundwater and Permitting

As defined in Chapter 36 of the Texas Water Code, "modeled available groundwater" is the estimated average amount of water that may be produced annually to achieve a desired future condition. Groundwater conservation districts must consider modeled available groundwater when issuing permits in order to manage groundwater production to achieve the desired future condition(s). Districts must also consider annual precipitation and production patterns, the estimated amount of pumping exempt from permitting, existing permits, and a reasonable estimate of actual groundwater production under existing permits.

PARAMETERS AND ASSUMPTIONS:

The parameters and assumptions for the groundwater availability are described below:

- The analysis used version 1.01 of the alternate groundwater availability model for Groundwater Management Area 16. See Hutchison and others (2011) for assumptions and limitations of the model.
- The model has six layers that represent the Chicot Aquifer (Layer 1), the Evangeline Aquifer (Layer 2), the Burkeville Confining Unit (Layer 3), the Jasper Aquifer (Layer 4), the Yegua-Jackson Aquifer (Layer 5), and the Queen-City, Sparta and Carrizo-Wilcox Aquifer System (Layer 6).
- The model was run with MODFLOW-2000 (Harbaugh and others, 2000).

Page 7 of 17

- Groundwater Division checked the validity of the assertion that starting water levels in the model were comparable to the measured water-level conditions at the end of year 2010. Water-level values were averaged over the entire area of Groundwater Management Area 16 for the measured and modeled conditions between the years 2000 and 2010. These averaged water-level values are reported in Table 3. As presented in Table 3, the average water-levels indicate that conditions in the field did not change significantly, however, model estimated values differ significantly (by over 12 feet). Such a difference in the model estimates can be explained by the difference in values of pumping and recharge used in the model and those occurring in the field for the period between the years 2000 and 2010. It is important to note here that the groundwater availability model for Groundwater Management Area 16 was constructed using the confined aquifer assumption (and LAYCON=0 option) available within MODFLOW-96. Such an assumption leads to an almost linear response between pumping and drawdown. The Groundwater Division checked and verified the validity of the assumption by taking out the pumping input in the model from the years 2000 to 2010 and obtaining equivalent drawdown values in the year 2060. Based on the analysis, we conclude that the submitted model files are acceptable for developing estimates of modeled available groundwater. Please note that the confined aguifer assumption may also lead to physically unrealistic conditions with pumping in a model cell continuing even when water levels have dropped below the base of the model cell.
- Drawdown averages and modeled available groundwater values are based on official aquifer boundaries (Figures 1 and 2).
- Drawdown values for cells with water levels below the base elevation of the cell ("dry" cells) were excluded from the averaging. However, pumping values from those cells were included in the calculation of modeled available groundwater.
- Estimates of modeled available groundwater from the model simulation were rounded to whole numbers.
- Average drawdown per county may include some model cells that represent portions of surface water such as bays, reservoirs, and the Gulf of Mexico.

RESULTS:

The modeled available groundwater for the Gulf Coast Aquifer System that achieves the desired future conditions adopted by Groundwater Management Area 16 increases from approximately 233,000 acre-feet per year in 2020 to 312,000 acre-feet per year in 2060 (Tables 1 and 2). The modeled available groundwater is summarized by groundwater conservation district and county (Table 1) and by county, river basin, and regional water

Page 8 of 17

planning area for use in the regional water planning process (Table 2). Small differences of values between table summaries are due to rounding errors.

Page 9 of 17

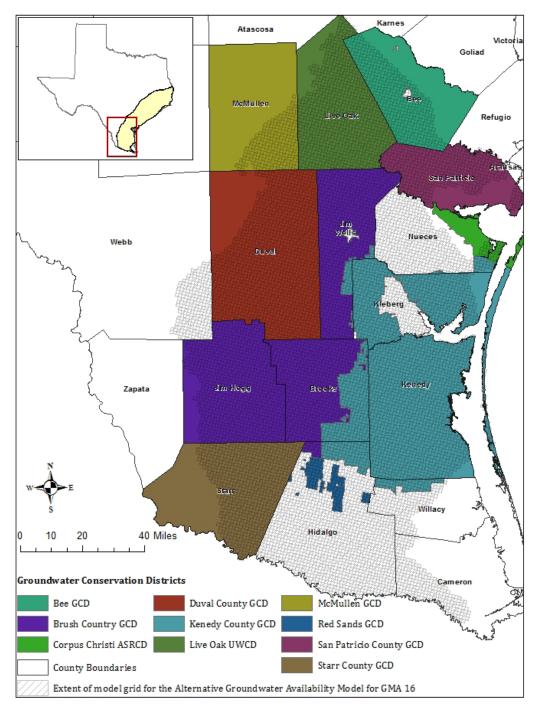


FIGURE 1. MAP SHOWING GROUNDWATER CONSERVATION DISTRICTS (GCDS), COUNTIES, AND GULF COAST AQUIFER SYSTEM EXTENT IN GROUNDWATER MANAGEMENT AREA 16 OVERLAIN ON THE EXTENT OF THE ALTERNATIVE GROUNDWATER AVAILABILITY MODEL FOR GROUNDWATER MANAGEMENT AREA 16.

Page 10 of 17

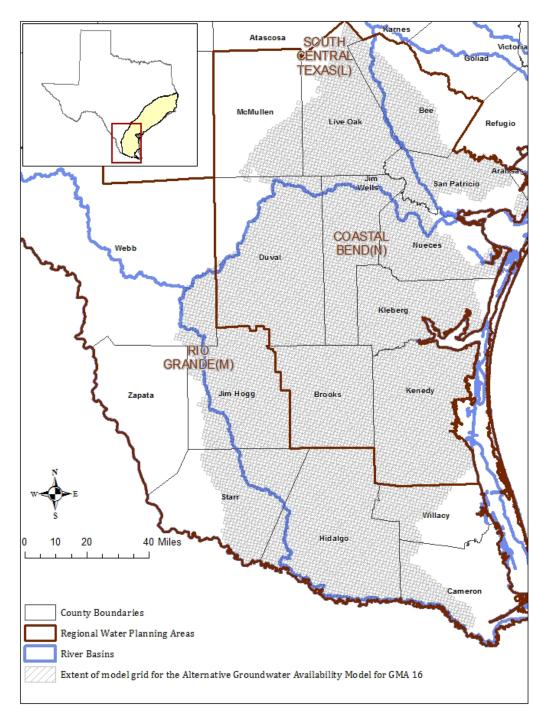


FIGURE 2. MAP SHOWING THE EXTENT OF THE GULF COAST AQUIFER SYSTEM, REGIONAL WATER PLANNING AREAS, COUNTIES, AND RIVER BASINS IN GROUNDWATER MANAGEMENT AREA 16 OVERLAIN ON THE EXTENT OF THE ALTERNATIVE GROUNDWATER AVAILABILITY MODEL FOR GROUNDWATER MANAGEMENT AREA 16.

Page 11 of 17

TABLE 1.MODELED AVAILABLE GROUNDWATER FOR THE GULF COAST AQUIFER SYSTEM IN GROUNDWATER MANAGEMENT AREA 16
SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2010 AND 2060.
VALUES ARE IN ACRE-FEET PER YEAR.

Groundwater Conservation District (GCD)	County	Aquifer	2010	2020	2030	2040	2050	2060
Bee GCD	Bee	Gulf Coast Aquifer System	7,689	8,971	10,396	11,061	11,392	11,584
Brush Country GCD	Brooks	Gulf Coast Aquifer System	3,657	3,657	3,657	3,657	3,657	3,657
Brush Country GCD	Hidalgo	Gulf Coast Aquifer System	131	131	131	131	131	131
Brush Country GCD	Jim Hogg	Gulf Coast Aquifer System	6,174	6,174	6,174	6,174	6,174	6,174
Brush Country GCD	Jim Wells	Gulf Coast Aquifer System	4,220	8,710	9,075	9,403	9,768	10,060
Brush Country GCD		Gulf Coast Aquifer System	14,182	18,672	19,037	19,365	19,730	20,022
Corpus Christi ASRCD	Nueces	Gulf Coast Aquifer System	328	342	356	370	384	398
Duval County GCD	Duval	Gulf Coast Aquifer System	18,973	20,571	22,169	23,764	25,363	26,963
Kenedy County GCD	Brooks	Gulf Coast Aquifer System	1,155	1,925	2,695	3,465	4,235	4,235
Kenedy County GCD	Willacy	Gulf Coast Aquifer System	289	482	674	867	1,060	1,060
Kenedy County GCD	Hidalgo	Gulf Coast Aquifer System	364	607	849	1,092	1,335	1,335
Kenedy County GCD	Jim Wells	Gulf Coast Aquifer System	261	434	608	783	957	957
Kenedy County GCD	Nueces	Gulf Coast Aquifer System	151	251	351	452	552	552
Kenedy County GCD	Kenedy	Gulf Coast Aquifer System	7,981	13,301	18,621	23,941	29,261	29,261
Kenedy County GCD	Kleberg	Gulf Coast Aquifer System	3,788	6,314	8,839	11,364	13,889	13,889
Kenedy County GCD		Gulf Coast Aquifer System	13,989	23,314	32,637	41,964	51,289	51,289
Live Oak UWCD	Live Oak	Gulf Coast Aquifer System	6,556	8,338	9,343	8,564	8,441	8,441
McMullen GCD	McMullen	Gulf Coast Aquifer System	510	510	510	510	510	510
Red Sands GCD	Hidalgo	Gulf Coast Aquifer System	1,368	1,667	1,966	2,265	2,563	2,863
San Patricio County GCD	San Patricio	Gulf Coast Aquifer System	14,201	43,611	45,016	46,422	47,828	49,234
Starr County GCD	Starr	Gulf Coast Aquifer System	2,742	3,722	4,701	5,681	6,659	7,639
No District-Bee	Bee	Gulf Coast Aquifer System	0	0	0	0	0	0
No District-Cameron	Cameron	Gulf Coast Aquifer System	5,378	6,688	7,999	9,311	10,620	11,932
No District-Hidalgo	Hidalgo	Gulf Coast Aquifer System	15,908	85,634	90,905	96,175	101,445	106,715

Page 12 of 17

Groundwater Conservation District (GCD)	County	Aquifer	2010	2020	2030	2040	2050	2060
No District-Jim Wells	Jim Wells	Gulf Coast Aquifer System	0	0	0	0	0	0
No District-Kleberg	Kleberg	Gulf Coast Aquifer System	3,857	4,051	4,243	4,436	4,629	4,822
No District-Nueces	Nueces	Gulf Coast Aquifer System	5,753	5,996	6,240	6,487	6,731	6,974
No District-Webb	Webb	Gulf Coast Aquifer System	450	620	789	959	1,129	1,299
No District-Willacy	Willacy	Gulf Coast Aquifer System	544	664	785	905	1,024	1,145
No District-Total		Gulf Coast Aquifer System	31,890	103,653	110,961	118,273	125,578	132,887
GMA 16 Total		Gulf Coast Aquifer System	112,428	233,371	257,092	278,239	299,737	311,830

TABLE 2. MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE GULF COAST AQUIFER SYSTEM IN GROUNDWATER MANAGEMENT

AREA 16. RESULTS ARE IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA),

Page 13 of 17

County	RWPA	River Basin	Aquifer	2020	2030	2040	2050	2060
Bee	N	Nueces	Gulf Coast Aquifer System	770	893	949	978	995
Bee	N	San Antonio-Nueces	Gulf Coast Aquifer System	8,201	9,503	10,112	10,414	10,589
Brooks	N	Nueces-Rio Grande	Gulf Coast Aquifer System	5,582	6,352	7,122	7,892	7,892
Cameron	М	Nueces-Rio Grande	Gulf Coast Aquifer System	6,301	7,536	8,771	10,005	11,241
Cameron	М	Rio Grande	Gulf Coast Aquifer System	387	463	540	615	691
Duval	N	Nueces	Gulf Coast Aquifer System	326	351	376	401	428
Duval	N	Nueces-Rio Grande	Gulf Coast Aquifer System	20,245	21,818	23,388	24,962	26,535
Hidalgo	М	Nueces-Rio Grande	Gulf Coast Aquifer System	86,405	91,810	97,216	102,620	107,784
Hidalgo	М	Rio Grande	Gulf Coast Aquifer System	1,634	2,041	2,447	2,854	3,260
Jim Hogg	М	Nueces-Rio Grande	Gulf Coast Aquifer System	5,236	5,236	5,236	5,236	5,236
Jim Hogg	М	Rio Grande	Gulf Coast Aquifer System	938	938	938	938	938
Jim Wells	N	Nueces	Gulf Coast Aquifer System	593	593	593	593	593
Jim Wells	N	Nueces-Rio Grande	Gulf Coast Aquifer System	8,551	9,090	9,593	10,132	10,424
Kenedy	N	Nueces-Rio Grande	Gulf Coast Aquifer System	13,301	18,621	23,941	29,261	29,261
Kleberg	N	Nueces-Rio Grande	Gulf Coast Aquifer System	10,365	13,082	15,800	18,518	18,711
Live Oak	N	Nueces	Gulf Coast Aquifer System	8,297	9,297	8,522	8,400	8,400
Live Oak	N	San Antonio-Nueces	Gulf Coast Aquifer System	41	46	42	41	41
McMullen	N	Nueces	Gulf Coast Aquifer System	510	510	510	510	510
Nueces	N	Nueces-Rio Grande	Gulf Coast Aquifer System	5,862	6,191	6,522	6,851	7,079
Nueces	N	Nueces	Gulf Coast Aquifer System	727	756	787	816	845
Nueces	N	San Antonio-Nueces	Gulf Coast Aquifer System	0	0	0	0	0
San Patricio	N	Nueces	Gulf Coast Aquifer System	4,130	4,502	4,874	5,247	5,619
San Patricio	N	San Antonio-Nueces	Gulf Coast Aquifer System	39,481	40,514	41,548	42,581	43,615
Starr	М	Nueces-Rio Grande	Gulf Coast Aquifer System	1,497	1,891	2,285	2,678	3,072

Page 14 of 17

County	RWPA	River Basin	Aquifer	2020	2030	2040	2050	2060
Starr	М	Rio Grande	Gulf Coast Aquifer System	2,225	2,810	3,396	3,981	4,567
Webb	М	Rio Grande	Gulf Coast Aquifer System	98	125	152	179	206
Webb	М	Nueces	Gulf Coast Aquifer System	18	22	27	32	37
Webb	М	Nueces-Rio Grande	Gulf Coast Aquifer System	504	642	780	918	1,056
Willacy	М	Nueces-Rio Grande	Gulf Coast Aquifer System	1,146	1,459	1,772	2,084	2,205
GMA 16-Total			Gulf Coast Aquifer System	233,371	257,092	278,239	299,737	311,830

Page 15 of 17

TABLE 3.COMPARISON OF MEASURED AND MODELED WATER-LEVELS AVERAGED OVER GROUNDWATER MANAGEMENT AREA 16 FROM
THE DECADAL YEARS 2000 AND 2010. VALUES OF FIELD MEASURED WATER-LEVELS WERE OBTAINED FROM THE TWDB
GROUNDWATER DATABASE (GWDB).

Average water levels in Groundwater Management Area 16 (in feet above mean sea level)								
	Year 2000 Year 2010							
Field measurements (GWDB)	114.1	114.4						
Model estimated	119.5	107.1						

Page 16 of 17

LIMITATIONS:

The groundwater model used in completing this analysis is the best available scientific tool that can be used to meet the stated objectives. To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

"Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results."

A key aspect of using the groundwater model to evaluate historic groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historic pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the aquifer system (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and streamflow are specific to a particular historic time period.

Because the application of the groundwater model was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations relating to the actual conditions of any aquifer at a particular location or at a particular time.

It is important for groundwater conservation districts to monitor groundwater pumping and groundwater levels in the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions.

Page 17 of 17

REFERENCES:

- Hutchison, W.R., Hill, M.E., Anaya, R., Hassan, M.M., Oliver, W., Jigmond, M., Wade, S., and Aschenbach, E. 2011. Groundwater Management Are 16 Groundwater Flow Model, Texas Water Development Board, unpublished report.
- Harbaugh, A. W., 2009, Zonebudget Version 3.01, A computer program for computing subregional water budgets for MODFLOW ground-water flow models, U.S. Geological Survey Groundwater Software.
- Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-2000, The U.S. Geological Survey modular ground-water model- user guide to modularization concepts and the groundwater flow process: U.S. Geological Survey, Open-File Report 00-92.
- National Research Council, 2007, Models in Environmental Regulatory Decision Making Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p., <u>http://www.nap.edu/catalog.php?record_id=11972</u>.

Texas Water Code, 2011, <u>http://www.statutes.legis.state.tx.us/docs/WA/pdf/WA.36.pdf.</u>